1
|
Kondelaji MHR, Sharma GP, Jagtap J, Shafiee S, Hansen C, Gasperetti T, Frei A, Veley D, Narayanan J, Fish BL, Parchur AK, Ibrahim ESH, Medhora M, Himburg HA, Joshi A. 2 nd Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature. Mol Imaging Biol 2024; 26:124-137. [PMID: 37530966 PMCID: PMC11188939 DOI: 10.1007/s11307-023-01840-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Collapse
Affiliation(s)
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Kuang X, Li J, Xu Y, Yang L, Liu X, Yang J, Tai W. Transcriptomic and Metabolomic Analysis of Liver Cirrhosis. Comb Chem High Throughput Screen 2024; 27:922-932. [PMID: 37461343 PMCID: PMC11092553 DOI: 10.2174/1386207326666230717094936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 05/16/2024]
Abstract
BACKGROUND Liver cirrhosis is one of the leading causes of decreased life expectancy worldwide. However, the molecular mechanisms underlying liver cirrhosis remain unclear. In this study, we performed a comprehensive analysis using transcriptome and metabolome sequencing to explore the genes, pathways, and interactions associated with liver cirrhosis. METHODS We performed transcriptome and metabolome sequencing of blood samples from patients with cirrhosis and healthy controls (1:1 matched for sex and age). We validated the differentially expressed microRNA (miRNA) and mRNAs using real-time quantitative polymerase chain reaction. RESULTS For transcriptome analysis, we screened for differentially expressed miRNAs and mRNAs, analyzed mRNAs to identify possible core genes and pathways, and performed coanalysis of miRNA and mRNA sequencing results. In terms of the metabolome, we screened five pathways that were substantially enriched in the differential metabolites. Next, we identified the metabolites with the most pronounced differences among these five metabolic pathways. We performed receiver operating characteristic (ROC) curve analysis of these five metabolites to determine their diagnostic efficacy for cirrhosis. Finally, we explored possible links between the transcriptome and metabolome. CONCLUSION Based on sequencing and bioinformatics, we identified miRNAs and genes that were differentially expressed in the blood of patients with liver cirrhosis. By exploring pathways and disease-specific networks, we identified unique biological mechanisms. In terms of metabolomes, we identified novel biomarkers and explored their diagnostic efficacy. We identified possible common pathways in the transcriptome and metabolome that could serve as candidates for further studies.
Collapse
Affiliation(s)
- Xiao Kuang
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jinyu Li
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiheng Xu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Department ofGastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoxiao Liu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinhui Yang
- Department ofGastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
4
|
Doan PL, Frei AC, Piryani SO, Szalewski N, Fan E, Himburg HA. Cord Blood-Derived Endothelial Progenitor Cells Promote In Vivo Regeneration of Human Hematopoietic Bone Marrow. Int J Radiat Oncol Biol Phys 2023; 116:1163-1174. [PMID: 36792018 PMCID: PMC11086728 DOI: 10.1016/j.ijrobp.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.
Collapse
Affiliation(s)
- Phuong L Doan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy; Duke Cancer Institute, Duke University, Durham, North Carolina
| | | | - Sadhna O Piryani
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | | | - Elizabeth Fan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | - Heather A Himburg
- Department of Radiation Oncology; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
5
|
Sharma GP, Himburg HA. Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure. TOXICS 2022; 10:toxics10120747. [PMID: 36548580 PMCID: PMC9781710 DOI: 10.3390/toxics10120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-(414)-955-4676
| |
Collapse
|
6
|
Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. CURRENT STEM CELL REPORTS 2021; 7:194-203. [PMID: 34868826 PMCID: PMC8639543 DOI: 10.1007/s40778-021-00198-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/26/2022]
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.
