1
|
Apavaloaei A, Hesnard L, Hardy MP, Benabdallah B, Ehx G, Thériault C, Laverdure JP, Durette C, Lanoix J, Courcelles M, Noronha N, Chauhan KD, Lemieux S, Beauséjour C, Bhatia M, Thibault P, Perreault C. Induced pluripotent stem cells display a distinct set of MHC I-associated peptides shared by human cancers. Cell Rep 2022; 40:111241. [PMID: 35977509 DOI: 10.1016/j.celrep.2022.111241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022] Open
Abstract
Previous reports showed that mouse vaccination with pluripotent stem cells (PSCs) induces durable anti-tumor immune responses via T cell recognition of some elusive oncofetal epitopes. We characterize the MHC I-associated peptide (MAP) repertoire of human induced PSCs (iPSCs) using proteogenomics. Our analyses reveal a set of 46 pluripotency-associated MAPs (paMAPs) absent from the transcriptome of normal tissues and adult stem cells but expressed in PSCs and multiple adult cancers. These paMAPs derive from coding and allegedly non-coding (48%) transcripts involved in pluripotency maintenance, and their expression in The Cancer Genome Atlas samples correlates with source gene hypomethylation and genomic aberrations common across cancer types. We find that several of these paMAPs were immunogenic. However, paMAP expression in tumors coincides with activation of pathways instrumental in immune evasion (WNT, TGF-β, and CDK4/6). We propose that currently available inhibitors of these pathways could synergize with immune targeting of paMAPs for the treatment of poorly differentiated cancers.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Kapil Dev Chauhan
- Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mick Bhatia
- Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Chemistry, University of Montreal, Montreal, QC H3T 1J4, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
2
|
The immunogenicity of midbrain dopaminergic neurons and the implications for neural grafting trials in Parkinson's disease. Neuronal Signal 2021; 5:NS20200083. [PMID: 34552761 PMCID: PMC8438115 DOI: 10.1042/ns20200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Dopaminergic (DA) cell replacement therapies are a promising experimental treatment for Parkinson’s disease (PD) and a number of different types of DA cell-based therapies have already been trialled in patients. To date, the most successful have been allotransplants of foetal ventral midbrain but even then, the results have been inconsistent. This coupled to the ethical and logistical problems with using this tissue has meant that an alternative cell source has been sought of which human pluripotent stem cells (hPSCs) sources have proven very attractive. Robust protocols for making mesencephalic DA (mesDA) progenitor cells from hPSCs now exist and the first in-human clinical trials have or are about to start. However, while their safety and efficacy are well understood, relatively little is known about their immunogenicity and in this review, we briefly summarise this with reference mainly to the limited literature on human foetal DA cells.
Collapse
|
3
|
Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021; 10:cells10081872. [PMID: 34440641 PMCID: PMC8394921 DOI: 10.3390/cells10081872] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting "cell-free" therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Shaowei Guo
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Correspondence: (S.G.); (S.L.)
| | - Idan Redenski
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
- Correspondence: (S.G.); (S.L.)
| |
Collapse
|
4
|
Lin C, Ekblad-Nordberg Å, Michaëlsson J, Götherström C, Hsu CC, Ye H, Johansson J, Rising A, Sundström E, Åkesson E. In Vitro Study of Human Immune Responses to Hyaluronic Acid Hydrogels, Recombinant Spidroins and Human Neural Progenitor Cells of Relevance to Spinal Cord Injury Repair. Cells 2021; 10:1713. [PMID: 34359882 PMCID: PMC8303367 DOI: 10.3390/cells10071713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffolds of recombinant spider silk protein (spidroin) and hyaluronic acid (HA) hydrogel hold promise in combination with cell therapy for spinal cord injury. However, little is known concerning the human immune response to these biomaterials and grafted human neural stem/progenitor cells (hNPCs). Here, we analyzed short- and long-term in vitro activation of immune cells in human peripheral blood mononuclear cells (hPBMCs) cultured with/without recombinant spidroins, HA hydrogels, and/or allogeneic hNPCs to assess potential host-donor interactions. Viability, proliferation and phenotype of hPBMCs were analyzed using NucleoCounter and flow cytometry. hPBMC viability was confirmed after exposure to the different biomaterials. Short-term (15 h) co-cultures of hPBMCs with spidroins, but not with HA hydrogel, resulted in a significant increase in the proportion of activated CD69+ CD4+ T cells, CD8+ T cells, B cells and NK cells, which likely was caused by residual endotoxins from the Escherichia coli expression system. The observed spidroin-induced hPBMC activation was not altered by hNPCs. It is resource-effective to evaluate human compatibility of novel biomaterials early in development of the production process to, when necessary, make alterations to minimize rejection risk. Here, we present a method to evaluate biomaterials and hPBMC compatibility in conjunction with allogeneic human cells.
