1
|
Rossmann MP, Palis J. Developmental regulation of primitive erythropoiesis. Curr Opin Hematol 2024; 31:71-81. [PMID: 38415349 DOI: 10.1097/moh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation. RECENT FINDINGS Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery. SUMMARY The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.
Collapse
Affiliation(s)
- Marlies P Rossmann
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Chiang IKN, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez‐Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red‐Horse K, del Monte‐Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep 2023; 24:e55043. [PMID: 37551717 PMCID: PMC10561369 DOI: 10.15252/embr.202255043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Collapse
Affiliation(s)
- Ivy KN Chiang
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - David Humphrey
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Richard J Mills
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Peter Kaltzis
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Shikha Pachauri
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Matthew Graus
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Diptarka Saha
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Zhijian Wu
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Paul Young
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Choon Boon Sim
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Tara Davidson
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | | | - Chad A Shaw
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Alexander Renwick
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Daryl A Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Enzo R Porrello
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
- Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineThe Royal Children's HospitalMelbourneVICAustralia
- Department of Anatomy and Physiology, School of Biomedical SciencesThe University of MelbourneMelbourneVICAustralia
| | - Emily S Wong
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | | | - Mathias Francois
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| |
Collapse
|
3
|
Jeziorska DM, Tunnacliffe EAJ, Brown JM, Ayyub H, Sloane-Stanley J, Sharpe JA, Lagerholm BC, Babbs C, Smith AJH, Buckle VJ, Higgs DR. On-microscope staging of live cells reveals changes in the dynamics of transcriptional bursting during differentiation. Nat Commun 2022; 13:6641. [PMID: 36333299 PMCID: PMC9636426 DOI: 10.1038/s41467-022-33977-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation.
Collapse
Affiliation(s)
- D. M. Jeziorska
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK ,Present Address: Nucleome Therapeutics Ltd., BioEscalator, The Innovation Building, Old Road Campus, Oxford, OX3 7FZ UK
| | - E. A. J. Tunnacliffe
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - J. M. Brown
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - H. Ayyub
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - J. Sloane-Stanley
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - J. A. Sharpe
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - B. C. Lagerholm
- grid.4991.50000 0004 1936 8948Wolfson Imaging Centre, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK ,grid.4991.50000 0004 1936 8948Present Address: The Kennedy Institute Of Rheumatology, University of Oxford, Old Road Campus, Oxford, OX3 7FY UK
| | - C. Babbs
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - A. J. H. Smith
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK ,grid.4305.20000 0004 1936 7988Present Address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU UK
| | - V. J. Buckle
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - D. R. Higgs
- grid.4991.50000 0004 1936 8948MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK ,grid.4991.50000 0004 1936 8948Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN UK
| |
Collapse
|
4
|
Francis HS, Harold CL, Beagrie RA, King AJ, Gosden ME, Blayney JW, Jeziorska DM, Babbs C, Higgs DR, Kassouf MT. Scalable in vitro production of defined mouse erythroblasts. PLoS One 2022; 17:e0261950. [PMID: 34995303 PMCID: PMC8741028 DOI: 10.1371/journal.pone.0261950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.
Collapse
Affiliation(s)
- Helena S. Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline L. Harold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew E. Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Joseph W. Blayney
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta M. Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R. Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mira T. Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Huang X, Chao R, Zhang Y, Wang P, Gong X, Liang D, Wang Y. CAP1, a target of miR-144/451, negatively regulates erythroid differentiation and enucleation. J Cell Mol Med 2021; 25:2377-2389. [PMID: 33496386 PMCID: PMC7933962 DOI: 10.1111/jcmm.16067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics.
Collapse
Affiliation(s)
- Xiaoli Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Yang L, Lewis K. Erythroid Lineage Cells in the Liver: Novel Immune Regulators and Beyond. J Clin Transl Hepatol 2020; 8:177-183. [PMID: 32832398 PMCID: PMC7438359 DOI: 10.14218/jcth.2019.00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 12/04/2022] Open
Abstract
The lineage of the erythroid cell has been revisited in recent years. Instead of being classified as simply inert oxygen carriers, emerging evidence has shown that they are a tightly regulated in immune potent population with potential developmental plasticity for lineage crossing. Erythroid cells have been reported to exert immune regulatory function through secreted cytokines, or cell-cell contact, depending on the conditions of the microenvironment and disease models. In this review, we explain the natural history of erythroid cells in the liver through a developmental lens, as it offers perspectives into newly recognized roles of this lineage in liver biology. Here, we review the known immune roles of erythroid cells and discuss the mechanisms in the context of disease models and stages. Then, we explore the capability of erythroid lineage as a cell source for regenerative medicine. We propose that the versatile lineage of erythroid cells provides an underappreciated and potentially promising area for basic and translational research in the field of liver disease.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Correspondence to: Li Yang, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue; Cincinnati, OH 45229-3030, USA. Tel: +1-513-636-3008, E-mail:
| | - Kyle Lewis
- Division of Gastroenterology, Hepatology & Nutrition Developmental Biology Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
7
|
Obier N, Cauchy P, Assi SA, Gilmour J, Lie-A-Ling M, Lichtinger M, Hoogenkamp M, Noailles L, Cockerill PN, Lacaud G, Kouskoff V, Bonifer C. Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development 2016; 143:4324-4340. [PMID: 27802171 PMCID: PMC5201045 DOI: 10.1242/dev.139857] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
Abstract
The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Jane Gilmour
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael Lie-A-Ling
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Monika Lichtinger
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura Noailles
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Georges Lacaud
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Constanze Bonifer
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Gong X, Chao R, Wang P, Huang X, Zhang J, Zhu X, Zhang Y, Yang X, Hou C, Ji X, Shi T, Wang Y. Interplay of transcription factors and microRNAs during embryonic hematopoiesis. SCIENCE CHINA-LIFE SCIENCES 2016; 60:168-177. [DOI: 10.1007/s11427-016-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
|
9
|
Liu YX, Dong X, Gong F, Su N, Li SB, Zhang HT, Liu JL, Xue JH, Ji SP, Zhang Z. Promotion of Erythropoietic Differentiation in Hematopoietic Stem Cells by SOCS3 Knock-Down. PLoS One 2015; 10:e0135259. [PMID: 26252772 PMCID: PMC4529111 DOI: 10.1371/journal.pone.0135259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) plays an important role in mice fetal liver erythropoiesis, but the roles of SOCS3 in human hematopoietic stem cells (HSCs) have not been well investigated. In the present study, lentiviral small interference RNA expression vectors (shRNA) of SOCS3 were constructed and stably transferred into HSCs. We found that SOCS3 knockdown induced erythroid expansion in HSCs. Conversely, Ectopic expression of SOCS3 in progenitor cells blocked erythroid expansion and erythroid colony formation of HSCs. To further explore the involved mechanism, we compared gene expression profiles of SOCS3-shRNA tranduced HSCs with that of control HSCs by whole genome microarrays. The results indicated that cell developmental process related genes, especially hematopoietic lineage-specific genes, associated with the responses to SOCS3 in HSCs.Downexpression of SOCS3 in HSCs or differentiated erythroid progenitor cells induced a transcriptional program enriched for erythroid development relative genes. Our results proved that SOCS3 down-expression induced lineage commitment towards erythroid progenitor cell fate by activation of erythroid-specific gene in HSCs and provided new insight into the mechanism of erythropoietic development.
Collapse
Affiliation(s)
- Yu-xiao Liu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xing Dong
- Third Military Medical University, Chongqing, China
- General Hospital of Beijing Military Command, Beijing, China
| | - Feng Gong
- Beijing Institution of Transfusion Medicine, Beijing, China
| | - Ning Su
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Su-bo Li
- Beijing Institution of Transfusion Medicine, Beijing, China
| | - Hai-tao Zhang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jia-ling Liu
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jing-hui Xue
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| | - Shou-ping Ji
- Beijing Institution of Transfusion Medicine, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| | - Zhi–wen Zhang
- First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
- * E-mail: (JHX); (SPJ); (ZWZ)
| |
Collapse
|
10
|
Cao Y, Cai J, Li X, Yuan N, Zhang S. Autophagy governs erythroid differentiation both in vitro and in vivo. ACTA ACUST UNITED AC 2015; 21:225-33. [PMID: 26121237 DOI: 10.1179/1607845415y.0000000027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Although the importance of autophagy in determination of cell fate has been much explored in recent years, its definite role in regulating erythroid differentiation remains unclear. METHODS In this study, human erythroleukemic cell line K562 was employed as a cell model for studying erythroid differentiation in vitro. Starvation and rapamycin were used to induce autophagy, whereas Baf-A1 and CRISPR/Cas9/Atg7 were used to inhibit late and early phase of autophagy, respectively. The mice model of autophagy activation and autophagy deletion were established, and red blood cell counts and flow cytometry were used to analyze erythroid differentiation in vivo. RESULTS The results showed that the transcriptional levels of α-globin and γ-globin, and the ratio of hemoglobin-positive cells all significantly increased in K562 cells with starvation and rapamycin treatment, which were blocked by autophagy inhibitor, Baf-A1 or Atg7 gene knockout. In the autophagy-enhanced mouse model, the number of mature erythrocytes significantly increased, while in Atg7-deleted mouse model, erythroid differentiation was severely blocked. CONCLUSION It is concluded that autophagy is indispensible in the development, maturation, and homeostasis of erythroid cells both in vitro and in vivo. Our findings support the potential strategy for erythroleukemia treatment and production of erythroblasts in vitro by modulating autophagy.
Collapse
Affiliation(s)
- Yan Cao
- a Hematology Center of Cyrus Tang Medical Institute , Soochow University School of Medicine , Suzhou 215123 , Jiangsu , China
| | - Jinyang Cai
- a Hematology Center of Cyrus Tang Medical Institute , Soochow University School of Medicine , Suzhou 215123 , Jiangsu , China.,b Current address: State key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing 210029 , Jiangsu , China
| | - Xin Li
- a Hematology Center of Cyrus Tang Medical Institute , Soochow University School of Medicine , Suzhou 215123 , Jiangsu , China
| | - Na Yuan
- a Hematology Center of Cyrus Tang Medical Institute , Soochow University School of Medicine , Suzhou 215123 , Jiangsu , China
| | - Suping Zhang
- a Hematology Center of Cyrus Tang Medical Institute , Soochow University School of Medicine , Suzhou 215123 , Jiangsu , China
| |
Collapse
|