Collapse
|
7
|
Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci 2020; 21:ijms21196996. [PMID: 32977499 PMCID: PMC7583016 DOI: 10.3390/ijms21196996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis is a complex and intricate process that aims to replenish blood components in a constant fashion. It is orchestrated mostly by hematopoietic progenitor cells (hematopoietic stem cells (HSCs)) that are capable of self-renewal and differentiation. These cells can originate other cell subtypes that are responsible for maintaining vital functions, mediate innate and adaptive immune responses, provide tissues with oxygen, and control coagulation. Hematopoiesis in adults takes place in the bone marrow, which is endowed with an extensive vasculature conferring an intense flow of cells. A myriad of cell subtypes can be found in the bone marrow at different levels of activation, being also under constant action of an extensive amount of diverse chemical mediators and enzymatic systems. Bone marrow platelets, mature erythrocytes and leukocytes are delivered into the bloodstream readily available to meet body demands. Leukocytes circulate and reach different tissues, returning or not returning to the bloodstream. Senescent leukocytes, specially granulocytes, return to the bone marrow to be phagocytized by macrophages, restarting granulopoiesis. The constant high production and delivery of cells into the bloodstream, alongside the fact that blood cells can also circulate between tissues, makes the hematopoietic system a prime target for toxic agents to act upon, making the understanding of the bone marrow microenvironment vital for both toxicological sciences and risk assessment. Environmental and occupational pollutants, therapeutic molecules, drugs of abuse, and even nutritional status can directly affect progenitor cells at their differentiation and maturation stages, altering behavior and function of blood compounds and resulting in impaired immune responses, anemias, leukemias, and blood coagulation disturbances. This review aims to describe the most recently investigated molecular and cellular toxicity mechanisms of current major environmental pollutants on hematopoiesis in the bone marrow.
Collapse
|
8
|
Lu Y, Hu M, Zhang Z, Qi Y, Wang J. The regulation of hematopoietic stem cell fate in the context of radiation. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Hastreiter AA, Galvão Dos Santos G, Cavalcante Santos EW, Makiyama EN, Borelli P, Fock RA. Protein malnutrition impairs bone marrow endothelial cells affecting hematopoiesis. Clin Nutr 2019; 39:1551-1559. [PMID: 31326233 DOI: 10.1016/j.clnu.2019.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Protein malnutrition (PM) affects hematopoiesis leading to bone marrow (BM) hypoplasia and arrests hematopoietic stem cells (HSC) in G0/G1 cell cycle phases, which cause anemia and leukopenia. Hematopoiesis is mainly regulated by BM niches where endothelial cells (EC) present a key regulatory role. Thus, our objective is to evaluate whether PM affects the modulatory capacity of EC on hematopoiesis. METHODS C57BL/6 male mice received for 5 weeks a normal protein diet (12% casein) or a low protein diet (2% casein). MSC were isolated and differentiated in vitro into EC and the synthesis of SCF, Ang-1, CXCL-12, IL-11, TGF-β and G-CSF were evaluated. The HSC and hematopoietic progenitors were quantified and the EC capacity to modulate the hematopoietic system was also evaluated. Moreover, the ability of PM bone marrow to support hematopoieisis was assessed by proliferation of infused leukemic myelo-monoblasts cells. RESULTS PM decreases HSC and hematopoietic progenitor pool and promotes cell cycle arrest and a lower proliferation rate of leukemic myelo-monoblasts. PM also committed hematopoietic regulatory characteristics from EC, resulting in the modification of both cell cycle pattern and hematopoietic differentiation. CONCLUSION BM microenvironment is compromised in PM, and since PM disturbs EC, it becomes one of the factors responsible for the hematopoietic cell cycle arrest and impairment of HSC differentiation.