Collapse
Affiliation(s)
- Chenhong Lin
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Åsa Ekblad-Nordberg
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden;
| | - Cecilia Götherström
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Chia-Chen Hsu
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
- The R&D Unit, Stockholms Sjukhem, SE-112 19 Stockholm, Sweden
| |
Collapse
|
5
|
Lin C, Calzarossa C, Fernandez-Zafra T, Liu J, Li X, Ekblad-Nordberg Å, Vazquez-Juarez E, Codeluppi S, Holmberg L, Lindskog M, Uhlén P, Åkesson E. Human ex vivo spinal cord slice culture as a useful model of neural development, lesion, and allogeneic neural cell therapy. Stem Cell Res Ther 2020; 11:320. [PMID: 32727554 PMCID: PMC7390865 DOI: 10.1186/s13287-020-01771-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background There are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies. Methods We established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+ signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices. Results The spinal cord hOCs presented relatively stable features during 7–21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+ cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+ population and activated microglial population was not observed after allogeneic human neural cell therapy. Conclusions We conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Calzarossa
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology and Laboratory of Neuroscience, Università degli Studi diMilan, Milan, Italy
| | - Teresa Fernandez-Zafra
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Ekblad-Nordberg
- Department of Clinical Science, Intervention and Technology, Div. of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Simone Codeluppi
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lena Holmberg
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden. .,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden.
| |
Collapse
|
6
|
Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel Approach to Stem Cell Therapy in Parkinson's Disease. Stem Cells Dev 2019; 27:951-957. [PMID: 29882481 DOI: 10.1089/scd.2018.0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this commentary we discuss International Stem Cell Corporation's (ISCO's) approach to developing a pluripotent stem cell based treatment for Parkinson's disease (PD). In 2016, ISCO received approval to conduct the world's first clinical study of a pluripotent stem cell based therapy for PD. The Australian regulatory agency Therapeutic Goods Administration (TGA) and the Melbourne Health's Human Research Ethics Committee (HREC) independently reviewed ISCO's extensive preclinical data and granted approval for the evaluation of a novel human parthenogenetic derived neural stem cell (NSC) line, ISC-hpNSC, in a PD phase 1 clinical trial ( ClinicalTrials.gov NCT02452723). This is a single-center, open label, dose escalating 12-month study with a 5-year follow-up evaluating a number of objective and patient-reported safety and efficacy measures. A total of 6 years of safety and efficacy data will be collected from each patient. Twelve participants are recruited in this study with four participants per single dose cohort of 30, 50, and 70 million ISC-hpNSC. The grafts are placed bilaterally in the caudate nucleus, putamen, and substantia nigra by magnetic resonance imaging-guided stereotactic surgery. Participants are 30-70 years old with idiopathic PD ≤13 years duration and unified PD rating scale motor score (Part III) in the "OFF" state ≤49. This trial is fully funded by ISCO with no economic involvement from the patients. It is worth noting that ISCO underwent an exhaustive review process and successfully answered the very comprehensive, detailed, and specific questions posed by the TGA and HREC. The regulatory/ethic review process is based on applying scientific and clinical expertise to decision-making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines or novel therapies.
