1
|
Yenisehirli G, Borges S, Braun SS, Zuniga AN, Quintana GI, Kutsnetsoff JN, Rodriguez S, Adis EV, Lopez S, Dollar JJ, Stathias V, Volmar CH, Karaca E, Brothers S, Bilbao D, Harbour JW, Correa ZM, Kurtenbach S. Identification of targetable epigenetic vulnerabilities in uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617464. [PMID: 39416076 PMCID: PMC11482939 DOI: 10.1101/2024.10.11.617464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, which preferentially metastasizes to the liver in approximately half of all cases. Metastatic UM is notoriously resistant to therapy and is almost uniformly fatal. UM metastasis is most strongly associated with mutational inactivation of the BAP1 tumor suppressor gene. Given the role of BAP1 in epigenetic regulation as the ubiquitin hydrolase subunit of the polycomb repressive deubiquitinase (PR-DUB) complex, we conducted high-throughput drug screening using a well-characterized epigenetic compound library to identify new therapeutic vulnerabilities. We identified several promising new lead compounds, in particular the extra-terminal domain protein (BET) inhibitor mivebresib (ABBV-075). Mivebresib significantly improved survival rates in a metastatic uveal melanoma xenograft mouse model and entirely prevented detectable metastases to the bones, spinal cord, and brain. RNA sequencing revealed a notable overlap between the genes and pathways affected by HDAC and BET inhibition, including the reversal of gene signatures linked to high metastatic risk and upregulation of genes associated with a neuronal phenotype. Together, we found that UM cells are particularly vulnerable to class I HDAC and BET inhibition, and highlight the BET inhibitor mivebresib as a promising candidate for further clinical evaluation.
Collapse
Affiliation(s)
- Gulum Yenisehirli
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Sebastian Borges
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Steffanie S. Braun
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Ashley N. Zuniga
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Gabriela I. Quintana
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Jeffim N. Kutsnetsoff
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Sara Rodriguez
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Emily V. Adis
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Sofia Lopez
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - James J. Dollar
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Vasileios Stathias
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| | - Claude H. Volmar
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine
| | - Efe Karaca
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine
| | - Shaun Brothers
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine
| | - Daniel Bilbao
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine
| | - J. William Harbour
- Department of Ophthalmology and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Zelia M. Correa
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| | - Stefan Kurtenbach
- Department of Ophthalmology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
- Interdisciplinary Stem Cell Institute (ISCI), University of Miami Miller School of Medicine
| |
Collapse
|
2
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Elshazly AM, Gewirtz DA. Cytoprotective, Cytotoxic and Cytostatic Roles of Autophagy in Response to BET Inhibitors. Int J Mol Sci 2023; 24:12669. [PMID: 37628849 PMCID: PMC10454099 DOI: 10.3390/ijms241612669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The bromodomain and extra-terminal domain (BET) family inhibitors are small molecules that target the dysregulated epigenetic readers, BRD2, BRD3, BRD4 and BRDT, at various transcription-related sites, including super-enhancers. BET inhibitors are currently under investigation both in pre-clinical cell culture and tumor-bearing animal models, as well as in clinical trials. However, as is the case with other chemotherapeutic modalities, the development of resistance is likely to constrain the therapeutic benefits of this strategy. One tumor cell survival mechanism that has been studied for decades is autophagy. Although four different functions of autophagy have been identified in the literature (cytoprotective, cytotoxic, cytostatic and non-protective), primarily the cytoprotective and cytotoxic forms appear to function in different experimental models exposed to BET inhibitors (with some evidence for the cytostatic form). This review provides an overview of the cytoprotective, cytotoxic and cytostatic functions of autophagy in response to BET inhibitors in various tumor models. Our aim is to determine whether autophagy targeting or modulation could represent an effective therapeutic strategy to enhance the response to these modalities and also potentially overcome resistance to BET inhibition.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
4
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
5
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
6
|
Colardo M, Gargano D, Russo M, Petraroia M, Pensabene D, D'Alessandro G, Santoro A, Limatola C, Segatto M, Di Bartolomeo S. Bromodomain and Extraterminal Domain (BET) Protein Inhibition Hinders Glioblastoma Progression by Inducing Autophagy-Dependent Differentiation. Int J Mol Sci 2023; 24:ijms24087017. [PMID: 37108181 PMCID: PMC10138987 DOI: 10.3390/ijms24087017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Miriam Russo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Antonio Santoro