Collapse
Affiliation(s)
- Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Galvão Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ed Wilson Cavalcante Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
11
|
Leitão L, Alves CJ, Sousa DM, Neto E, Conceição F, Lamghari M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health. FASEB J 2019; 33:8697-8710. [PMID: 31017803 DOI: 10.1096/fj.201900454r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bone marrow (BM) is the central hematopoietic organ in adult mammals, with great potential to be used as a tool to improve the efficacy of the body's response to a number of malignancies and stressful conditions. The nervous system emerges as a critical regulatory player of the BM both under homeostatic and pathologic settings, with essential roles in cellular anchorage and egress, stem cell differentiation, and endothelial cell permeability. This review collects the current knowledge on the interplay between the nervous system and the BM cell populations, with a focus on how the nervous system modulates hematopoietic stem and progenitor cell, mesenchymal stromal cell, and endothelial progenitor cell activity in BM. We have also highlighted the pathologies that have been associated with disturbances in the neuronal signaling in BM and discussed if targeting the nervous system, either by modulating the activity of specific neuronal circuits or by pharmacologically leveling the activity of sympathetic and sensorial signaling-responsive cells in BM, is a promising therapeutic approach to tackling pathologies from BM origin.-Leitão, L., Alves, C. J., Sousa, D. M., Neto, E., Conceição, F., Lamghari, M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Zhang J, Han X, Zhao Y, Xue X, Fan S. Mouse serum protects against total body irradiation-induced hematopoietic system injury by improving the systemic environment after radiation. Free Radic Biol Med 2019; 131:382-392. [PMID: 30578918 DOI: 10.1016/j.freeradbiomed.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in total body irradiation (TBI)-induced hematopoietic system injury. However, the mechanisms involved in ROS production in hematopoietic stem cells (HSCs) post TBI need to be further explored. In this study, we demonstrated that hematopoietic system injury in mice radiated with TBI was effectively alleviated when the blood circulation environment was changed via the injection of serum from non-radiated mice. Serum injection increased the survival of radiated mice and ameliorated TBI-induced hematopoietic system injury through attenuating myeloid skew, increasing HSC frequency, and promoting the reconstitution of radiated HSCs. Serum injection also decreased ROS levels in HSCs and regulated oxidative stress-related proteins. A serum proteome sequence array showed that proteins related to tissue injury and oxidative stress were regulated, and a serum-derived exosome microRNA sequence assay showed that the PI3K-Akt and Hippo signaling pathways were affected in radiated mice injected with serum from non-radiated mice. Furthermore, a significant increase in cell viability and a decrease in ROS were observed in radiated lineage-c-kit+ cells treated with serum-derived exosomes. Similarly, an improvement in the impaired differentiation of HSCs was observed in radiated mice injected with serum-derived exosomes. Taken together, our observations suggest that serum from non-radiated mice alleviates HSC injury in radiated mice by improving the systemic environment after radiation, and exosomes contribute to this radioprotective effect as important serum active component.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China.
| | - Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China; Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China; Baokang Hospital, University of Tianjin Traditional Chinese Medicine, Tianjin 300193, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
13
|
Leitão L, Alves CJ, Alencastre IS, Sousa DM, Neto E, Conceição F, Leitão C, Aguiar P, Almeida-Porada G, Lamghari M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models. FASEB J 2018; 33:857-872. [PMID: 30044924 DOI: 10.1096/fj.201800610rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selectively recruiting bone marrow (BM)-derived stem and progenitor cells to injury sites is a promising therapeutic approach. The coordinated action of soluble factors is thought to trigger the mobilization of stem cells from the BM and recruit them to lesions to contribute to tissue regeneration. Nevertheless, the temporal response profile of the major cellular players and soluble factors involved in priming the BM and recruiting BM-derived cells to promote regeneration is unknown. We show that injury alters the BM cellular composition, introducing population-specific fluctuations during tissue regeneration. We demonstrate that injury causes an immediate, transient response of mesenchymal stromal cells and endothelial cells followed by a nonoverlapping increase in hematopoietic stem and progenitor cells. Moreover, BM reaction is identical whether the injury is inflicted on skin and muscle or also involves a bone defect, but these 2 injury paradigms trigger distinct systemic cytokine responses. Together, our results indicate that the BM response to injury in the early stages of regeneration is independent of the tissue-of-injury based on the 2 models used, but the injured tissue dictates the systemic cytokine response.-Leitão, L., Alves, C. J., Alencastre, I. S., Sousa, D. M., Neto, E., Conceição, F., Leitão, C., Aguiar, P., Almeida-Porada, G., Lamghari, M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Inês S Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; and
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Lin CHS, Zhang Y, Kaushansky K, Zhan H. JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 2018; 103:1160-1168. [PMID: 29567773 PMCID: PMC6029534 DOI: 10.3324/haematol.2017.185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloproliferative neoplasms are clonal stem cell disorders characterized by hematopoietic stem/progenitor cell expansion. The acquired kinase mutation JAK2V617F plays a central role in these disorders. Abnormalities of the marrow microenvironment are beginning to be recognized as an important factor in the development of myeloproliferative neoplasms. Endothelial cells are an essential component of the hematopoietic vascular niche. Endothelial cells carrying the JAK2V617F mutation can be detected in patients with myeloproliferative neoplasms, suggesting that the mutant vascular niche is involved in the pathogenesis of these disorders. Here, using a transgenic mouse expressing JAK2V617F specifically in all hematopoietic cells (including hematopoietic stem/progenitor cells) and endothelial cells, we show that the JAK2V617F-mutant hematopoietic stem/progenitor cells are relatively protected by the JAK2V617F-bearing vascular niche from an otherwise lethal dose of irradiation during conditioning for stem cell transplantation. Gene expression analysis revealed that chemokine (C-X-C motif) ligand 12, epidermal growth factor, and pleiotrophin are up-regulated in irradiated JAK2V617F-bearing endothelial cells compared to wild-type cells. Our findings suggest that the mutant vascular niche may contribute to the high incidence of disease relapse in patients with myeloproliferative neoplasms following allogeneic stem cell transplantation, the only curative treatment for these disorders.
