1
|
Room SA, Chiu YC, Pan SY, Chen YC, Hsiao TC, Chou CCK, Hussain M, Chi KH. A comprehensive examination of temporal-seasonal variations of PM 1.0 and PM 2.5 in taiwan before and during the COVID-19 lockdown. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31511-31523. [PMID: 38632201 DOI: 10.1007/s11356-024-33174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
COVID-19 has been a significant global concern due to its contagious nature. In May 2021, Taiwan experienced a severe outbreak, leading the government to enforce strict Pandemic Alert Level 3 restrictions in order to curtail its spread. Although previous studies in Taiwan have examined the effects of these measures on air quality, further research is required to compare different time periods and assess the health implications of reducing particulate matter during the Level 3 lockdown. Herein, we analyzed the mass concentrations, chemical compositions, seasonal variations, sources, and potential health risks of PM1.0 and PM2.5 in Central Taiwan before and during the Level 3 lockdown. As a result, coal-fired boilers (47%) and traffic emissions (53%) were identified as the predominant sources of polycyclic aromatic hydrocarbons (PAHs) in PM1.0, while in PM2.5, the dominant sources of PAHs were coal-fired boilers (28%), traffic emissions (50%), and iron and steel sinter plants (22.1%). Before the pandemic, a greater value of 20.9 ± 6.92 μg/m3 was observed for PM2.5, which decreased to 15.3 ± 2.51 μg/m3 during the pandemic due to a reduction in industrial and anthropogenic emissions. Additionally, prior to the pandemic, PM1.0 had a contribution rate of 79% to PM2.5, which changed to 89% during the pandemic. Similarly, BaPeq values in PM2.5 exhibited a comparable trend, with PM1.0 contributing 86% and 65% respectively. In both periods, the OC/EC ratios for PM1.0 and PM2.5 were above 2, due to secondary organic compounds. The incremental lifetime cancer risk (ILCR) of PAHs in PM2.5 decreased by 4.03 × 10-5 during the pandemic, with PM1.0 contributing 73% due to reduced anthropogenic activities.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi Chen Chiu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | - Majid Hussain
- Department of Forestry and Wildlife Management, University of Haripur, 22620, Hattar Road, Haripur City, KP, Pakistan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli, Taiwan.
| |
Collapse
|
2
|
Cao L, Men Q, Zhang Z, Yue H, Cui S, Huang X, Zhang Y, Wang J, Chen M, Li H. Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area. TOXICS 2024; 12:34. [PMID: 38250990 PMCID: PMC10820161 DOI: 10.3390/toxics12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The chemical complexity and toxicity of volatile organic compounds (VOCs) are primarily encountered through intensive anthropogenic emissions in suburban areas. Here, pollution characteristics, impacts on secondary pollution formation, and health risks were investigated through continuous in-field measurements from 1-30 June 2020 in suburban Nanjing, adjacent to national petrochemical industrial parks in China. On average, the total VOCs concentration was 34.47 ± 16.08 ppb, which was comprised mostly by alkanes (41.8%) and halogenated hydrocarbons (29.4%). In contrast, aromatics (17.4%) dominated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) with 59.6% and 58.3%, respectively. Approximately 63.5% of VOCs were emitted from the petrochemical industry and from solvent usage based on source apportionment results, followed by biogenic emissions of 22.3% and vehicle emissions of 14.2%. Of the observed 46 VOC species, hexachlorobutadiene, dibromoethane, butadiene, tetrachloroethane, and vinyl chloride contributed as high as 98.8% of total carcinogenic risk, a large fraction of which was ascribed to the high-level emissions during ozone pollution episodes and nighttime. Therefore, the mitigation of VOC emissions from petrochemical industries would be an effective way to reduce secondary pollution and potential health risks in conurbation areas.
