1
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Ahmad SS, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review. Int J Biol Macromol 2024; 267:131411. [PMID: 38588841 DOI: 10.1016/j.ijbiomac.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
3
|
Lee JH, Kim TK, Kang MC, Park M, Choi YS. Methods to Isolate Muscle Stem Cells for Cell-Based Cultured Meat Production: A Review. Animals (Basel) 2024; 14:819. [PMID: 38473203 DOI: 10.3390/ani14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Cultured meat production relies on various cell types, including muscle stem cells (MuSCs), embryonic stem cell lines, induced pluripotent cell lines, and naturally immortalized cell lines. MuSCs possess superior muscle differentiation capabilities compared to the other three cell lines, making them key for cultured meat development. Therefore, to produce cultured meat using MuSCs, they must first be effectively separated from muscles. At present, the methods used to isolate MuSCs from muscles include (1) the pre-plating method, using the ability of cells to adhere differently, which is a biological characteristic of MuSCs; (2) the density gradient centrifugation method, using the intrinsic density difference of cells, which is a physical characteristic of MuSCs; and (3) fluorescence- and magnetic-activated cell sorting methods, using the surface marker protein on the cell surface of MuSCs, which is a molecular characteristic of MuSCs. Further efficient and valuable methods for separating MuSCs are expected to be required as the cell-based cultured meat industry develops. Thus, we take a closer look at the four methods currently in use and discuss future development directions in this review.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minkyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
4
|
Mosaddad SA, Hussain A, Tebyaniyan H. Exploring the Use of Animal Models in Craniofacial Regenerative Medicine: A Narrative Review. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:29-59. [PMID: 37432898 DOI: 10.1089/ten.teb.2023.0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The craniofacial region contains skin, bones, cartilage, the temporomandibular joint (TMJ), teeth, periodontal tissues, mucosa, salivary glands, muscles, nerves, and blood vessels. Applying tissue engineering therapeutically helps replace lost tissues after trauma or cancer. Despite recent advances, it remains essential to standardize and validate the most appropriate animal models to effectively translate preclinical data to clinical situations. Therefore, this review focused on applying various animal models in craniofacial tissue engineering and regeneration. This research was based on PubMed, Scopus, and Google Scholar data available until January 2023. This study included only English-language publications describing animal models' application in craniofacial tissue engineering (in vivo and review studies). Study selection was based on evaluating titles, abstracts, and full texts. The total number of initial studies was 6454. Following the screening process, 295 articles remained on the final list. Numerous in vivo studies have shown that small and large animal models can benefit clinical conditions by assessing the efficacy and safety of new therapeutic interventions, devices, and biomaterials in animals with similar diseases/defects to humans. Different species' anatomical, physiologic, and biological features must be considered in developing innovative, reproducible, and discriminative experimental models to select an appropriate animal model for a specific tissue defect. As a result, understanding the parallels between human and veterinary medicine can benefit both fields.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
5
|
Ohashi A, Terai S, Furukawa S, Yamamoto S, Kashimoto R, Satoh A. Tenascin-C-enriched regeneration-specific extracellular matrix guarantees superior muscle regeneration in Ambystoma mexicanum. Dev Biol 2023; 504:98-112. [PMID: 37778717 DOI: 10.1016/j.ydbio.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Suzuno Terai
- Okayama University, Faculty of Science, Department of Biological Sciences, Okayama, Japan
| | - Saya Furukawa
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Sakiya Yamamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Rena Kashimoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Akira Satoh
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan; Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan.
| |
Collapse
|
6
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
An C, Chen Y, Wu Y, Hu Z, Zhang H, Liu R, Zhou Y, Cen L. Manipulation of porous poly(l-lactide-co-ε-caprolactone) microcarriers via microfluidics for C2C12 expansion. Int J Biol Macromol 2023; 242:124625. [PMID: 37146858 DOI: 10.1016/j.ijbiomac.2023.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
The growth and repair of skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. In order to acquire enough cells for neoskeletal muscle regeneration, it is urgent to develop microcarriers for skeletal myoblasts proliferation with a considerable efficiency. The current study was thus proposed to develop a microfluidic technology to manufacture porous poly(l-lactide-co-ε-caprolactone) (PLCL) microcarriers of high uniformity, and porosity was manipulated via camphene to suit the proliferation of C2C12 cells. A co-flow capillary microfluidic device was first designed to obtain PLCL microcarriers with different porosity. The attachment and proliferation of C2C12 cells on these microcarriers were evaluated and the differentiation potential of expanded cells were verified. The obtained porous microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). The content of camphene rendered effects on the size, porosity, and pore size of microcarriers, and porous structure addition produced a softening of their mechanical properties. The one of 10 % camphene (PM-10) exhibited the superior expansion for C2C12 cells with the number of cells after 5 days of culture reached 9.53 times of the adherent cells on the first day. The expanded cells from PM-10 still retained excellent myogenic differentiation performance as the expressions of MYOD, Desmin and MYH2 were intensively enhanced. Hence, the current developed porous PLCL microcarriers could offer as a promising type of substrates not only for in vitro muscular precursor cells expansion without compromising any multipotency but also have the potential as injectable constructs to mediate muscle regeneration.