Collapse
Affiliation(s)
| | | | - Glenn Sherman
- 1 International Stem Cell Corporation , Carlsbad, California
| | | | - Andrew Evans
- 2 Royal Melbourne Hospital , Parkville, Australia
| | - Russell Kern
- 1 International Stem Cell Corporation , Carlsbad, California.,3 Cyto Therapeutics , Melbourne, Australia
| |
Collapse
|
7
|
Yu X, Wang X, Zeng S, Tuo X. Protective effects of primary neural stem cell treatment in ischemic stroke models. Exp Ther Med 2018; 16:2219-2228. [PMID: 30186461 PMCID: PMC6122422 DOI: 10.3892/etm.2018.6466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Strokes are a major cause of neurological disability. Stem cell replacement therapy is a potential novel strategy of treating patients that have experienced strokes. The present study examined the protective role of neural stem cell (NSC) administration in oxygen-glucose deprivation (OGD) injury and ischemic stroke animal models. Primary cultured embryonic NSCs and brain microvascular endothelial cells were indirectly co-cultured for in vitro testing. A rat model of embolic middle cerebral artery occlusion (MCAO) was used to assess the morphological and functional changes that occur following treatment with NSCs. The role of the phosphoinositide 3-kinase/protein kinase b/glycogen synthase kinase 3β (PI3K/Akt/GSK-3β) signaling pathway in the neuroprotective effects of NSC treatment was also determined. It was demonstrated in vivo and in vitro that NSC administration may attenuate the brain injury caused by stroke. Furthermore, the results suggest that activation of PI3k/Akt/GSK-3β signaling pathway serves a role in attenuating OGD injury. Inflammation, synaptic remodeling and autophagy may be improved following NSC treatment and behavioral testing suggests that treatment with NSCs improves functional recovery in rats following MCAO.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Gerontology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaoqing Wang
- Department of Neurology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiping Tuo
- Department of Gerontology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
Fainstein N, Ben-Hur T. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants. Front Mol Neurosci 2018; 11:136. [PMID: 29760649 PMCID: PMC5936755 DOI: 10.3389/fnmol.2018.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC) grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.
Collapse
Affiliation(s)
- Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Katiyar KS, Winter CC, Gordián-Vélez WJ, O'Donnell JC, Song YJ, Hernandez NS, Struzyna LA, Cullen DK. Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration. J Vis Exp 2018. [PMID: 29364269 DOI: 10.3791/55848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurotrauma and neurodegenerative disease often result in lasting neurological deficits due to the limited capacity of the central nervous system (CNS) to replace lost neurons and regenerate axonal pathways. However, during nervous system development, neuronal migration and axonal extension often occur along pathways formed by other cells, referred to as "living scaffolds". Seeking to emulate these mechanisms and to design a strategy that circumvents the inhibitory environment of the CNS, this manuscript presents a protocol to fabricate tissue engineered astrocyte-based "living scaffolds". To create these constructs, we employed a novel biomaterial encasement scheme to induce astrocytes to self-assemble into dense three-dimensional bundles of bipolar longitudinally-aligned somata and processes. First, hollow hydrogel micro-columns were assembled, and the inner lumen was coated with collagen extracellular-matrix. Dissociated cerebral cortical astrocytes were then delivered into the lumen of the cylindrical micro-column and, at a critical inner diameter of <350 µm, spontaneously self-aligned and contracted to produce long fiber-like cables consisting of dense bundles of astrocyte processes and collagen fibrils measuring <150 µm in diameter yet extending several cm in length. These engineered living scaffolds exhibited >97% cell viability and were virtually exclusively comprised of astrocytes expressing a combination of the intermediate filament proteins glial-fibrillary acidic protein (GFAP), vimentin, and nestin. These aligned astrocyte networks were found to provide a permissive substrate for neuronal attachment and aligned neurite extension. Moreover, these constructs maintain integrity and alignment when extracted from the hydrogel encasement, making them suitable for CNS implantation. These preformed constructs structurally emulate key cytoarchitectural elements of naturally occurring glial-based "living scaffolds" in vivo. As such, these engineered living scaffolds may serve as test-beds to study neurodevelopmental mechanisms in vitro or facilitate neuroregeneration by directing neuronal migration and/or axonal pathfinding following CNS degeneration in vivo.
Collapse
Affiliation(s)
- Kritika S Katiyar
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Drexel University
| | - Carla C Winter
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - Wisberty J Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - John C O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Yeri J Song
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania
| | - Nicole S Hernandez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
10
|
Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells. Sci Rep 2017; 7:12996. [PMID: 29021610 PMCID: PMC5636829 DOI: 10.1038/s41598-017-13522-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Resolving the immunogenicity of cells derived from induced pluripotent stem cells (iPSCs) remains an important challenge for cell transplant strategies that use banked allogeneic cells. Thus, we evaluated the immunogenicity of mouse fetal neural stem/progenitor cells (fetus-NSPCs) and iPSC-derived neural stem/progenitor cells (iPSC-NSPCs) both in vitro and in vivo. Flow cytometry revealed the low expression of immunological surface antigens, and these cells survived in all mice when transplanted syngeneically into subcutaneous tissue and the spinal cord. In contrast, an allogeneic transplantation into subcutaneous tissue was rejected in all mice, and allogeneic cells transplanted into intact and injured spinal cords survived for 3 months in approximately 20% of mice. In addition, cell survival was increased after co-treatment with an immunosuppressive agent. Thus, the immunogenicity and post-transplantation immunological dynamics of iPSC-NSPCs resemble those of fetus-NSPCs.
