1
|
Liu Y, Liu L, Wang X, Shao M, Wei Z, Wang L, Li B, Li C, Luo X, Li F, Zheng H. Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. ECO-ENVIRONMENT & HEALTH 2025; 4:100136. [PMID: 40052062 PMCID: PMC11883372 DOI: 10.1016/j.eehl.2025.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health.
Collapse
Affiliation(s)
- Yifan Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mengying Shao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Zihan Wei
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Lina Wang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenguang Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
2
|
Zhang X, Huang Z, Zhang Y, Wang W, Ye Z, Liang P, Sun K, Kang W, Tang Q, Yu X. Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. BIOSENSORS 2024; 14:633. [PMID: 39727898 DOI: 10.3390/bios14120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) systems, initially recognized as an adaptive immune defense mechanism in bacteria and archaea, have unveiled their profound potential in sensor detection, transcending their notable gene-editing applications. CRISPR/Cas technology employs Cas enzymes and guides RNA to selectively target and cleave specific DNA or RNA sequences. This review offers an extensive examination of CRISPR/Cas systems, highlighting their unique attributes and applications in antibiotic detection. It outlines the current utilization and progress of the CRISPR/Cas toolkit for identifying both nucleic acid (resistance genes) and non-nucleic acid (antibiotic micromolecules) targets within the field of antibiotic detection. In addition, it examines the current challenges, such as sensitivity and specificity, and future opportunities, including the development of point-of-care diagnostics, providing strategic insights to facilitate the curbing and oversight of antibiotic-resistance proliferation.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhaojie Huang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yanxia Zhang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Wen Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Kai Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Wencheng Kang
- Inner Mongolia Institute of Metrology and Testing, Hohhot 010030, China
| | - Qiao Tang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Wu Y, Sun Y, Liu J, Ma Y, Fang L, Zhang Y, Qi R. Ticks carry various antibiotic resistance genes and can serve as vectors for their dissemination and as reservoirs by vertical propagation. ENVIRONMENTAL RESEARCH 2024; 262:119976. [PMID: 39270953 DOI: 10.1016/j.envres.2024.119976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Yi Wu
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yuechen Sun
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Jingpeng Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yixin Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Lizhu Fang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China.
| | - Yaming Zhang
- Harbin Municipal Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China.
| | - Rui Qi
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Wang X, Qian Y, Wang Y, Wang S, Bi J, Shi C, Han Q, Wan-Yan R, Yu Q, Li H. Metagenomics reveals the potential transmission risk of resistomes from urban park environment to human. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135387. [PMID: 39094311 DOI: 10.1016/j.jhazmat.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Urban parks play a significant role in urban ecosystems and are strongly associated with human health. Nevertheless, the biological contamination of urban parks - opportunistic pathogens and antibiotic resistance genes (ARGs) - has been poorly reported. Here, metagenomic and 16 S rRNA sequencing methods were used to study the distribution and assembly of opportunistic pathogens and ARGs in soil and water from nine parks in Lanzhou city, and further compared them with local human gut microbiomes to investigate the potential transmission risk. Our results revealed that the most important type of drug resistance in urban parks was multidrug resistance, with various resistance mechanisms. Approximately half of ARGs were shared between human gut and park environment, and it was noteworthy that cross-species transmission might exist among some high-risk ARGs, such as mepA and mdtE, with a significant enrichment in human gut. Metagenomic binning uncovered several bacterial genomes carrying adjacent ARGs, MGEs, and virulence genes, indicating a possibility that these genes may jointly transfer among different environments, particularly from park environment to human. Our results provided a reference point for the management of environmental pollutants in urban parks.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jie Bi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Chenwei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wan-Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Li X, Tang X, Chen M, Wang S, Tong C, Xu J, Xie G, Ma B, Zou Y, Wang Y, Wen X, Wu Y. Intramuscular therapeutic doses of enrofloxacin affect microbial community structure but not the relative abundance of fluoroquinolones resistance genes in swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169794. [PMID: 38181963 DOI: 10.1016/j.scitotenv.2023.169794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.
Collapse
Affiliation(s)
- Xianghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Majan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chang Tong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gaomiao Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|