Collapse
Affiliation(s)
- Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yawen Chen
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yanfei Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Ruilai Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology. No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
9
|
Scala P, Manzo P, Lamparelli EP, Lovecchio J, Ciardulli MC, Giudice V, Selleri C, Giordano E, Rehak L, Maffulli N, Della Porta G. Peripheral blood mononuclear cells contribute to myogenesis in a 3D bioengineered system of bone marrow mesenchymal stem cells and myoblasts. Front Bioeng Biotechnol 2023; 10:1075715. [PMID: 36704300 PMCID: PMC9871311 DOI: 10.3389/fbioe.2022.1075715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a 3D environment obtained using fibrin scaffold and two cell populations, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), and primary skeletal muscle cells (SkMs), was assembled. Peripheral blood mononuclear cells (PBMCs) fraction obtained after blood filtration with HemaTrate® filter was then added to the 3D culture system to explore their influence on myogenesis. The best cell ratio into a 3D fibrin hydrogel was 1:1 (BM-MSCs plus SkMs:PBMCs) when cultured in a perfusion bioreactor; indeed, excellent viability and myogenic event induction were observed. Myogenic genes were significantly overexpressed when cultured with PBMCs, such as MyoD1 of 118-fold at day 14 and Desmin 6-fold at day 21. Desmin and Myosin Heavy Chain were also detected at protein level by immunostaining along the culture. Moreover, the presence of PBMCs in 3D culture induced a significant downregulation of pro-inflammatory cytokine gene expression, such as IL6. This smart biomimetic environment can be an excellent tool for investigation of cellular crosstalk and PBMC influence on myogenic processes.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Paola Manzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | | | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Florence, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Interdepartment Centre BIONAM, University of Salerno, Fisciano, Italy,*Correspondence: Giovanna Della Porta,
| |
Collapse
|
10
|
Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120744. [PMID: 36550950 PMCID: PMC9774646 DOI: 10.3390/bioengineering9120744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Muscle tissue is formed by elongated and contractile cells with specific morphofunctional characteristics. Thus, it is divided into three basic types: smooth muscle tissue, cardiac striated muscle tissue and skeletal striated muscle tissue. The striated skeletal muscle tissue presents high plasticity, regeneration and growth capacity due to the presence of satellite cells, quiescent myoblasts that are activated in case of injury to the tissue and originate new muscle fibers when they differentiate. In more severe deficiencies or injuries there is a loss of their regenerative capacity, thus compromising the body's functionality at different levels. Tissue engineering studies the development of biomaterials capable of stimulating the recovery of cellular activity in injured body tissues, as well as the activity of cells with muscle differentiation potential in injury repair. However, the need for three-dimensional re-assembly in a complex organization makes it difficult to mimic this tissue and fully regenerate it for the sake of precise and effective movements. Thus, this article aims to provide a narrative review of tissue engineering strategies applied to the regeneration of skeletal muscle, in a critical evaluation of research, whether aimed at injury or atrophies such as spinal muscular atrophy.
Collapse
|
11
|
Zhang Z, Zhao X, Wang C, Huang Y, Han Y, Guo B. Injectable conductive micro-cryogel as a muscle stem cell carrier improves myogenic proliferation, differentiation and in situ skeletal muscle regeneration. Acta Biomater 2022; 151:197-209. [PMID: 36002125 DOI: 10.1016/j.actbio.2022.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Volumetric muscle loss (VML) results in the impediment of skeletal muscle function, and there were still great challenges in cell delivery approach with the minimally invasive operation to repair muscle defects. To deliver cells to the VML defects site efficiently, the injectable conductive porous nanocomposite microcryogels based on gelatin (GT) and reduced graphene oxide (rGO) were designed and prepared. The microcryogels were loaded with myoblasts to form an injectable cell delivery system and show the ability to protect cells during injection. Conductive microcryogel with 4 mg/mL rGO (GT/rGO4) enhanced C2C12 cell proliferation and myogenic differentiation during 3D culture compared with pure gelatin microcryogel. In a mice VML model, injection of microcryogel loaded with muscle-derived stem cells into the injury site significantly improved the generation of new muscle fibers and blood vessels, and anti-inflammatory properties. The results show that injectable biodegradable conductive microcryogel can be used as myoblast cell carriers with the potential to maintain cell activity and deliver cells to defective sites, thereby in situ enhancing skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss overwhelms the regenerative capacity of skeletal muscle, which results in severe damage to muscle tissues. In the treatment of volumetric muscle loss, conductive niche and muscle stem cells are needed to alleviate excessive scar formation and inflammation to improve muscle regeneration. Injectable gelatin/reduced graphene oxide based nanocomposite microcryogel can enhance the differentiation of seeded muscle stem cells. The improved repair of volumetric muscle loss was achieved via reducing collagen deposition and inflammation in the injected region through the microcryogel cell-delivery therapy, suggesting great potential of the injectable microcryogel as a cell carrier in soft tissue repair.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunbo Wang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
12
|
Saveh Shemshaki N, Kan HM, Barajaa M, Otsuka T, Lebaschi A, Mishra N, Nair LS, Laurencin CT. Muscle degeneration in chronic massive rotator cuff tears of the shoulder: Addressing the real problem using a graphene matrix. Proc Natl Acad Sci U S A 2022; 119:e2208106119. [PMID: 35939692 PMCID: PMC9388153 DOI: 10.1073/pnas.2208106119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Massive rotator cuff tears (MRCTs) of the shoulder cause disability and pain among the adult population. In chronic injuries, the tendon retraction and subsequently the loss of mechanical load lead to muscle atrophy, fat accumulation, and fibrosis formation over time. The intrinsic repair mechanism of muscle and the successful repair of the torn tendon cannot reverse the muscle degeneration following MRCTs. To address these limitations, we developed an electroconductive matrix by incorporating graphene nanoplatelets (GnPs) into aligned poly(l-lactic acid) (PLLA) nanofibers. This study aimed to understand 1) the effects of GnP matrices on muscle regeneration and inhibition of fat formation in vitro and 2) the ability of GnP matrices to reverse muscle degenerative changes in vivo following an MRCT. The GnP matrix significantly increased myotube formation, which can be attributed to enhanced intracellular calcium ions in myoblasts. Moreover, the GnP matrix suppressed adipogenesis in adipose-derived stem cells. These results supported the clinical effects of the GnP matrix on reducing fat accumulation and muscle atrophy. The histological evaluation showed the potential of the GnP matrix to reverse muscle atrophy, fat accumulation, and fibrosis in both supraspinatus and infraspinatus muscles at 24 and 32 wk after the chronic MRCTs of the rat shoulder. The pathological evaluation of internal organs confirmed the long-term biocompatibility of the GnP matrix. We found that reversing muscle degenerative changes improved the morphology and tensile properties of the tendon compared with current surgical techniques. The long-term biocompatibility and the ability of the GnP matrix to treat muscle degeneration are promising for the realization of MRCT healing and regeneration.