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | |
Collapse
|
7
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
8
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
9
|
Hu W, Fang H, Peng Y, Li L, Liu S, Liao H, Tang J, Yi J, Liu Q, Xu L, Wu L. Nabais Sa-de Vries syndrome in a Chinese infant associated with a novel SPOP mutation: A clinical study and genetic report. Mol Genet Genomic Med 2022; 10:e2075. [PMID: 36259278 PMCID: PMC9747555 DOI: 10.1002/mgg3.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nabais Sa-de Vries syndrome (NSDVS) is a newly identified neurodevelopmental disorder (NDD), characterized by mutations in the SPOP gene, which encodes the speckle-type BTB/POZ protein. It is divided into two disease subtypes, according to patient facial features, which could be related to altered SPOP protein function. Few studies have documented this syndrome and little is known about its pathophysiology. Herein, we present an unexplained infant case of NDD, possibly the first Asian NSDVS case report. METHODS A 7-month-old boy presented with an enlarged head circumference, widened eye distance, and a protruding nose. Trio-whole exome sequencing of the patient's family was performed, and a variant was identified by bioinformatics analysis and further verified by Sanger sequencing. This variant was then identified by molecular dynamics analysis. Finally, a plasmid was constructed in vitro to transfect the human 293 T cells. qPCR and western blotting (WB) experiments were subsequently performed. These analyses verified the variant's transcription and protein expression. RESULTS Trio-whole exome sequencing was used to identify the SPOP mutation c.67 T > C (p.Cys23Arg). Crystal structure simulations suggest that this single-residue substitution alters hydrogen bonding with nearby residues. Analysis via qPCR and WB experiments indicated decreased mutant mRNA and protein expression levels. CONCLUSION Our findings suggest that genetic testing should be performed as soon as possible for children with NDD showing low phenotypic specificity. Prompt testing will provide more accurate diagnoses, which in turn offers evidence to assist in the formulation of rehabilitation training plans, and genetic counseling for patients' families.
Collapse
Affiliation(s)
- Wenjing Hu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Hongjun Fang
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Yu Peng
- Pediatrics Research Institute of Hunan ProvinceHunan Children's HospitalChangshaChina
| | - Li Li
- Department of RadiologyHunan Children's HospitalChangshaChina
| | - Shulei Liu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Hongmei Liao
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Jingwen Tang
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Jurong Yi
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Qingqing Liu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Li Xu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Liwen Wu
- Department of NeurologyHunan Children's HospitalChangshaChina
| |
Collapse
|
10
|
Silpa L, Sim R, Russell AJ. Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorg Med Chem Lett 2022; 61:128601. [PMID: 35123003 DOI: 10.1016/j.bmcl.2022.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.
Collapse
Affiliation(s)
- Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Rachel Sim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA; Department of Pharmacology, University of Oxford, University of Oxford OX1 3QT.
| |
Collapse
|
11
|
Rivera AD, Pieropan F, Williams G, Calzolari F, Butt AM, Azim K. Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination. Biomed Pharmacother 2022; 145:112436. [PMID: 34813998 PMCID: PMC8664715 DOI: 10.1016/j.biopha.2021.112436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Disruption or loss of oligodendrocytes (OLs) and myelin has devastating effects on CNS function and integrity, which occur in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer's disease and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular pathways. Here, we have used a combined systems biology and neurobiological approach to identify compounds that exert positive and negative effects on oligodendroglia, depending on concentration. Notably, next generation pharmacogenomic analysis identified the PI3K/Akt modulator LY294002 as the most highly ranked small molecule with both pro- and anti-oligodendroglial concentration-dependent effects. We validated these in silico findings using multidisciplinary approaches to reveal a profoundly bipartite effect of LY294002 on the generation of OPCs and their differentiation into myelinating oligodendrocytes in both postnatal and adult contexts. Finally, we employed transcriptional profiling and signalling pathway activity assays to determine cell-specific mechanisms of action of LY294002 on oligodendrocytes and resolve optimal in vivo conditions required to promote myelin repair. These results demonstrate the power of multidisciplinary strategies in determining the therapeutic potential of small molecules in neurodegenerative disorders.