Collapse
|
11
|
Edoff K, Raciti M, Moors M, Sundström E, Ceccatelli S. Gestational Age and Sex Influence the Susceptibility of Human Neural Progenitor Cells to Low Levels of MeHg. Neurotox Res 2017; 32:683-693. [PMID: 28756503 PMCID: PMC5602033 DOI: 10.1007/s12640-017-9786-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
The developing nervous system is highly susceptible to methylmercury (MeHg), a widespread environmental neurotoxic contaminant. A wide range of morphological and functional outcomes have been described; however, there are still open questions regarding the mechanisms behind the developmental neurotoxic effects induced by low-level exposure. In the present study, we have examined the effects of nanomolar concentrations of MeHg on primary fetal human progenitor cells (hNPCs) with special focus on the role played by developmental stage and sex on the neurotoxic outcome. We found that neurospheres derived from earlier gestational time points exhibit higher susceptibility to MeHg, as they undergo apoptosis at a much lower dose (25 nM) as compared to neurospheres established from older fetuses (100 nM). At subapoptotic concentrations (10 nM), MeHg inhibited neuronal differentiation and maturation of hNPCs, as shown by a reduced number of Tuj1-positive cells and a visible reduction in neurite extension and cell migration, associated with a misregulation of Notch1 and BDNF signaling pathways. Interestingly, cells derived from male fetuses showed more severe alterations of neuronal morphology as compared to cells from females, indicating that the MeHg-induced impairment of neurite extension and cell migration is sex-dependent. Accordingly, the expression of the CDKL5 gene, a major factor regulating neurite outgrowth, was significantly more downregulated in male-derived cells. Altogether, gestational age and sex appear to be critical factors influencing in vitro hNPC sensitivity to low levels of MeHg.
Collapse
Affiliation(s)
- Karin Edoff
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden
| | - Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden.
| | - Michaela Moors
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Geriatrik-lab plan 5, SE-141 52, Huddinge, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden
| |
Collapse
|
12
|
Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Res 2017; 19:128-138. [DOI: 10.1016/j.scr.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023] Open
|
13
|
Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development. Neurochem Res 2016; 41:2086-96. [DOI: 10.1007/s11064-016-1921-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
|
14
|
Hou B, Ma J, Guo X, Ju F, Gao J, Wang D, Liu J, Li X, Zhang S, Ren H. Exogenous Neural Stem Cells Transplantation as a Potential Therapy for Photothrombotic Ischemia Stroke in Kunming Mice Model. Mol Neurobiol 2016; 54:1254-1262. [PMID: 26820680 DOI: 10.1007/s12035-016-9740-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/20/2016] [Indexed: 12/26/2022]
Abstract
Stroke is considered as the second leading cause of death worldwide. The survivors of stroke experience different levels of impairment in brain function resulting in debilitating disabilities. Current therapies for stroke are primarily palliative and may be effective in only a small population of stroke patients. In this study, we explore the transplantation of exogenous neural stem cells (NSCs) as the potential therapy for the photothrombotic ischemia stroke in a Kunming mice model. After stroke, mice receiving NSC transplantation demonstrated a better recovery of brain function during the neurobehavioral tests. Histology analysis of the brain samples from NSC transplanted mice demonstrated a reduction of brain damage caused by stroke. Moreover, immunofluorescence assay for biomarkers in brain sections confirmed that transplanted NSCs indeed differentiated to neurons and astrocytes, consistent with the improved brain function after stroke. Taken together, our data suggested that exogenous NSC transplantation could be a promising therapy for stroke.