Collapse
Affiliation(s)
| | - Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook School of Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY, USA .,Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
15
|
Poulos MG, Ramalingam P, Gutkin MC, Llanos P, Gilleran K, Rabbany SY, Butler JM. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest 2017; 127:4163-4178. [PMID: 29035282 DOI: 10.1172/jci93940] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pradeep Ramalingam
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Michael C Gutkin
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pierre Llanos
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Katherine Gilleran
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Sina Y Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Jason M Butler
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
16
|
Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl) 2017; 95:809-819. [PMID: 28702683 DOI: 10.1007/s00109-017-1559-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
Abstract
Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.
Collapse
|
17
|
Ramalingam P, Poulos MG, Butler JM. Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Curr Opin Hematol 2017; 24:289-299. [PMID: 28594660 PMCID: PMC5554937 DOI: 10.1097/moh.0000000000000350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) predominantly reside either in direct contact or in close proximity to the vascular endothelium throughout their lifespan. From the moment of HSC embryonic specification from hemogenic endothelium, endothelial cells (ECs) act as a critical cellular-hub that regulates a vast repertoire of biological processes crucial for HSC maintenance throughout its lifespan. In this review, we will discuss recent findings in endothelial niche-mediated regulation of HSC function during development, aging and regenerative conditions. RECENT FINDINGS Studies employing genetic vascular models have unequivocally confirmed that ECs provide the essential instructive cues for HSC emergence during embryonic development as well as adult HSC maintenance during homeostasis and regeneration. Aging of ECs may impair their ability to maintain HSC function contributing to the development of aging-associated hematopoietic deficiencies. These findings have opened up new avenues to explore the therapeutic application of ECs. ECs can be adapted to serve as an instructive platform to expand bona fide HSCs and also utilized as a cellular therapy to promote regeneration of the hematopoietic system following myelosuppressive and myeloablative injuries. SUMMARY ECs provide a fertile niche for maintenance of functional HSCs throughout their lifecycle. An improved understanding of the EC-HSC cross-talk will pave the way for development of EC-directed strategies for improving HSC function during aging.
Collapse
Affiliation(s)
- Pradeep Ramalingam
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medical College, New York, USA
| | | | | |
Collapse
|
18
|
DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular Therapies for Treatment of Radiation Injury: Report from a NIH/NIAID and IRSN Workshop. Radiat Res 2017; 188:e54-e75. [PMID: 28605260 DOI: 10.1667/rr14810.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Radia Tamarat
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Carmen I Rios
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Francesca Macchiarini
- e Previously -RNCP, DAIT, NIAID, NIH; now National Institute on Aging (NIA), NIH, Bethesda, Maryland
| | | | - Jean-Rene Jourdain
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
19
|
Qu Q, Liu L, Chen G, Xu Y, Wu X, Wu D. Endothelial progenitor cells promote efficient ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells. Cytotherapy 2016; 18:452-64. [PMID: 26857234 DOI: 10.1016/j.jcyt.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/27/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Cord blood (CB) hematopoietic stem cell transplantation has often been limited by the scarcity of stem cells. Therefore, the number of CB hematopoietic stem/progenitor cells (HSPCs) should be increased while maintaining the stem cell characteristics. METHODS We designed an ex vivo culture system using endothelial progenitor cells (EPCs) as stroma to determine the capacity of expanding CB-HSPCs in a defined medium, the effect on engraftment of the expanded cells in a mouse model and the underlying mechanism. RESULTS After 7 days of culture, compared with those cultured with cytokines alone (3.25 ± 0.59), CD34+ cells under contact and non-contact co-culture with EPCs were expanded by 5.38 ± 0.61 (P = 0.003) and 4.06 ± 0.43 (P = 0.025)-fold, respectively. Direct cell-to-cell contact co-culture with EPCs resulted in more primitive CD34+ CD38- cells than stroma-free culture (156.17 ± 21.32 versus 79.12 ± 19.77-fold; P = 0.010). Comparable engraftment of day 7 co-cultured HSPCs with respect to HSPCs at day 0 in nonobese diabetic-severe combined immunodeficiency disease (NOD/SCID) mice was measured as a percentage of chimerism (13.3% ± 11.0% versus 16.0% ± 14.3%; P = 0.750). EPCs highly expressed interleukin 6 (IL6) and angiopoietin 1 (ANGPT1), the hematopoietic- related cytokines. A higher transcriptional level of WNT5A genes in EPCs and co-cultured HSPCs suggests that the activation of Wnt signaling pathway may play a role in HSPCs' expansion ex vivo. DISCUSSION These data demonstrated that EPCs improve the CD34+ population but do not compromise the repopulating efficacy of the amplified HSPCs, possibly via cytokine secretion and Wnt signaling pathway activation.