Collapse
Affiliation(s)
- A D Rivera
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK; Section of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy.
| | - F Pieropan
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - G Williams
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - F Calzolari
- Research Group Adult Neurogenesis & Cellular Reprogramming Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany
| | - A M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - K Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
12
|
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021; 9:jdb9040046. [PMID: 34842711 PMCID: PMC8629005 DOI: 10.3390/jdb9040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Medical Scientist Training Program, Center for Innovation in Brain Science, Department of Pharmacology, University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave., Tucson, AZ 85724, USA;
| | - Kelly S. Olsen
- Biological and Biomedical Sciences Program, Department of Microbiology and Immunology, University of North Carolina School of Medicine-Chapel Hill, 321 S Columbia St., Chapel Hill, NC 27516, USA;
| | - Isabella Burda
- Department of Molecular Biology and Genetics, Weill Institute for Cell & Molecular Biology, Cornell University, 239 Weill Hall, Ithaca, NY 14853, USA;
| | - Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Room 12-124, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Jason Ho
- Robert Wood Johnson Medical School, Rutgers University, Clinical Academic Building (CAB), 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Nicholas D. D’Antonio
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, 1025 Walnut St. #100, Philadelphia, PA 19107, USA;
| | - Ian E. Briggs
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
| | - Angela J. DiBenedetto
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
- Correspondence:
| |
Collapse
|
13
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Peyton L, Oliveros A, Choi DS, Jang MH. Hippocampal regenerative medicine: neurogenic implications for addiction and mental disorders. Exp Mol Med 2021; 53:358-368. [PMID: 33785869 PMCID: PMC8080570 DOI: 10.1038/s12276-021-00587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders. A region of the brain called the hippocampus and its connections to other parts of the brain via what are called cortico-limbic structures are implicated in a variety of mental health disorders. These disorders can be accompanied by reduced hippocampal volume. Mi-Hyeon Jang, Doo-Sup Choi and colleagues at the Mayo Clinic College of Medicine and Science, Rochester, USA, review the role of hippocampal and cortico-limbic neurobiology in memory and mood in mental disorders. They focus particular attention on the role of neurogenesis, the production and growth of new nerve cells and connections. Disrupted neurogenesis in the adult hippocampus is implicated in conditions including addiction, depression, schizophrenia and related psychotic disorders. Learning more about neural regeneration in the hippocampus could yield insights into mental health conditions and open new avenues toward developing drug-based treatments.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. .,Department of Psychiatry & Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
15
|
Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 2021; 12:1085. [PMID: 33597515 PMCID: PMC7889641 DOI: 10.1038/s41467-021-21181-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Collapse
|
16
|
Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiškytė G, Czekalska MA, Arter WE, Guillén-Boixet J, Franzmann TM, Qamar S, George-Hyslop PS, Hyman AA, Collepardo-Guevara R, Alberti S, Knowles TPJ. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 2021; 12:1085. [PMID: 33597515 DOI: 10.1101/2020.05.04.076299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023] Open
Abstract
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Jorge R Espinosa
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Sina Wittmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Ella de Csilléry
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Akshay Sridhar
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Giedre Gudiškytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52 01-224, Warsaw, Poland
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jordina Guillén-Boixet
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Division of Neurology, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| | - Rosana Collepardo-Guevara
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
| |
Collapse
|
17
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
18
|
Cavallo F, Troglio F, Fagà G, Fancelli D, Shyti R, Trattaro S, Zanella M, D'Agostino G, Hughes JM, Cera MR, Pasi M, Gabriele M, Lazzarin M, Mihailovich M, Kooy F, Rosa A, Mercurio C, Varasi M, Testa G. High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons. Mol Autism 2020; 11:88. [PMID: 33208191 PMCID: PMC7677843 DOI: 10.1186/s13229-020-00387-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.
Collapse
Affiliation(s)
- Francesca Cavallo
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Fagà
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Daniele Fancelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Reinald Shyti
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Sebastiano Trattaro
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Evotec SE, Hamburg, Germany
| | - Giuseppe D'Agostino
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - James M Hughes
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,FPO - IRCCS, Candiolo Cancer Institute, SP 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Maria Rosaria Cera
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Maurizio Pasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Michele Gabriele
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Maddalena Lazzarin
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Marija Mihailovich
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.,Center for Life Nano Science, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. .,Human Technopole, Via Cristina Belgioioso, 171, 20157, Milan, Italy.