Collapse
Affiliation(s)
- Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269
- Connecticut Veterinary Medical Diagnostic Laboratory, Storrs, CT
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
13
|
Fibrous Protein Composite Scaffolds (3D) for Tissue Regeneration: An in vitro Study on Skeletal Muscle Regeneration. Colloids Surf B Biointerfaces 2022; 217:112656. [DOI: 10.1016/j.colsurfb.2022.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
|
14
|
Cheesbrough A, Sciscione F, Riccio F, Harley P, R'Bibo L, Ziakas G, Darbyshire A, Lieberam I, Song W. Biobased Elastomer Nanofibers Guide Light-Controlled Human-iPSC-Derived Skeletal Myofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110441. [PMID: 35231133 PMCID: PMC9131876 DOI: 10.1002/adma.202110441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Indexed: 05/07/2023]
Abstract
Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m-3 . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.
Collapse
Affiliation(s)
- Aimee Cheesbrough
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Fabiola Sciscione
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Peter Harley
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Lea R'Bibo
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Georgios Ziakas
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Arnold Darbyshire
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
15
|
Salemi S, Prange JA, Baumgartner V, Mohr-Haralampieva D, Eberli D. Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Res Ther 2022; 13:156. [PMID: 35410452 PMCID: PMC8996587 DOI: 10.1186/s13287-022-02835-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2023] Open
Abstract
INTRODUCTION Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.
Collapse
Affiliation(s)
- Souzan Salemi
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Jenny A. Prange
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Valentin Baumgartner
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Deana Mohr-Haralampieva
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| |
Collapse
|
16
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hu C, Ayan B, Chiang G, Chan AHP, Rando TA, Huang NF. Comparative Effects of Basic Fibroblast Growth Factor Delivery or Voluntary Exercise on Muscle Regeneration after Volumetric Muscle Loss. Bioengineering (Basel) 2022; 9:37. [PMID: 35049746 PMCID: PMC8773127 DOI: 10.3390/bioengineering9010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
Volumetric muscle loss (VML) is associated with irreversibly impaired muscle function due to traumatic injury. Experimental approaches to treat VML include the delivery of basic fibroblast growth factor (bFGF) or rehabilitative exercise. The objective of this study was to compare the effects of spatially nanopatterned collagen scaffold implants with either bFGF delivery or in conjunction with voluntary exercise. Aligned nanofibrillar collagen scaffold bundles were adsorbed with bFGF, and the bioactivity of bFGF-laden scaffolds was examined by skeletal myoblast or endothelial cell proliferation. The therapeutic efficacy of scaffold implants with either bFGF release or exercise was examined in a murine VML model. Our results show an initial burst release of bFGF from the scaffolds, followed by a slower release over 21 days. The released bFGF induced myoblast and endothelial cell proliferation in vitro. After 3 weeks of implantation in a mouse VML model, twitch force generation was significantly higher in mice treated with bFGF-laden scaffolds compared to bFGF-laden scaffolds with exercise. However, myofiber density was not significantly improved with bFGF scaffolds or voluntary exercise. In contrast, the scaffold implant with exercise induced more re-innervation than all other groups. These results highlight the differential effects of bFGF and exercise on muscle regeneration.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Gladys Chiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
| | - Alex H. P. Chan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas A. Rando
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (C.H.); (G.C.); (A.H.P.C.); (T.A.R.)
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Fan T, Wang S, Jiang Z, Ji S, Cao W, Liu W, Ji Y, Li Y, Shyh-Chang N, Gu Q. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 2021; 14. [PMID: 34788746 DOI: 10.1088/1758-5090/ac3aca] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
3D printing is an effective technology for recreating skeletal muscle tissuein vitro. To achieve clinical skeletal muscle injury repair, relatively large volumes of highly aligned skeletal muscle cells are required; obtaining these is still a challenge. It is currently unclear how individual skeletal muscle cells and their neighbouring components co-ordinate to establish anisotropic architectures in highly homogeneous orientations. Here, we demonstrated a 3D printing strategy followed by sequential culture processes to engineer skeletal muscle tissue. The effects of confined printing on the skeletal muscle during maturation, which impacted the myotube alignment, myogenic gene expression, and mechanical forces, were observed. Our findings demonstrate the dynamic changes of skeletal muscle tissue duringin vitro3D construction and reveal the role of physical factors in the orientation and maturity of muscle fibres.
Collapse
Affiliation(s)
- Tingting Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
19
|
Karkanitsa M, Fathi P, Ngo T, Sadtler K. Mobilizing Endogenous Repair Through Understanding Immune Reaction With Biomaterials. Front Bioeng Biotechnol 2021; 9:730938. [PMID: 34917594 PMCID: PMC8670074 DOI: 10.3389/fbioe.2021.730938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
With few exceptions, humans are incapable of fully recovering from severe physical trauma. Due to these limitations, the field of regenerative medicine seeks to find clinically viable ways to repair permanently damaged tissue. There are two main approaches to regenerative medicine: promoting endogenous repair of the wound, or transplanting a material to replace the injured tissue. In recent years, these two methods have fused with the development of biomaterials that act as a scaffold and mobilize the body's natural healing capabilities. This process involves not only promoting stem cell behavior, but by also inducing activity of the immune system. Through understanding the immune interactions with biomaterials, we can understand how the immune system participates in regeneration and wound healing. In this review, we will focus on biomaterials that promote endogenous tissue repair, with discussion on their interactions with the immune system.