Collapse
Affiliation(s)
- Qi Qu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limin Liu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojin Wu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature 2016; 529:316-25. [PMID: 26791722 DOI: 10.1038/nature17040] [Citation(s) in RCA: 659] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Endothelial cells that line capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establishes specialized vascular niches that deploy sets of growth factors, known as angiocrine factors. These cues participate actively in the induction, specification, patterning and guidance of organ regeneration, as well as in the maintainance of homeostasis and metabolism. When upregulated following injury, they orchestrate self-renewal and differentiation of tissue-specific resident stem and progenitor cells into functional organs. Uncovering the mechanisms by which organotypic endothelium distributes physiological levels of angiocrine factors both spatially and temporally will lay the foundation for clinical trials that promote organ repair without scarring.
Collapse
Affiliation(s)
- Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Jason M Butler
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
21
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
22
|
Poulos MG, Crowley MJP, Gutkin MC, Ramalingam P, Schachterle W, Thomas JL, Elemento O, Butler JM. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports 2015; 5:881-894. [PMID: 26441307 PMCID: PMC4649106 DOI: 10.1016/j.stemcr.2015.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 10/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) inhabit distinct microenvironments within the adult bone marrow (BM), which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs) to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1) have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J P Crowley
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael C Gutkin
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pradeep Ramalingam
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - William Schachterle
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Leon Thomas
- Yale Stem Cell Center, Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Université Pierre and Marie Curie-Paris 6, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason M Butler
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
23
|
Yao H, Goldman DC, Fan G, Mandel G, Fleming WH. The Corepressor Rcor1 Is Essential for Normal Myeloerythroid Lineage Differentiation. Stem Cells 2015; 33:3304-14. [PMID: 26119982 DOI: 10.1002/stem.2086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Based on its physical interactions with histone-modifying enzymes, the transcriptional corepressor Rcor1 has been implicated in the epigenetic regulation blood cell development. Previously, we have demonstrated that Rcor1 is essential for the maturation of definitive erythroid cells and fetal survival. To determine the functional role of Rcor1 in steady-state hematopoiesis in the adult, we used a conditional knockout approach. Here, we show that the loss of Rcor1 expression results in the rapid onset of severe anemia due to a complete, cell autonomous block in the maturation of committed erythroid progenitors. By contrast, both the frequency of megakaryocyte progenitors and their capacity to produce platelets were normal. Although the frequency of common lymphoid progenitors and T cells was not altered, B cells were significantly reduced and showed increased apoptosis. However, Rcor1-deficient bone marrow sustained normal levels of B-cells following transplantation, indicating a non-cell autonomous requirement for Rcor1 in B-cell survival. Evaluation of the myelomonocytic lineage revealed an absence of mature neutrophils and a significant increase in the absolute number of monocytic cells. Rcor1-deficient monocytes were less apoptotic and showed ∼100-fold more colony-forming activity than their normal counterparts, but did not give rise to leukemia. Moreover, Rcor1(-/-) monocytes exhibited extensive, cytokine-dependent self-renewal and overexpressed genes associated with hematopoietic stem/progenitor cell expansion including Gata2, Meis1, and Hoxa9. Taken together, these data demonstrate that Rcor1 is essential for the normal differentiation of myeloerythroid progenitors and for appropriately regulating self-renewal activity in the monocyte lineage.