| |
Collapse
|
19
|
Suter RK, Rodriguez-Blanco J, Ayad NG. Epigenetic pathways and plasticity in brain tumors. Neurobiol Dis 2020; 145:105060. [DOI: 10.1016/j.nbd.2020.105060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
|
20
|
Shi Y, Liu J, Zhao Y, Cao J, Li Y, Guo F. Bromodomain-Containing Protein 4: A Druggable Target. Curr Drug Targets 2020; 20:1517-1536. [PMID: 31215391 DOI: 10.2174/1574885514666190618113519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extraterminal family. BRD4 inhibitors can regulate acetylated lysine and form protein complexes that initiate transcriptional programs as an epigenetic regulator of the histone code. BRD4 was initially considered to be one of the most promising targets for combating malignant tumors. However, many recent studies have shown that BRD4 plays a crucial role in various kinds of diseases, including cancer, coronary heart disease, neurological disorder, and obesity. Currently, several BRD4 inhibitors are undergoing clinical trials. A search for new BRD4 inhibitors appears to be of great utility for developing novel drugs. In this mini-review, we highlight the inhibitors of BRD4 from natural products and synthesized sources, as well as their applications in cancer, glucolipid metabolism, inflammation, neuronal stimulation activation, human immunodeficiency virus and renal fibrosis.
Collapse
Affiliation(s)
- Yingying Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
21
|
De Novo Variants in SPOP Cause Two Clinically Distinct Neurodevelopmental Disorders. Am J Hum Genet 2020; 106:405-411. [PMID: 32109420 DOI: 10.1016/j.ajhg.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Recurrent somatic variants in SPOP are cancer specific; endometrial and prostate cancers result from gain-of-function and dominant-negative effects toward BET proteins, respectively. By using clinical exome sequencing, we identified six de novo pathogenic missense variants in SPOP in seven individuals with developmental delay and/or intellectual disability, facial dysmorphisms, and congenital anomalies. Two individuals shared craniofacial dysmorphisms, including congenital microcephaly, that were strikingly different from those of the other five individuals, who had (relative) macrocephaly and hypertelorism. We measured the effect of SPOP variants on BET protein amounts in human Ishikawa endometrial cancer cells and patient-derived cell lines because we hypothesized that variants would lead to functional divergent effects on BET proteins. The de novo variants c.362G>A (p.Arg121Gln) and c. 430G>A (p.Asp144Asn), identified in the first two individuals, resulted in a gain of function, and conversely, the c.73A>G (p.Thr25Ala), c.248A>G (p.Tyr83Cys), c.395G>T (p.Gly132Val), and c.412C>T (p.Arg138Cys) variants resulted in a dominant-negative effect. Our findings suggest that these opposite functional effects caused by the variants in SPOP result in two distinct and clinically recognizable syndromic forms of intellectual disability with contrasting craniofacial dysmorphisms.
Collapse
|
22
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
23
|
Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis. Nat Commun 2019; 10:3028. [PMID: 31292434 PMCID: PMC6620341 DOI: 10.1038/s41467-019-10799-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications. The mechanisms controlling irreversible cell cycle exit in cerebellar granule progenitors (GCPs) have not been fully elucidated. Here, the authors performed RNA-sequencing of GCPs exiting the cell cycle to identify downregulation of Brd4 activity as an early event during cell cycle exit which subsequently regulates Shh activity and is needed for proper cerebellar development
Collapse
|
24
|
Bandopadhayay P, Piccioni F, O'Rourke R, Ho P, Gonzalez EM, Buchan G, Qian K, Gionet G, Girard E, Coxon M, Rees MG, Brenan L, Dubois F, Shapira O, Greenwald NF, Pages M, Balboni Iniguez A, Paolella BR, Meng A, Sinai C, Roti G, Dharia NV, Creech A, Tanenbaum B, Khadka P, Tracy A, Tiv HL, Hong AL, Coy S, Rashid R, Lin JR, Cowley GS, Lam FC, Goodale A, Lee Y, Schoolcraft K, Vazquez F, Hahn WC, Tsherniak A, Bradner JE, Yaffe MB, Milde T, Pfister SM, Qi J, Schenone M, Carr SA, Ligon KL, Kieran MW, Santagata S, Olson JM, Gokhale PC, Jaffe JD, Root DE, Stegmaier K, Johannessen CM, Beroukhim R. Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nat Commun 2019; 10:2400. [PMID: 31160565 PMCID: PMC6546744 DOI: 10.1038/s41467-019-10307-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.