Collapse
Affiliation(s)
- Boru Hou
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Junning Ma
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xiumei Guo
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Furong Ju
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Junwei Gao
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Dengfeng Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jixing Liu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xiaohui Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
| | - Haijun Ren
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
15
|
Iwai H, Shimada H, Nishimura S, Kobayashi Y, Itakura G, Hori K, Hikishima K, Ebise H, Negishi N, Shibata S, Habu S, Toyama Y, Nakamura M, Okano H. Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates. Stem Cells Transl Med 2015; 4:708-19. [PMID: 26019226 DOI: 10.5966/sctm.2014-0215] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED : Previous studies have demonstrated that neural stem/progenitor cells (NS/PCs) promote functional recovery in rodent animal models of spinal cord injury (SCI). Because distinct differences exist in the neuroanatomy and immunological responses between rodents and primates, it is critical to determine the effectiveness and safety of allografted embryonic stem cell (ESC)-derived NS/PCs (ESC-NS/PCs) in a nonhuman primate SCI model. In the present study, common marmoset ESC-NS/PCs were grafted into the lesion epicenter 14 days after contusive SCI in adult marmosets (transplantation group). In the control group, phosphate-buffered saline was injected instead of cells. In the presence of a low-dose of tacrolimus, several grafted cells survived without tumorigenicity and differentiated into neurons, astrocytes, or oligodendrocytes. Significant differences were found in the transverse areas of luxol fast blue-positive myelin sheaths, neurofilament-positive axons, corticospinal tract fibers, and platelet endothelial cell adhesion molecule-1-positive vessels at the lesion epicenter between the transplantation and control groups. Immunoelectron microscopic examination demonstrated that the grafted ESC-NS/PC-derived oligodendrocytes contributed to the remyelination of demyelinated axons. In addition, some grafted neurons formed synaptic connections with host cells, and some transplanted neurons were myelinated by host cells. Eventually, motor functional recovery significantly improved in the transplantation group compared with the control group. In addition, a mixed lymphocyte reaction assay indicated that ESC-NS/PCs modulated the allogeneic immune rejection. Taken together, our results indicate that allogeneic transplantation of ESC-NS/PCs from a nonhuman primate promoted functional recovery after SCI without tumorigenicity. SIGNIFICANCE This study demonstrates that allogeneic embryonic stem cell (ESC)-derived neural stem/progenitor cells (NS/PCs) promoted functional recovery after transplantation into the injured spinal cord in nonhuman primates. ESC-NS/PCs were chosen because ESC-NS/PCs are one of the controls for induced pluripotent stem cell-derived NS/PCs and because ESC derivatives are possible candidates for clinical use. This translational research using an allograft model of a nonhuman primate is critical for clinical application of grafting NS/PCs derived from various allogeneic pluripotent stem cells, especially induced pluripotent stem cells, into injured spinal cord at the subacute phase.
Collapse
Affiliation(s)
- Hiroki Iwai
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hiroko Shimada
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Soraya Nishimura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Yoshiomi Kobayashi
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Go Itakura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Keiko Hori
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Keigo Hikishima
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hayao Ebise
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Naoko Negishi
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Shinsuke Shibata
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Sonoko Habu
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Masaya Nakamura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hideyuki Okano
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| |
Collapse
|
16
|
Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation. PLoS One 2015; 10:e0116413. [PMID: 25706286 PMCID: PMC4338009 DOI: 10.1371/journal.pone.0116413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Our previous work reported functional recovery after transplantation of mouse and human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) into rodent models of spinal cord injury (SCI). Although hiPSC-NS/PCs proved useful for the treatment of SCI, the tumorigenicity of the transplanted cells must be resolved before they can be used in clinical applications. The current study sought to determine the feasibility of ablation of the tumors formed after hiPSC-NS/PC transplantation through immunoregulation. Tumorigenic hiPSC-NS/PCs were transplanted into the intact spinal cords of immunocompetent BALB/cA mice with or without immunosuppressant treatment. In vivo bioluminescence imaging was used to evaluate the chronological survival and growth of the transplanted cells. The graft survival rate was 0% in the group without immunosuppressants versus 100% in the group with immunosuppressants. Most of the mice that received immunosuppressants exhibited hind-limb paralysis owing to tumor growth at 3 months after iPSC-NS/PC transplantation. Histological analysis showed that the tumors shared certain characteristics with low-grade gliomas rather than with teratomas. After confirming the progression of the tumors in immunosuppressed mice, the immunosuppressant agents were discontinued, resulting in the complete rejection of iPSC-NS/PC-derived masses within 42 days after drug cessation. In accordance with the tumor rejection, hind-limb motor function was recovered in all of the mice. Moreover, infiltration of microglia and lymphocytes was observed during the course of tumor rejection, along with apoptosis of iPSC-NS/PC-generated cells. Thus, immune rejection can be used as a fail-safe system against potential tumorigenicity after transplantation of iPSC-NS/PCs to treat SCI.
Collapse
|
17
|
Zhang H, Shao B, Zhuge Q, Wang P, Zheng C, Huang W, Yang C, Wang B, Su DM, Jin K. Cross-talk between human neural stem/progenitor cells and peripheral blood mononuclear cells in an allogeneic co-culture model. PLoS One 2015; 10:e0117432. [PMID: 25658950 PMCID: PMC4319716 DOI: 10.1371/journal.pone.0117432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Transplantation of human neural stem/progenitor cells (hNSCs) as a regenerative cell replacement therapy holds great promise. However, the underlying mechanisms remain unclear. We, here, focused on the interaction between hNSCs and allogeneic peripheral blood mononuclear cells (PBMCs) in a co-culture model. We found that hNSCs significantly decrease the CD3+ and CD8+ T cells, reduce the gamma delta T cells and increase the regulatory T cells, along with reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines after co-culture. We also found that PBMCs, in turn, significantly promote the proliferation and differentiation of hNSCs. Our data suggest that hNSCs cross-talk with immune cells.