Collapse
Affiliation(s)
| | | | | | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
21
|
Rosero Salazar DH, van Rheden REM, van Hulzen M, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules 2021; 11:1547. [PMID: 34680180 PMCID: PMC8533998 DOI: 10.3390/biom11101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the effects of fibrin constructs enhanced with laminin-nidogen, implanted in the wounded rat soft palate. Fibrin constructs with and without laminin-nidogen were implanted in 1 mm excisional wounds in the soft palate of 9-week-old rats and compared with the wounded soft palate without implantation. Collagen deposition and myofiber formation were analyzed at days 3, 7, 28 and 56 after wounding by histochemistry. In addition, immune staining was performed for a-smooth muscle actin (a-SMA), myosin heavy chain (MyHC) and paired homeobox protein 7 (Pax7). At day 56, collagen areas were smaller in both implant groups (31.25 ± 7.73% fibrin only and 21.11 ± 6.06% fibrin with laminin-nidogen)) compared to the empty wounds (38.25 ± 8.89%, p < 0.05). Moreover, the collagen area in the fibrin with laminin-nidogen group was smaller than in the fibrin only group (p ˂ 0.05). The areas of myofiber formation in the fibrin only group (31.77 ± 10.81%) and fibrin with laminin-nidogen group (43.13 ± 10.39%) were larger than in the empty wounds (28.10 ± 11.68%, p ˂ 0.05). Fibrin-based constructs with laminin-nidogen reduce fibrosis and improve muscle regeneration in the wounded soft palate. This is a promising strategy to enhance cleft soft palate repair and other severe muscle injuries.
Collapse
Affiliation(s)
- Doris H. Rosero Salazar
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
- Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali 760008, Colombia
| | - René E. M. van Rheden
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Manon van Hulzen
- Central Facility for Research with Laboratory Animals (CDL), Radboud University Medical Centre, 6525EZ Nijmegen, The Netherlands;
| | - Paola L. Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands;
| | - Frank A. D. T. G. Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Johannes W. Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| |
Collapse
|
22
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
23
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
24
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
25
|
Costantini M, Testa S, Fornetti E, Fuoco C, Sanchez Riera C, Nie M, Bernardini S, Rainer A, Baldi J, Zoccali C, Biagini R, Castagnoli L, Vitiello L, Blaauw B, Seliktar D, Święszkowski W, Garstecki P, Takeuchi S, Cesareni G, Cannata S, Gargioli C. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration. EMBO Mol Med 2021; 13:e12778. [PMID: 33587336 PMCID: PMC7933978 DOI: 10.15252/emmm.202012778] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
The importance of skeletal muscle tissue is undoubted being the controller of several vital functions including respiration and all voluntary locomotion activities. However, its regenerative capability is limited and significant tissue loss often leads to a chronic pathologic condition known as volumetric muscle loss. Here, we propose a biofabrication approach to rapidly restore skeletal muscle mass, 3D histoarchitecture, and functionality. By recapitulating muscle anisotropic organization at the microscale level, we demonstrate to efficiently guide cell differentiation and myobundle formation both in vitro and in vivo. Of note, upon implantation, the biofabricated myo-substitutes support the formation of new blood vessels and neuromuscular junctions-pivotal aspects for cell survival and muscle contractile functionalities-together with an advanced muscle mass and force recovery. Altogether, these data represent a solid base for further testing the myo-substitutes in large animal size and a promising platform to be eventually translated into clinical scenarios.
Collapse
Affiliation(s)
- Marco Costantini
- Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
| | - Stefano Testa
- Department of BiologyRome University Tor VergataRomeItaly
| | | | - Claudia Fuoco
- Department of BiologyRome University Tor VergataRomeItaly
| | | | - Minghao Nie
- Department of Mechano‐InformaticsGraduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
| | | | - Alberto Rainer
- Department of EngineeringUniversità Campus Bio‐Medico di RomaRomeItaly
- Institute of Nanotechnology (NANOTEC)National Research CouncilLecceItaly
| | - Jacopo Baldi
- IRCCS Regina Elena National Cancer InstituteRomeItaly
| | | | | | | | | | - Bert Blaauw
- Department of Biomedical Science and Venetian Institute of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Dror Seliktar
- Department of Biomedical EngineeringTechion InstituteHaifaIsrael
| | - Wojciech Święszkowski
- Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
| | - Piotr Garstecki
- Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
| | - Shoji Takeuchi
- Department of Mechano‐InformaticsGraduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Gianni Cesareni
- Department of BiologyRome University Tor VergataRomeItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | | | | |
Collapse
|
26
|
Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021; 26:699. [PMID: 33572728 PMCID: PMC7865392 DOI: 10.3390/molecules26030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Bee Chin Ang
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| |
Collapse
|
27
|
de Melo BA, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 2020; 117:60-76. [PMID: 32949823 DOI: 10.1016/j.actbio.2020.09.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Fibrin gel has been widely used for engineering various types of tissues due to its biocompatible nature, biodegradability, and tunable mechanical and nanofibrous structural properties. Despite their promising regenerative capacity and extensive biocompatibility with various tissue types, fibrin-based biomaterials are often notoriously known as burdensome candidates for 3D biofabrication and bioprinting. The high viscosity of fibrin (crosslinked form) hinders proper ink extrusion, and its pre-polymer form, fibrinogen, is not capable of maintaining shape fidelity. To overcome these limitations and empower fibrinogen-based bioinks for fibrin biomimetics and regenerative applications, different strategies can be practiced. The aim of this review is to report the strategies that bring fabrication compatibility to these bioinks through mixing fibrinogen with printable biomaterials, using supporting bath supplemented with crosslinking agents, and crosslinking fibrin in situ. Moreover, the review discusses some of the recent advances in 3D bioprinting of biomimetic soft and hard tissues using fibrinogen-based bioinks, and highlights the impacts of these strategies on fibrin properties, its bioactivity, and the functionality of the consequent biomimetic tissue. Statement of Significance Due to its biocompatible nature, biodegradability, and tunable mechanical and nanofibrous structural properties, fibrin gel has been widely employed in tissue engineering and more recently, used as in 3D bioprinting. The fibrinogen's poor printable properties make it difficult to maintain the 3D shape of bioprinted constructs. Our work describes the strategies employed in tissue engineering to allow the 3D bioprinting of fibrinogen-based bioinks, such as the combination of fibrinogen with printable biomaterials, the in situ fibrin crosslinking, and the use of supporting bath supplemented with crosslinking agents. Further, this review discuss the application of 3D bioprinting technology to biofabricate fibrin-based soft and hard tissues for biomedical applications, and discuss current limitations and future of such in vitro models.