Collapse
Affiliation(s)
- Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | | | - Ryan O'Rourke
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Patricia Ho
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Elizabeth M Gonzalez
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Graham Buchan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Kenin Qian
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Gabrielle Gionet
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Emily Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Margo Coxon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | | | - Lisa Brenan
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Frank Dubois
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Ofer Shapira
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Noah F Greenwald
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, USA
| | - Melanie Pages
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Amanda Balboni Iniguez
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Brenton R Paolella
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Alice Meng
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Claire Sinai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Giovanni Roti
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Medicine and Surgery, Hematology and BMT, University of Parma, Parma, Italy
| | - Neekesh V Dharia
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | | | | | - Prasidda Khadka
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Adam Tracy
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Hong L Tiv
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Boston, USA
| | - Andrew L Hong
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Shannon Coy
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - Rumana Rashid
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, USA
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, USA
- Discovery Science, Janssen Research and Development (Johnson & Johnson), Spring House, PA, USA
| | - Fred C Lam
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Yenarae Lee
- Broad Institute of MIT and Harvard, Cambridge, USA
| | | | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
| | | | - James E Bradner
- Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael B Yaffe
- Broad Institute of MIT and Harvard, Cambridge, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jun Qi
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, USA
- Department of Pathology, Boston Children's Hospital, Boston, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Sandro Santagata
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Boston, USA
| | | | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | | | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA.
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA.
- Department of Medicine, Harvard Medical School, Boston, USA.
| |
Collapse
|
25
|
Neuronal Transdifferentiation Potential of Human Mesenchymal Stem Cells from Neonatal and Adult Sources by a Small Molecule Cocktail. Stem Cells Int 2019; 2019:7627148. [PMID: 31065279 PMCID: PMC6466843 DOI: 10.1155/2019/7627148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/27/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.
Collapse
|
26
|
Lee C, Robinson M, Willerth SM. Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules. ACS Chem Neurosci 2018; 9:3175-3185. [PMID: 30091580 DOI: 10.1021/acschemneuro.8b00365] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme, a type of deadly brain cancer, originates most commonly from astrocytes found in the brain. Current multimodal treatments for glioblastoma minimally increase life expectancy, but significant advancements in prognosis have not been made in the past few decades. Here we investigate cellular reprogramming for inhibiting the aggressive proliferation of glioblastoma cells. Cellular reprogramming converts one differentiated cell type into another type based on the principles of regenerative medicine. In this study, we used cellular reprogramming to investigate whether small molecule mediated reprogramming could convert glioblastoma cells into neurons. We investigated a novel method for reprogramming U87MG human glioblastoma cells into terminally differentiated neurons using a small molecule cocktail consisting of forskolin, ISX9, CHIR99021 I-BET 151, and DAPT. Treating U87MG glioblastoma cells with this cocktail successfully reprogrammed the malignant cells into early neurons over 13 days. The reprogrammed cells displayed morphological and immunofluorescent characteristics associated with neuronal phenotypes. Genetic analysis revealed that the chemical cocktail upregulates the Ngn2, Ascl1, Brn2, and MAP2 genes, resulting in neuronal reprogramming. Furthermore, these cells displayed decreased viability and lacked the ability to form high numbers of tumor-like spheroids. Overall, this study validates the use of a novel small molecule cocktail for reprogramming glioblastoma into nonproliferating neurons.
Collapse
Affiliation(s)
- Christopher Lee
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meghan Robinson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
27
|
Rudman MD, Choi JS, Lee HE, Tan SK, Ayad NG, Lee JK. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp Neurol 2018; 309:181-192. [DOI: 10.1016/j.expneurol.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
|
28
|
Bakshi S, McKee C, Walker K, Brown C, Chaudhry GR. Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget 2018; 9:33853-33864. [PMID: 30333915 PMCID: PMC6173460 DOI: 10.18632/oncotarget.26127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including c-MYC, a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated. Previously, we have shown that JQ1 causes human umbilical cord MSCs to undergo cell cycle arrest and neural differentiation. In this study, we determined that JQ1 is more deleterious to neuronal derivatives (NDs) than adipogenic, chondrogenic or osteogenic derivatives of MSCs. NDs treated with JQ1 showed a significant decrease in cell proliferation, viability, and neuronal markers. JQ1 caused cell death through the intrinsic apoptotic pathway in NDs as determined by activation of Caspase 9 and increased expression of Cytochrome C. A comparative analysis showed differential action of JQ1 on MSCs and NDs. The results showed selective neuronal toxicity of JQ1 in NDs but not in the undifferentiated MSCs. These findings suggest a more careful examination of the selection and use of BET inhibitors as therapeutic agents, as they may cause unwanted damage to non-target cells and tissues.