Collapse
Affiliation(s)
- Li Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qihui Men
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zihao Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hao Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shijie Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiangpeng Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yunjiang Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiwei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| |
Collapse
|
3
|
Yeh CK, Tzu FM, Chen PY, Shen HC, Yuan CS, Lin C, Pu HP, Ngo HH, Bui XT. Emission characteristics of naphthalene from ship exhausts under global sulfur cap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166172. [PMID: 37562633 DOI: 10.1016/j.scitotenv.2023.166172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The global sulfur limit regulation mandates the use of 0.5 % low sulfur fuel oil (LSFO) to reduce emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM). However, the addition of naphthalene (Nap) to LSFO to stabilize its quality has led to an increase in polycyclic aromatic hydrocarbons (PAHs), with Nap being the main pollutant. This study investigates the effects of Nap in ship exhaust by analyzing the emission concentrations of volatile organic compounds (VOCs) and Nap in the exhaust of 16 ships, including 2 container ships, 6 bulk carriers, 1 tanker, 2 ferries, 3 fishing vessels, and 2 harbor crafts, based on USEPA method TO-15A. The results show that the percentage of Nap emissions in the exhaust gases of the 16 ship engines ranged from 77 % to 97 % of the total volatile organic compound (TVOC). The Nap concentration in the exhaust of fishing vessels, tanker, and harbor craft exceeded the occupational exposure limit of 50,000 μg/m3, with fishing vessels having the highest TVOC and Nap concentrations. The enhanced Nap emission in the air degrades air quality in port cities and poses an obvious potential public health risk. While the benefits of the global sulfur cap are being secured, additional efforts should be made to reduce the undetected side effects. Alternative stabilizers of LSFO should be considered, or Nap emission control should be boosted to mitigate the potential negative impact on harbor air quality.
Collapse
Affiliation(s)
- Chin-Ko Yeh
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Fu-Ming Tzu
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Po-Yang Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Hsueh-Chen Shen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan.
| | - Han-Pin Pu
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
4
|
Yen YC, Ku CH, Yao TC, Tsai HJ, Peng CY, Chen YC. Personal exposure to aldehydes and potential health risks among schoolchildren in the city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101627-101636. [PMID: 37653197 DOI: 10.1007/s11356-023-29578-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Schoolchildren are sensitive to airborne aldehyde exposures. The knowledge regarding inhalation exposure to aldehydes and the factors influencing exposure in schoolchildren is limited. This study aimed to assess the variability and potential health risks of exposure to aldehydes (including formaldehyde) in schoolchildren. The important factors affecting personal exposure to aldehydes were also explored. Forty schoolchildren were recruited from the urban and suburban areas of Taiwan for aldehyde samplings and questionnaire surveys. Personal and indoor home samples of aldehydes were collected simultaneously during warm and cold seasons. We also identified the potential variables associated with aldehyde exposure based on the participant's responses to the questionnaires using mixed-effects models. The dominant three abundant aldehydes identified in personal exposure samples were formaldehyde (geometric mean, GM = 12.2 µg/m3), acetaldehyde (GM = 5.53 µg/m3), and hexaldehyde (GM = 8.79 µg/m3), accounting for approximately 80% of the total selected aldehydes. Higher personal exposure to aldehydes was observed during the warm season. Moreover, the within-subject variance was predominant, accounting for 66.6 to > 99.9% of the total variance in exposure. Schoolchildren had a high probability of overexposure to formaldehyde and acrolein, which resulted in an incremental lifetime cancer risk of 1.59 × 10-4 (95th percentile = 4.64 × 10-4). Season, location, household refurbishment, and indoor ventilation variables were significantly associated with personal exposure to aldehydes. The results can improve our understanding of aldehyde exposure among schoolchildren to propose mitigation strategies. These findings may be applied to further epidemiological studies.
Collapse
Affiliation(s)
- Yu-Chuan Yen
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli, Taiwan
| | - Chun-Hung Ku
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Yu Peng
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli, Taiwan.
- Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Safety, Health and Environmental Engineering, National United University, No. 2, Lienda, Miaoli, 360302, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|