Collapse
Affiliation(s)
- Hongxia Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Bei Shao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- * E-mail: (BS); (KJ)
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Peng Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Chengcai Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Weilong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Chenqi Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Dong-Ming Su
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
- * E-mail: (BS); (KJ)
| |
Collapse
|
18
|
Enhanced oncolytic virotherapy through oxidative stress inhibition. Mol Ther 2013; 21:1981-3. [PMID: 24201213 DOI: 10.1038/mt.2013.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Reports 2013; 1:283-92. [PMID: 24319664 PMCID: PMC3849265 DOI: 10.1016/j.stemcr.2013.08.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/25/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide the potential for autologous transplantation using cells derived from a patient's own cells. However, the immunogenicity of iPSCs or their derivatives has been a matter of controversy, and up to now there has been no direct comparison of autologous and allogeneic transplantation in the brains of humans or nonhuman primates. Here, using nonhuman primates, we found that the autologous transplantation of iPSC-derived neurons elicited only a minimal immune response in the brain. In contrast, the allografts caused an acquired immune response with the activation of microglia (IBA-1(+)/MHC class II(+)) and the infiltration of leukocytes (CD45(+)/CD3(+)). Consequently, a higher number of dopaminergic neurons survived in the autografts. Our results suggest that the autologous transplantation of iPSC-derived neural cells is advantageous for minimizing the immune response in the brain compared with allogeneic grafts.
Collapse
Affiliation(s)
- Asuka Morizane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu J, Hjorth E, Zhu M, Calzarossa C, Samuelsson EB, Schultzberg M, Åkesson E. Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model. J Cell Mol Med 2013; 17:1434-43. [PMID: 24034597 PMCID: PMC4117556 DOI: 10.1111/jcmm.12123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/27/2013] [Indexed: 02/04/2023] Open
Abstract
Experimental neural cell therapies, including donor neural stem/progenitor cells (NPCs) have been reported to offer beneficial effects on the recovery after an injury and to counteract inflammatory and degenerative processes in the central nervous system (CNS). The interplay between donor neural cells and the host CNS still to a large degree remains unclear, in particular in human allogeneic conditions. Here, we focused our studies on the interaction of human NPCs and microglia utilizing a co-culture model. In co-cultures, both NPCs and microglia showed increased survival and proliferation compared with mono-cultures. In the presence of microglia, a larger subpopulation of NPCs expressed the progenitor cell marker nestin, whereas a smaller group of NPCs expressed the neural markers polysialylated neural cell adhesion molecule, A2B5 and glial fibrillary acidic protein compared with NPC mono-cultures. Microglia thus hindered differentiation of NPCs. The presence of human NPCs increased microglial phagocytosis of latex beads. Furthermore, we observed that the expression of CD200 molecules on NPCs and the CD200 receptor protein on microglia was enhanced in co-cultures, whereas the release of transforming growth factor-β was increased suggesting anti-inflammatory features of the co-cultures. To conclude, the interplay between human allogeneic NPCs and microglia, significantly affected their respective proliferation and phenotype. Neural cell therapy including human donor NPCs may in addition to offering cell replacement, modulate host microglial phenotypes and functions to benefit neuroprotection and repair.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Geriatric Clinic Res Lab, Stockholm, Sweden; Department of Neurology, First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Shahbazi M, Kwang TWX, Purwanti YI, Fan W, Wang S. Inhibitory effects of neural stem cells derived from human embryonic stem cells on differentiation and function of monocyte-derived dendritic cells. J Neurol Sci 2013; 330:85-93. [PMID: 23664653 DOI: 10.1016/j.jns.2013.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/16/2013] [Accepted: 04/15/2013] [Indexed: 01/01/2023]
Abstract