Collapse
Affiliation(s)
- Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
29
|
Small molecule-induced cellular fate reprogramming: promising road leading to Rome. Curr Opin Genet Dev 2018; 52:29-35. [PMID: 29857280 DOI: 10.1016/j.gde.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022]
Abstract
Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming.
Collapse
|
30
|
Qureshi IA, Mehler MF. Epigenetic mechanisms underlying nervous system diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:43-58. [PMID: 29325627 DOI: 10.1016/b978-0-444-63233-3.00005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences and Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities; Einstein Cancer Center; Ruth L. and David S. Gottesman Stem Cell Institute; and Center for Epigenomics and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
31
|
Wu LS, Li J. High-Content Imaging Phenotypic Screen for Neurogenesis Using Primary Neural Progenitor Cells. Methods Mol Biol 2018; 1787:101-113. [PMID: 29736713 DOI: 10.1007/978-1-4939-7847-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurogenesis phenotypic screen of small-molecule library enables the discovery of small-molecule inducers, and identification of associated biological targets and pathways that control neuronal formation from neural progenitor cells (NPCs). Here, we describe protocols for preparing mouse embryonic NPCs, setting up a high-content imaging assay that quantifies the production of Tuj1-labeled neurons, and analysis of high-throughput screens.
Collapse
Affiliation(s)
- Li Sharon Wu
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Jingjun Li
- Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China.
| |
Collapse
|
32
|
The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice. Transl Psychiatry 2017; 7:e1239. [PMID: 28949335 PMCID: PMC5639246 DOI: 10.1038/tp.2017.202] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022] Open
Abstract
Histone acetylation is essential for memory formation and its deregulation contributes to the pathogenesis of Alzheimer's disease. Thus, targeting histone acetylation is discussed as a novel approach to treat dementia. The histone acetylation landscape is shaped by chromatin writer and eraser proteins, while readers link chromatin state to cellular function. Chromatin readers emerged novel drug targets in cancer research but little is known about the manipulation of readers in the adult brain. Here we tested the effect of JQ1-a small-molecule inhibitor of the chromatin readers BRD2, BRD3, BRD4 and BRDT-on brain function and show that JQ1 is able to enhance cognitive performance and long-term potentiation in wild-type animals and in a mouse model for Alzheimer's disease. Systemic administration of JQ1 elicited a hippocampal gene expression program that is associated with ion channel activity, transcription and DNA repair. Our findings suggest that JQ1 could be used as a therapy against dementia and should be further tested in the context of learning and memory.
Collapse
|
33
|
Delgado-Morales R, Agís-Balboa RC, Esteller M, Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics 2017; 9:67. [PMID: 28670349 PMCID: PMC5493012 DOI: 10.1186/s13148-017-0365-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Ageing is the main risk factor for human neurological disorders. Among the diverse molecular pathways that govern ageing, epigenetics can guide age-associated decline in part by regulating gene expression and also through the modulation of genomic instability and high-order chromatin architecture. Epigenetic mechanisms are involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning or cognition during healthy lifespan. On the other side of the coin, many neurodegenerative diseases are associated with epigenetic dysregulation. The reversible nature of epigenetic factors and, especially, their role as mediators between the genome and the environment make them exciting candidates as therapeutic targets. Rather than providing a broad description of the pathways epigenetically deregulated in human neurological disorders, in this review, we have focused on the potential use of epigenetic enzymes as druggable targets to ameliorate neural decline during normal ageing and especially in neurological disorders. We will firstly discuss recent progress that supports a key role of epigenetic regulation during healthy ageing with an emphasis on the role of epigenetic regulation in adult neurogenesis. Then, we will focus on epigenetic alterations associated with ageing-related human disorders of the central nervous system. We will discuss examples in the context of psychiatric disorders, including schizophrenia and posttraumatic stress disorders, and also dementia or Alzheimer's disease as the most frequent neurodegenerative disease. Finally, methodological limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Raúl Delgado-Morales
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roberto Carlos Agís-Balboa
- Psychiatric Diseases Research Group, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM, Vigo, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain
| |
Collapse
|