Collapse
|
28
|
Beggs I. Biological Basis of Treatments of Acute Muscle Injuries: A Short Review. Semin Musculoskelet Radiol 2020; 24:256-261. [PMID: 32987424 DOI: 10.1055/s-0040-1708087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strains occur frequently in recreational and professional sports. This article considers various treatment options in a biological context and reviews evidence of their efficacy. Treatments reviewed include the PRICE principle (P: rotection, R: est, I: ce, C: ompression, E: levation), early mobilization, physical therapy, hematoma aspiration, platelet-rich plasma injections, use of nonsteroidal anti-inflammatory drugs, corticosteroids, and local anesthetics, cellular therapies, and surgery.
Collapse
Affiliation(s)
- Ian Beggs
- Analytic Imaging, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Wu J, Matthias N, Bhalla S, Darabi R. Evaluation of the Therapeutic Potential of Human iPSCs in a Murine Model of VML. Mol Ther 2020; 29:121-131. [PMID: 32966776 DOI: 10.1016/j.ymthe.2020.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Volumetric muscle loss injury is a common health problem with long-term disabilities. One common treatment is using muscle flaps from donor site, which has limited potentials due to donor site availability and morbidity. Although several stem cell therapies have been evaluated so far, most suffer from limited availability, immune incompatibility, or differentiation potential. Therefore, induced pluripotent stem cells (iPSCs) have a great promise for this purpose due to their unique differentiation, self-renewal, and immunocompatibility. Current study was designed to determine therapeutic potential of human iPSCs (hiPSCs) in a mouse model of volumetric muscle loss. Muscles were subjected to excision to generate 30%-40% muscle loss. Next, hiPSCs were differentiated toward skeletal myogenic progenitors and used with fibrin hydrogel to reconstruct the lost muscle. Histologic evaluation of the treated muscles indicated abundant engraftment of donor-derived mature fibers expressing human markers. Donor-derived fibers were also positive for the presence of neuromuscular junction (NMJ), indicating their proper innervation. Evaluation of the engrafted region indicated the presence of donor-derived satellite cells expressing human markers and Pax7. Finally, in situ muscle function analysis demonstrated significant improvement of the muscle contractility in muscles treated with hiPSCs. These results therefore provide key evidence for the therapeutic potential of human iPSCs in volumetric muscle loss injuries.
Collapse
Affiliation(s)
- Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shubhang Bhalla
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Pre-Clinical Cell Therapeutic Approaches for Repair of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030097. [PMID: 32825213 PMCID: PMC7552602 DOI: 10.3390/bioengineering7030097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Extensive damage to skeletal muscle tissue due to volumetric muscle loss (VML) is beyond the inherent regenerative capacity of the body, and results in permanent functional debilitation. Current clinical treatments fail to fully restore native muscle function. Recently, cell-based therapies have emerged as a promising approach to promote skeletal muscle regeneration following injury and/or disease. Stem cell populations, such as muscle stem cells, mesenchymal stem cells and induced pluripotent stem cells (iPSCs), have shown a promising capacity for muscle differentiation. Support cells, such as endothelial cells, nerve cells or immune cells, play a pivotal role in providing paracrine signaling cues for myogenesis, along with modulating the processes of inflammation, angiogenesis and innervation. The efficacy of cell therapies relies on the provision of instructive microenvironmental cues and appropriate intercellular interactions. This review describes the recent developments of cell-based therapies for the treatment of VML, with a focus on preclinical testing and future trends in the field.
Collapse
|
31
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
32
|
Sicherer ST, Venkatarama RS, Grasman JM. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering (Basel) 2020; 7:bioengineering7030076. [PMID: 32698352 PMCID: PMC7552705 DOI: 10.3390/bioengineering7030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injuries that occur from traumatic incidents, such as those caused by car accidents or surgical resections, or from injuries sustained on the battlefield, result in the loss of functionality of the injured muscle. To understand skeletal muscle regeneration and to better treat these large scale injuries, termed volumetric muscle loss (VML), in vivo injury models exploring the innate mechanisms of muscle injury and repair are essential for the creation of clinically applicable treatments. While the end result of a muscle injury is often the destruction of muscle tissue, the manner in which these injuries are induced as well as the response from the innate repair mechanisms found in muscle in each animal models can vary. This targeted review describes injury models that assess both skeletal muscle regeneration (i.e., the response of muscle to myotoxin or ischemic injury) and skeletal muscle repair (i.e., VML injury). We aimed to summarize the injury models used in the field of skeletal muscle tissue engineering, paying particular attention to strategies to induce muscle damage and how to standardize injury conditions for future experiments.
Collapse
|
33
|
Smoak M, Mikos A. Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio 2020; 7:100069. [PMID: 32695987 PMCID: PMC7363708 DOI: 10.1016/j.mtbio.2020.100069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022] Open
Abstract
Repair of injured skeletal muscle is a sophisticated process that uses immune, muscle, perivascular, and neural cells. In acute injury, the robust endogenous repair process can facilitate complete regeneration with little to no functional deficit. However, in severe injury, the damage is beyond the capacity for self-repair, often resulting in structural and functional deficits. Aside from the insufficiencies in muscle function, the aesthetic deficits can impact quality of life. Current clinical treatments are significantly limited in their capacity to structurally and functionally repair the damaged skeletal muscle. Therefore, alternative approaches are needed. Biomaterial therapies for skeletal muscle engineering have leveraged natural materials with sophisticated scaffold fabrication techniques to guide cell infiltration, alignment, and differentiation. Advances in biomaterials paired with a standardized and rigorous assessment of resulting tissue formation have greatly advanced the field of skeletal muscle engineering in the last several years. Herein, we discuss the current trends in biomaterials-based therapies for skeletal muscle regeneration and present the obstacles still to be overcome before clinical translation is possible. With millions of people affected by muscle trauma each year, the development of a therapy that can repair the structural and functional deficits after severe muscle injury is pivotal.