Collapse
Affiliation(s)
- Huilan Yao
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Devorah C Goldman
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Guang Fan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gail Mandel
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - William H Fleming
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
24
|
Goldman DC, Alexeev V, Lash E, Guha C, Rodeck U, Fleming WH. The triterpenoid RTA 408 is a robust mitigator of hematopoietic acute radiation syndrome in mice. Radiat Res 2015; 183:338-44. [PMID: 25738896 DOI: 10.1667/rr13900.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bone marrow suppression due to exposure to ionizing radiation is a significant clinical problem associated with radiation therapy as well as with nonmedical radiation exposure. Currently, there are no small molecule agents available that can enhance hematopoietic regeneration after radiation exposure. Here, we report on the effective mitigation of acute hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408. The administration of a brief course of RTA 408 treatment, beginning 24 h after lethal doses of radiation to bone marrow, significantly increased overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial transplantation assays, indicative of their normal self-renewal activity. The potency of RTA 408 in mitigating radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in treating both therapy-related and unanticipated radiation exposure.
Collapse
Affiliation(s)
- Devorah C Goldman
- a Department of Pediatrics, Oregon Stem Cell Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | |
Collapse
|
25
|
Parris GE. Cell-Cell Fusion, Chemotaxis and Metastasis. INTERCELLULAR COMMUNICATION IN CANCER 2015:227-254. [DOI: 10.1007/978-94-017-7380-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Bone marrow vascular niche: home for hematopoietic stem cells. BONE MARROW RESEARCH 2014; 2014:128436. [PMID: 24822129 PMCID: PMC4009113 DOI: 10.1155/2014/128436] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022]
Abstract
Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs). As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.
Collapse
|
27
|
Abstract
SIGNIFICANCE Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. RECENT ADVANCES Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. CRITICAL ISSUES Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. FUTURE DIRECTIONS In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid.
Collapse
Affiliation(s)
- Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | | | | |
Collapse
|
28
|
Schreck C, Bock F, Grziwok S, Oostendorp RAJ, Istvánffy R. Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Ann N Y Acad Sci 2014; 1310:32-43. [PMID: 24611828 DOI: 10.1111/nyas.12384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are a rare population of somatic stem cells that have the ability to regenerate the entire mature blood system in a hierarchical way for the duration of an adult life. Adult HSCs reside in the bone marrow niche. Different niche cell types and molecules regulate the balance of HSC dormancy and activation as well as HSC behavior in both normal and malignant hematopoiesis. Here, we describe the interplay of HSCs and their niche, in particular the involvement of the Wnt signaling pathway. Although the prevailing notion has been that malignant transformation of HSCs is the main cause of leukemia, evidence is mounting that disruption of niche regulation by transformed hematopoietic cells, which may overexpress Wnt signaling or intrinsic stromal defects in gene expression, is at least a collaborative factor in leukemogenesis. Thus, insights into the normal and altered functions of niche components will help to obtain a better understanding of normal and malignant hematopoiesis and how environmental factors affect these processes.
Collapse
Affiliation(s)
- Christina Schreck
- III. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
Tan L, Lin P, Pezeshkian B, Rehman A, Madlambayan G, Zeng X. Real-time monitoring of cell mechanical changes induced by endothelial cell activation and their subsequent binding with leukemic cell lines. Biosens Bioelectron 2014; 56:151-8. [PMID: 24487102 DOI: 10.1016/j.bios.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 11/25/2022]
Abstract
Endothelial cell (EC) activation and their subsequent binding with different cells have various mechanical consequences that, if monitored real time, can serve as a functional biomarker of many pathophysiological response mechanisms. This work presents an innovative and facile strategy to conduct such monitoring using quartz crystal microbalance (QCM), thereby relating the shifts in its frequency and motional resistance to morphological changes upon cell-cell and cell-substrate interactions. By activating ECs with TNF-α and then characterizing their binding with HL-60 and KG-1 leukemia cells, we are able to induce the mechanical changes in ECs especially in the region of cell-substrate contact which resulted in dynamically coupled mass and viscoelastic changes representing the extent of both activation and binding. The activated ECs suffered a decrease of cellular contact area, leading to positive frequency shift and decreased motional resistance. The binding of leukemia cells onto pre-activated ECs exerted a mechanical force to regain the cell surface contact which resulted in the obvious QCM responses opposite to that of activation, and proportional to the number of cells added, in spite of the fact that these added cells are extremely outside the extinction boundary of the shear wave generated by QCM. Different cell lines demonstrate different attachment behavior, which was detected by the QCM. Despite these variations are quite subtle, yet the sensitivity of the technique for dynamic changes at the interface makes them detectable. Moreover, the reproducibility of the generated data determined at each step by deviation measurements (<10%) in response plot was very high despite the high possible heterogeneity in cell populations. The results are explained on the basis of simple theoretical and physical models, although, the development of a more quantitative and precise model is underway in our laboratory.