Neural stem cells (NSCs) possess immunosuppressive characteristics, but effects of NSCs on human dendritic cells (DCs), the most important antigen presenting cells, are less well studied. We used an in vitro approach to evaluate the effects of human NSCs on differentiation of human blood CD14(+) monocytes into DCs. NSCs derived from H1 human embryonic stem cells (hESC-NSCs) and human ReNcell NSC line, as well as human bone marrow derived mesenchymal stem cells (MSCs), were tested. We observed that in response to treatment with interleukin-4 and granulocyte macrophage colony-stimulating factor CD14(+) monocytes co-cultured with NSCs were able to down-regulate CD14 and up-regulate the differentiation marker CD1a, whereas MSC co-culture strongly inhibited CD1a expression and supported prolonged expression of CD14. A similar difference between NSCs and MSCs was noted when lipopolysaccharides were included to induce maturation of monocyte-derived DCs. However, when effects on the function of derived DCs were investigated, NSCs suppressed the elevation of the DC maturation marker CD83, although not the up-regulation of costimulatory molecules CD80, CD86 and CD40, and impaired the functional capacity of the derived DCs to stimulate alloreactive T cells. We did not observe any obvious difference between hESC-NSCs and ReNcell NSCs in inhibiting DC maturation and function. Our data suggest that although human NSCs are less effective than human MSCs in suppressing monocyte differentiation into DCs, these stem cells can still affect the function of DCs, ultimately regulating specific immune responses.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Institute of Bioengineering and Nanotechnology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
22
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
23
|
Human neural stem/progenitor cells derived from embryonic stem cells and fetal nervous system present differences in immunogenicity and immunomodulatory potentials in vitro. Stem Cell Res 2013; 10:325-37. [PMID: 23416350 DOI: 10.1016/j.scr.2013.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 12/29/2022] Open
Abstract
To develop cell therapies for damaged nervous tissue with human neural stem/progenitor cells (hNPCs), the risk of an immune response and graft rejection must be considered. There are conflicting results and lack of knowledge concerning the immunocompetence of hNPCs of different origin. Here, we studied the immunogenicity and immunomodulatory potentials of hNPCs cultured under equivalent conditions after derivation from human embryonic stem cells (hESC-NPCs) or human fetal spinal cord tissue (hfNPCs). The expression patterns of human leukocyte antigen, co-stimulatory and adhesion molecules in hESC-NPCs and hfNPCs were relatively similar and mostly not affected by inflammatory cytokines. Unstimulated hfNPCs secreted more transforming growth factor-β1 (TGF-β1) and β2 but similar level of interleukin (IL)-10 compared to hESC-NPCs. In contrast to hfNPCs, hESC-NPCs displayed 4-6 fold increases in TGF-β1, TGF-β2 and IL-10 under inflammatory conditions. Both hNPCs reduced the alloreaction between allogeneic peripheral blood mononuclear cells (PBMCs) and up-regulated CD4(+)CD25(+)forkhead box P3 (FOXP3)(+) T cells. However, hESC-NPCs but not hfNPCs dose-dependently triggered PBMC proliferation, which at least partly may be due to TGF-β signaling. To conclude, hESC-NPCs and hfNPCs displayed similarities but also significant differences in their immunocompetence and interaction with allogeneic PBMCs, differences may be crucial for the outcome of cell therapy.
Collapse
|
24
|
Luan Z, Liu W, Qu S, Du K, He S, Wang Z, Yang Y, Wang C, Gong X. Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant 2012; 21 Suppl 1:S91-8. [PMID: 22507684 DOI: 10.3727/096368912x633806] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral palsy (CP) is a chronic nervous system disease that severely damages the physical and developmental health of children. Traditional treatment brings about only improvement of mild to moderate CP, but severe CP still lacks effective interventions. To explore safety and efficacy of using neural progenitor cells (NPCs) to treat CP in children, we performed NPC transplantation in 45 patients with severe CP by injecting NPCs derived from aborted fetal tissue into the lateral ventricle. Gross motor function measures (GMFM), the Peabody Developmental Motor Scale-Fine Motor (PDMS-FM) test, and a unified survey questionnaire designed specifically for children with CP were used to evaluate neurological function of the patients. Motor development was significantly accelerated within the first month after cell transplantation, but the rate of improvement gradually slowed to preoperative levels. However, after 1 year, the developmental level in each functional sphere (gross motor, fine motor, and cognition) of the treatment group was significantly higher compared to the control group. No delayed complications of this therapy were noted. These results suggest that NPC transplantation is a safe and effective therapeutic method for treating children with severe CP.