Collapse
Affiliation(s)
- M.M. Smoak
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - A.G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. MATERIALS 2020; 13:ma13112483. [PMID: 32486040 PMCID: PMC7321144 DOI: 10.3390/ma13112483] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Recently, skeletal muscle represents a complex and challenging tissue to be generated in vitro for tissue engineering purposes. Several attempts have been pursued to develop hydrogels with different formulations resembling in vitro the characteristics of skeletal muscle tissue in vivo. This review article describes how different types of cell-laden hydrogels recapitulate the multiple interactions occurring between extracellular matrix (ECM) and muscle cells. A special attention is focused on the biochemical cues that affect myocytes morphology, adhesion, proliferation, and phenotype maintenance, underlining the importance of topographical cues exerted on the hydrogels to guide cellular orientation and facilitate myogenic differentiation and maturation. Moreover, we highlight the crucial role of 3D printing and bioreactors as useful platforms to finely control spatial deposition of cells into ECM based hydrogels and provide the skeletal muscle native-like tissue microenvironment, respectively.
Collapse
Affiliation(s)
- Daniele Boso
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (D.B.); (M.P.)
| | - Edoardo Maghin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Women and Children Health, University of Padova, 35128 Padova, Italy
| | - Eugenia Carraro
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Giagante
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Piero Pavan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Correspondence: (D.B.); (M.P.)
| |
Collapse
|
35
|
Urciuolo A, Serena E, Ghua R, Zatti S, Giomo M, Mattei N, Vetralla M, Selmin G, Luni C, Vitulo N, Valle G, Vitiello L, Elvassore N. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. PLoS One 2020; 15:e0232081. [PMID: 32374763 PMCID: PMC7202609 DOI: 10.1371/journal.pone.0232081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs (“myobundles”) at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 μm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.
Collapse
Affiliation(s)
- Anna Urciuolo
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Elena Serena
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Rusha Ghua
- Department of Biology, University of Padova, Padova, Italy
| | - Susi Zatti
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Monica Giomo
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Nicolò Mattei
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Massimo Vetralla
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Giulia Selmin
- Industrial Engineering Department, University of Padova, Padova, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Nicola Vitulo
- Department of Biotechnologies, University of Verona, Verona, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Libero Vitiello
- Department of Biology, University of Padova, Padova, Italy.,Interuniversity Institute of Myology (IIM), Assisi, Italy
| | - Nicola Elvassore
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,University College London ICH, London, England, United Kingdom
| |
Collapse
|
36
|
Lee C, Agha O, Liu M, Davies M, Bertoy L, Kim HT, Liu X, Feeley BT. Rotator Cuff Fibro-Adipogenic Progenitors Demonstrate Highest Concentration, Proliferative Capacity, and Adipogenic Potential Across Muscle Groups. J Orthop Res 2020; 38:1113-1121. [PMID: 31799698 PMCID: PMC9262119 DOI: 10.1002/jor.24550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Fatty infiltration (FI) of rotator cuff (RC) muscles is common in patients with RC tears. Studies have demonstrated that fibro-adipogenic progenitors (FAPs), a population of resident muscle stem cells, are the main contributors of FI, which adversely affects muscle quality and RC repair success. Although FI is common in RC injuries, it is not frequently reported after other musculotendinous injuries. Additionally, studies have shown the development of different pathology patterns across muscle groups suggestive of intrinsic differences in cellular composition and behavior. This study evaluates FAP distribution and differentiation properties across anatomic locations in mice. Muscles from seven different anatomic locations were harvested from PDGFRα-eGFP FAP reporter mice. FAPs were quantified using histology and FACS sorting with BD Aria II with CD31- /CD45- /Integrinα7- /Sca-1+ and PDGFRα reporter signal (n = 3 per muscle). The cells were analyzed for adipogenesis using immunocytochemistry and for proliferation properties with Brdu-Ki67 staining. In a separate group of mice, RC and tibialis anterior muscles received glycerol injection and were harvested after 2 weeks for FI quantification (n = 4). One-way analysis of variance was used for statistical comparisons among groups, with significance at p < 0.05. FAPs from the RC, masseter, and paraspinal muscles were more numerous and demonstrated greater proliferative capacity and adipogenic potency than those from the tibialis anterior and gastrocnemius. The RC demonstrated significantly greater levels of FI than the tibialis anterior after glycerol-injection injury. Clinical Significance: This study suggests differences in FAP distribution and differentiation characteristics may account for the propensity to develop FI in RC tears as compared with other musculotendinous injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1113-1121, 2020.
Collapse
Affiliation(s)
- Carlin Lee
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Obiajulu Agha
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Mengyao Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Michael Davies
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Lauren Bertoy
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Hubert T. Kim
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Xuhui Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| | - Brian T. Feeley
- San Francisco Veteran Affairs Health Care System, San Francisco, California, 94158,Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, 94158
| |
Collapse
|
37
|
Dong Y, Li Y, Zhang C, Chen H, Liu L, Chen S. Effects of SW033291 on the myogenesis of muscle-derived stem cells and muscle regeneration. Stem Cell Res Ther 2020; 11:76. [PMID: 32085799 PMCID: PMC7035785 DOI: 10.1186/s13287-020-1574-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background The unmet medical needs in repairing large muscle defects promote the development of tissue regeneration strategy. The use of bioactive molecules in combination with biomaterial scaffold has become an area of great interest. SW033291, a small-molecule inhibitor targeting 15-hydroxyprostaglandin dehydrogenase (15-PDGH) and subsequently elevating the production of prostaglandin E2 (PGE2), has been proved to accelerate the recovery and potentiate the regeneration of multiple tissues including the bone, liver, and colon. The limited understanding of the potential therapeutic effects on myogenesis motivated us to investigate the role of SW033291 in regulating muscle-derived stem cell (MDSC) myogenic differentiation and MDSC-mediated muscle regeneration. Methods The characteristics of rat MDSCs, including cell-specific markers and myogenic differentiation potential, were determined. MDSCs were incubated with SW033291 to evaluate PGE2 production and cytotoxicity. The effects of SW033291 on MDSC myogenic differentiation were assessed by quantitative real-time polymerase chain reaction (qPCR), western blot, and immunocytochemistry. The fibrin gel containing MDSCs and SW033291 was used for muscle regeneration in a tibialis anterior muscle defect model. Results Our data demonstrated that MDSCs were well-tolerated to SW033291 and treatment with SW033291 significantly promoted the production of PGE2 by MDSCs. In vitro analysis showed that SW033291 enhanced the myogenic differentiation and myotube formation by upregulating a series of myogenic markers. Additionally, the activation of PI3K/Akt pathway was involved in the mechanism underlying these promotive effects. Then, in situ casting of fibrin gel containing MDSCs and SW033291 was used to repair the tibialis anterior muscle defect; the addition of SW033291 significantly promoted myofiber formation within the defect region with mild immune response, less fibrosis, and sufficient vascularization. Conclusion SW033291 acted as a positive regulator of MDSC myogenic differentiation, and incorporating the compound with MDSCs in fibrin gel could serve as an effective method to repair large skeletal muscle defects.