Collapse
Affiliation(s)
- Liang Tan
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peiling Lin
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Bahareh Pezeshkian
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Abdul Rehman
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Gerard Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States.
| |
Collapse
|
30
|
Zachman DK, Leon RP, Das P, Goldman DC, Hamlin KL, Guha C, Fleming WH. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury. Stem Cell Res 2013; 11:1013-21. [PMID: 23939266 DOI: 10.1016/j.scr.2013.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/16/2022] Open
Abstract
Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury.
Collapse
Affiliation(s)
- Derek K Zachman
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mizer JC, Ichim TE, Alexandrescu DT, Dasanu CA, Ramos F, Turner A, Woods EJ, Bogin V, Murphy MP, Koos D, Patel AN. Exogenous endothelial cells as accelerators of hematopoietic reconstitution. J Transl Med 2012; 10:231. [PMID: 23171397 PMCID: PMC3543295 DOI: 10.1186/1479-5876-10-231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 01/25/2023] Open
Abstract
Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a) ability to regulate secretion of cytokines based on biological need; b) long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c) potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC) in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.
Collapse
|
32
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
33
|
Peter Y, Sen N, Levantini E, Keller S, Ingenito EP, Ciner A, Sackstein R, Shapiro SD. CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 2012; 7:572-83. [PMID: 22585451 DOI: 10.1002/term.553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/19/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023]
Abstract
Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between stem/progenitor cells that proliferate or differentiate and somatic cells of the lung, we used a novel organotypic ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free-floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3 and β7, and constituted 37% of the total culture at day 14, yielding a mixed yet conservative population that recapitulated RNA expression patterns of the healthy lung. AICs exhibited rapid proliferation manifested by a marked 60-fold increase in cell numbers by day 21. More than 50% of the AIC population was c-KIT(+) or double-positive for CD45(+) and CD11b(+) antigenic determinants, consistent with cells of hematopoietic origin. The latter subset was found to be enriched with prosurfactant protein-C and SCGB1A1 expressing putative stem cells and with aquaporin-5 producing cells, characteristic of terminally differentiated alveolar epithelial type-1 pneumocytes. At the air/gel interface, AICs undergo remodeling to form a cellular lining, whereas TGF(β)1 treatment modifies protein expression properties to further imply a robust effect of the microenvironment on AIC phenotypic changes. These data confirm the active participation of clonogenic hematopoietic stem cells in a mammalian model of lung repair and validate mixed stem/somatic cell cultures, which license sustained cell viability, proliferation and differentiation, for use in studies of compensatory pulmonary growth.