Collapse
Affiliation(s)
- Zuo Luan
- Department of Pediatrics, Navy General Hospital, No. 6 Fucheng Road, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fainstein N, Einstein O, Cohen ME, Brill L, Lavon I, Ben-Hur T. Time limited immunomodulatory functions of transplanted neural precursor cells. Glia 2012; 61:140-9. [PMID: 23001547 DOI: 10.1002/glia.22420] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Fetal neural stem/precursor cells (NPCs) possess powerful immunomodulatory properties which enable them to protect the brain from immune-mediated injury. A major issue in developing neural stem/precursor cell (NPC) therapy for chronic neuroinflammatory disorders such as multiple sclerosis is whether cells maintain their immune-regulatory properties for prolonged periods of time. Therefore, we studied time-associated changes in NPC immunomodulatory properties. We examined whether intracerebrally-transplanted NPCs are able to inhibit early versus delayed induction of autoimmune brain inflammation and whether allogeneic NPC grafts continuously inhibit host rejection responses. In two experimental designs, intraventricular fetal NPC grafts attenuated clinically and pathologically brain inflammation during early EAE relapse but failed to inhibit the disease relapse if induced at a delayed time point. In correlation, long-term cultured neural precursors lost their capacity to inhibit immune cell proliferation in vitro. Loss of NPC immune functions was associated with transition into a quiescent undifferentiated state. Also, allogeneic fetal NPC grafts elicited a strong immune reaction of T cell and microglial infiltration and were rejected from the host brain. We conclude that long-term functional changes in transplanted neural precursor cells lead to loss of their therapeutic immune-regulatory properties, and render allogeneic grafts vulnerable to immunologic rejection. Thus, the immunomodulatory effects of neural precursor cell transplantation are limited in time.
Collapse
MESH Headings
- Adrenergic Agents/toxicity
- Animals
- Cell Proliferation
- Corpus Striatum/physiopathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Encephalitis/etiology
- Encephalitis/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/surgery
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Graft Rejection/immunology
- Graft Survival/immunology
- Green Fluorescent Proteins/genetics
- Interferon-gamma/metabolism
- Lymphocytes/physiology
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/metabolism
- Microglia/pathology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Neural Stem Cells/immunology
- Neurotoxicity Syndromes/complications
- Neurotoxicity Syndromes/etiology
- Neurotoxicity Syndromes/pathology
- Neurotoxicity Syndromes/surgery
- Oxidopamine/toxicity
- Peptide Fragments/toxicity
- Pregnancy
- Stem Cell Transplantation/methods
- Time Factors
Collapse
Affiliation(s)
- Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Payne NL, Sun G, Herszfeld D, Tat-Goh PA, Verma PJ, Parkington HC, Coleman HA, Tonta MA, Siatskas C, Bernard CCA. Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis. PLoS One 2012; 7:e35093. [PMID: 22514711 PMCID: PMC3325988 DOI: 10.1371/journal.pone.0035093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/12/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). METHODOLOGY/PRINCIPAL FINDINGS The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. CONCLUSION/SIGNIFICANCE Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.
Collapse
Affiliation(s)
- Natalie L. Payne
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Guizhi Sun
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Daniella Herszfeld
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Pollyanna A. Tat-Goh
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | - Harold A. Coleman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mary A. Tonta
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Christopher Siatskas
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Claude C. A. Bernard
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Tirotta E, Carbajal KS, Schaumburg CS, Whitman L, Lane TE. Cell replacement therapies to promote remyelination in a viral model of demyelination. J Neuroimmunol 2010; 224:101-7. [PMID: 20627412 DOI: 10.1016/j.jneuroim.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/21/2022]
Abstract
Persistent infection of the central nervous system (CNS) of mice with the neuroadapted JHM strain of mouse hepatitis (MHV) is characterized by ongoing demyelination mediated by inflammatory T cells and macrophages that is similar both clinically and histologically with the human demyelinating disease multiple sclerosis (MS). Although extensive demyelination occurs in mice persistently infected with MHV there is only limited remyelination. Therefore, the MHV model of demyelination is a relevant model for studying disease and evaluating therapeutic approaches to protect cells of the oligodendrocyte lineage and promote remyelination. This concept is further highlighted as the etiology of MS remains enigmatic, but viruses have long been considered as potential triggering agents in initiating and/or maintaining MS symptoms. As such, understanding mechanisms associated with promoting repair within the CNS in the context of a persistent viral infection is critical given the possible viral etiology of MS. This review focuses on recent studies using either mouse neural stem cells (NSCs) or human oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (hESC) to promote remyelination in mice persistently infected with MHV. In addition, the potential role for chemokines in positional migration of transplanted cells is addressed.
Collapse
Affiliation(s)
- Emanuele Tirotta
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|