Collapse
Affiliation(s)
- Yuanqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Haibin Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lijia Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Simeng Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Mintz EL, Passipieri JA, Franklin IR, Toscano VM, Afferton EC, Sharma PR, Christ GJ. Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair. Tissue Eng Part A 2020; 26:140-156. [PMID: 31578935 DOI: 10.1089/ten.tea.2019.0126] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Volumetric muscle loss (VML) injuries, by definition, exceed the endogenous repair capacity of skeletal muscle resulting in permanent structural and functional deficits. VML injuries present a significant burden for both civilian and military medicine. Despite progress, there is still considerable room for therapeutic improvement. In this regard, tissue-engineered constructs show promise for VML repair, as they provide an opportunity to introduce both scaffolding and cellular components. We have pioneered the development of a tissue-engineered muscle repair (TEMR) technology created by seeding muscle progenitor cells onto a porcine-derived bladder acellular matrix followed by cyclic stretch preconditioning before implantation. Our work to date has demonstrated significant functional repair (60-90% functional recovery) in progressively larger rodent models of VML injury following TEMR implantation. Notwithstanding this success, TEMR implantation in cylindrically shaped VML injuries in the tibialis anterior (TA) muscle was associated with more variable functional outcomes than has been observed in sheet-like muscles such as the latissimus dorsi. In fact, previous observations documented a dichotomy of responses following TEMR implantation in a rodent TA VML injury model; with an ≈61% functional improvement observed in fewer than half (46%) of TEMR-implanted animals at 12 weeks postinjury. This current study builds directly from those observations as we modified the geometry of both the VML injury and the TEMR construct to determine if improved matching of the implanted TEMR construct to the surgically created VML injury resulted in increased functional recovery posttreatment. Following these modifications, we observed a comparable degree of functional improvement in a larger proportion of animals (≈67%) that was durable up to 24 weeks post-TEMR implantation. Moreover, in ≈25% of all TEMR-implanted animals, functional recovery was virtually complete (TEMR max responders), and furthermore, the functional recovery in all 67% of responding animals was accompanied by the presence of native-like muscle properties within the repaired TA muscle, including fiber cross-sectional area, fiber type, vascularization, and innervation. This study emphasizes the importance of tuning the application of tissue engineering technology platforms to the specific requirements of diverse VML injuries to improve functional outcomes. Impact Statement This report confirms and extends previous observations with our implantable tissue-engineered technology platform for repair of volumetric muscle loss (VML) injuries. Based on our prior work, we addressed factors hypothesized to be responsible for significant outcome variability following treatment of VML injuries in a rat tibialis anterior model. Through customization of the muscle repair technology to a specific VML injury, we were able to significantly increase the frequency at which functional recovery occurred, and furthermore, demonstrate durability out to 6 months. In addition, the enhanced biomimetic qualities of repaired muscle tissue were associated with the most robust functional outcomes.
Collapse
Affiliation(s)
- Ellen L Mintz
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Juliana A Passipieri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | | | - Victoria M Toscano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Emma C Afferton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Poonam R Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.,Department of Orthopaedics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
39
|
|
40
|
Del Bakhshayesh AR, Asadi N, Alihemmati A, Tayefi Nasrabadi H, Montaseri A, Davaran S, Saghati S, Akbarzadeh A, Abedelahi A. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 2019; 13:85. [PMID: 31754372 PMCID: PMC6854707 DOI: 10.1186/s13036-019-0209-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tissue engineering, as an interdisciplinary approach, is seeking to create tissues with optimal performance for clinical applications. Various factors, including cells, biomaterials, cell or tissue culture conditions and signaling molecules such as growth factors, play a vital role in the engineering of tissues. In vivo microenvironment of cells imposes complex and specific stimuli on the cells, and has a direct effect on cellular behavior, including proliferation, differentiation and extracellular matrix (ECM) assembly. Therefore, to create appropriate tissues, the conditions of the natural environment around the cells should be well imitated. Therefore, researchers are trying to develop biomimetic scaffolds that can produce appropriate cellular responses. To achieve this, we need to know enough about biomimetic materials. Scaffolds made of biomaterials in musculoskeletal tissue engineering should also be multifunctional in order to be able to function better in mechanical properties, cell signaling and cell adhesion. Multiple combinations of different biomaterials are used to improve above-mentioned properties of various biomaterials and to better imitate the natural features of musculoskeletal tissue in the culture medium. These improvements ultimately lead to the creation of replacement structures in the musculoskeletal system, which are closer to natural tissues in terms of appearance and function. The present review article is focused on biocompatible and biomimetic materials, which are used in musculoskeletal tissue engineering, in particular, cartilage tissue engineering.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Pal A, Tripathi K, Pathak C, Vernon BL. Plasma-based fast-gelling biohybrid gels for biomedical applications. Sci Rep 2019; 9:10881. [PMID: 31350449 PMCID: PMC6659638 DOI: 10.1038/s41598-019-47366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Blood based biomaterials are widely researched and used in different biomedical applications including cell therapy, drug delivery, sealants etc. due to their biocompatibility and biodegradability. Blood derived gels are successfully used in clinical studies due to the presence of fibrinogen and several platelet growth factors. In spite of their wide applications, it is challenging to use blood-based biomaterials due to their low mechanical stability, poor adhesive property and contamination risk. In this study, we used porcine plasma to form gel in presence of biodegradable synthetic crosslinkers. Mechanical strength of this plasma gel could be tailored by altering the amount of crosslinkers for any desired biomedical applications. These plasma gels, formed by the synthetic crosslinkers, were utilized as a drug delivery platform for wound healing due to their low cytotoxicity. A model drug release study with these plasma gels indicated slow and sustained release of the drugs.