Collapse
Affiliation(s)
- Yakov Peter
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang HF, Lin XH, Yang H, Zhou LC, Guo YL, Barnett JV, Guo ZM. Regulation of the activity and expression of aryl hydrocarbon receptor by ethanol in mouse hepatic stellate cells. Alcohol Clin Exp Res 2012; 36:1873-81. [PMID: 22486318 DOI: 10.1111/j.1530-0277.2012.01787.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND During the course of alcohol-induced liver damage, hepatic stellate cells are transformed into proliferative, fibrogenic, and contractile myofibroblasts. Aryl hydrocarbon receptor (AhR) is a transcription factor that controls the expression of genes involved in the metabolism of xenobiotics, inflammation, cell proliferation, and death. METHODS Immortal mouse hepatic stellate cells (MHSCs) were isolated from transgenic mice that expressed a thermolabile SV40 tumor antigen. Quantitative real-time reverse transcription polymerase chain reaction assays, Western blot analysis, promoter activity assays, and chromatin immunoprecipitation analyses were performed for studying the effect of ethanol (EtOH) on AhR expression and transcriptional activity. RESULTS Treatment of MHSCs with 50 to 200 mM EtOH for 6 hours induced AhR nuclear translocation, enhanced the promoter activity of cytochrome P450 (CYP) 1A1, increased the amount of AhR bound to the promoter of CYP1A1 and 1B1, and up-regulated the mRNA expression of these AhR target genes in a dose-dependent manner. In contrast, EtOH exposure down-regulated AhR mRNA and protein expression. Similarly, benzo(a)pyrene (BaP) at 10 nM reduced AhR and increased CYP1A1 and 1B1 mRNAs. Pretreatment of MHSCs with 50 mM EtOH for 7 days diminished the capacity of MHSCs to express CYP1A1 and 1B1 induced by a 200 mM EtOH challenge, or by 10 nM BaP. However, the up-regulatory effect of EtOH on solute carrier family 16, member 6 (SLC16a6) was unaffected by EtOH pretreatment. Similar to EtOH, dimethyl sulfoxide (DMSO) at concentrations of 50 to 100 mM down-regulated AhR and up-regulated CYP1A1 mRNA expression in a dose-dependent manner. CONCLUSIONS These data, for the first time, demonstrate that EtOH activates MHSC AhR and down-regulates its expression. Chronic EtOH pretreatment lowers the availability of AhR, and specifically diminishes the inducibility of CYP genes. The effect on AhR appears to not be an EtOH-specific response, as DMSO alone (and possibly other organic solvents) was also able to activate AhR.
Collapse
Affiliation(s)
- Hong Feng Zhang
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Johns JL, Christopher MM. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 2012; 49:508-23. [PMID: 22262354 DOI: 10.1177/0300985811432344] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extramedullary hematopoiesis (EMH) is the formation and development of blood cells outside the medullary spaces of the bone marrow. Although widely considered an epiphenomenon, secondary to underlying primary disease and lacking serious clinical or diagnostic implications, the presence of EMH is far from incidental on a molecular basis; rather, it reflects a well-choreographed suite of changes involving stem cells and their microenvironment (the stem cell niche). The goals of this review are to reconsider the molecular basis of EMH based on current knowledge of stem cell niches and to examine its role in the pathophysiologic mechanisms of EMH in animals. The ability of blood cells to home, proliferate, and mature in extramedullary tissues of adult animals reflects embryonic patterns of hematopoiesis and establishment or reactivation of a stem cell niche. This involves pathophysiologic alterations in hematopoietic stem cells, extracellular matrix, stromal cells, and local and systemic chemokines. Four major theories involving changes in stem cells and/or their microenvironment can explain the development of most occurrences of EMH: (1) severe bone marrow failure; (2) myelostimulation; (3) tissue inflammation, injury, and repair; and (4) abnormal chemokine production. EMH has also been reported within many types of neoplasms. Understanding the concepts and factors involved in stem cell niches enhances our understanding of the occurrence of EMH in animals and its relationship to underlying disease. In turn, a better understanding of the prevalence and distribution of EMH in animals and its molecular basis could further inform our understanding of the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- J L Johns
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
36
|
ter Huurne M, Figdor CG, Torensma R. Hematopoietic stem cells are coordinated by the molecular cues of the endosteal niche. Stem Cells Dev 2011; 19:1131-41. [PMID: 20148648 DOI: 10.1089/scd.2010.0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) accomplish a complex task. On a daily base billions of the 8 different mature cells are delivered in the right proportions. HSCs are located in niches located at several locations in the body. Communication between these spatially separated niches is accomplished by stem cells that leave their niche and migrate to other niches guided by soluble factors. The niche itself comprises all major signaling pathways (Hedgehog, Notch, Wnt, and BMP) and an array of adhesion molecules. The interplay between these components keep HSC in a quiescent state but also speed up production in case of urgent need during infection or excessive blood loss. In this review, we focus on the molecular cues of the niche, functional adhesion molecules and describe recent data obtained with multiphoton microscopy. A vast array of molecules is described that display similar functions as HSC controllers. This points to redundancy in the system that enables HSC to respond to different cues essentially with the same functional response. Apparently, the hematopoietic system is so crucial that it is not dependent on a single cue. When one cue fails to initiate a response, another cue will take over leading to an almost similar response. Another explanation is that every cue adds to an integrated signal that results in reaching the threshold. This integrated signal might be reached from huge signaling by a single cue or the low but additive signals by several cues.
Collapse
Affiliation(s)
- Menno ter Huurne
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|