Collapse
Affiliation(s)
- Amrita Pal
- Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | |
Collapse
|
42
|
Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K. The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Eng Part A 2019; 25:1001-1012. [PMID: 30426851 PMCID: PMC9839345 DOI: 10.1089/ten.tea.2018.0200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IMPACT STATEMENT Extremity injuries make up the most common survivable injuries in vehicular accidents and modern military conflicts. A majority of these injuries involve volumetric muscle loss (VML). The potential for donor site morbidity may limit the clinical use of autologous muscle grafts for VML injuries. Treatments that can improve the regeneration of functional muscle tissue are critically needed to improve limb salvage and reduce the rate of delayed amputations. The development of a laminin-111-enriched fibrin hydrogel will offer a potentially transformative and "off-the-shelf" clinically relevant therapy for functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Robert Scheidt
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri.,Address correspondence to: Koyal Garg, PhD, Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, 3507 Lindell Boulevard, St. Louis, MO 63103
| |
Collapse
|
43
|
Ostrovidov S, Salehi S, Costantini M, Suthiwanish K, Ebrahimi M, Sadeghian RB, Fujie T, Shi X, Cannata S, Gargioli C, Tamayol A, Dokmeci MR, Orive G, Swieszkowski W, Khademhosseini A. 3D Bioprinting in Skeletal Muscle Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805530. [PMID: 31012262 PMCID: PMC6570559 DOI: 10.1002/smll.201805530] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Indexed: 05/13/2023]
Abstract
Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state-of-the-art on developments made in SMTE with "conventional methods," the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth 95440, Germany
| | - Marco Costantini
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kasinan Suthiwanish
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Majid Ebrahimi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto ON M5S3G9, Canada
| | - Ramin Banan Sadeghian
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, 4259 Nagatsuta -cho, Midori-ku, Yokohama 226-8501, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China, University of Technology, Guangzhou 510006, PR China
| | - Stefano Cannata
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Cesare Gargioli
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA
| | - Mehmet Remzi Dokmeci
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-106 Warsaw, Poland
| | - Ali Khademhosseini
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Department of Chemical and Biomolecular Engineering, California NanoSystems Institute (CNSI), Department of Bioengineering, and Jonsson Comprehensive Cancer Centre University of California, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
45
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
46
|
Anderson SE, Han WM, Srinivasa V, Mohiuddin M, Ruehle MA, Moon JY, Shin E, San Emeterio CL, Ogle ME, Botchwey EA, Willett NJ, Jang YC. Determination of a Critical Size Threshold for Volumetric Muscle Loss in the Mouse Quadriceps. Tissue Eng Part C Methods 2019; 25:59-70. [PMID: 30648479 PMCID: PMC6389771 DOI: 10.1089/ten.tec.2018.0324] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT The goal of this study was to determine the threshold for a critically sized, nonhealing muscle defect by characterizing key components in the balance between fibrosis and regeneration as a function of injury size in the mouse quadriceps. There is currently limited understanding of what leads to a critically sized muscle defect and which muscle regenerative components are functionally impaired. With the substantial increase in preclinical VML models as testbeds for tissue engineering therapeutics, defining the critical threshold for VML injuries will be instrumental in characterizing therapeutic efficacy and potential for subsequent translation.
Collapse
Affiliation(s)
- Shannon E. Anderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Woojin M. Han
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Vunya Srinivasa
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Mahir Mohiuddin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Marissa A. Ruehle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - June Young Moon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Eunjung Shin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Cheryl L. San Emeterio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Edward A. Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Nick J. Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Department of Orthopedics, Emory University, Atlanta, Georgia
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia
| | - Young C. Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
47
|
Hawkins RB, Raymond SL, Stortz JA, Horiguchi H, Brakenridge SC, Gardner A, Efron PA, Bihorac A, Segal M, Moore FA, Moldawer LL. Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Immunol 2018; 9:1511. [PMID: 30013565 PMCID: PMC6036179 DOI: 10.3389/fimmu.2018.01511] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulated host immune responses to infection often occur, leading to sepsis, multiple organ failure, and death. Some patients rapidly recover from sepsis, but many develop chronic critical illness (CCI), a debilitating condition that impacts functional outcomes and long-term survival. The “Persistent Inflammation, Immunosuppression, and Catabolism Syndrome” (PICS) has been postulated as the underlying pathophysiology of CCI. We propose that PICS is initiated by an early genomic and cytokine storm in response to microbial invasion during the early phase of sepsis. However, once source control, antimicrobial coverage, and supportive therapies have been initiated, we propose that the persistent inflammation in patients developing CCI is a result of ongoing endogenous alarmin release from damaged organs and loss of muscle mass. This ongoing alarmin and danger-associated molecular pattern signaling causes chronic inflammation and a shift in bone marrow stem cell production toward myeloid cells, contributing to chronic anemia and lymphopenia. We propose that therapeutic interventions must target the chronic organ injury and lean tissue wasting that contribute to the release of endogenous alarmins and the expansion and deposition of myeloid progenitors that are responsible for the propagation and persistence of CCI.
Collapse
Affiliation(s)
- Russell B Hawkins
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hiroyuki Horiguchi
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Anna Gardner
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mark Segal
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|