1
|
Dec P, Żyłka M, Burszewski P, Modrzejewski A, Pawlik A. Recent Advances in the Use of Stem Cells in Tissue Engineering and Adjunct Therapies for Tendon Reconstruction and Future Perspectives. Int J Mol Sci 2024; 25:4498. [PMID: 38674084 PMCID: PMC11050411 DOI: 10.3390/ijms25084498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Due to their function, tendons are exposed to acute injuries. This type of damage to the musculoskeletal system represents a challenge for clinicians when natural regeneration and treatment methods do not produce the expected results. Currently, treatment is long and associated with long-term complications. In this review, we discuss the use of stem cells in the treatment of tendons, including how to induce appropriate cell differentiation based on gene therapy, growth factors, tissue engineering, proteins involved in regenerative process, drugs and three-dimensional (3D) structures. A multidirectional approach as well as the incorporation of novel components of the therapy will improve the techniques used and benefit patients with tendon injuries in the future.
Collapse
Affiliation(s)
- Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Małgorzata Żyłka
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Piotr Burszewski
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Taguchi T, Lopez M, Takawira C. Viable tendon neotissue from adult adipose-derived multipotent stromal cells. Front Bioeng Biotechnol 2024; 11:1290693. [PMID: 38260742 PMCID: PMC10800559 DOI: 10.3389/fbioe.2023.1290693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Tendon healing is frequently prolonged, unpredictable, and results in poor tissue quality. Neotissue formed by adult multipotent stromal cells has the potential to guide healthy tendon tissue formation. Objectives: The objective of this study was to characterize tendon neotissue generated by equine adult adipose-derived multipotent stromal cells (ASCs) on collagen type I (COLI) templates under 10% strain in a novel bioreactor. The tested hypothesis was that ASCs assume a tendon progenitor cell-like morphology, express tendon-related genes, and produce more organized extracellular matrix (ECM) in tenogenic versus stromal medium with perfusion and centrifugal fluid motion. Methods: Equine ASCs on COLI sponge cylinders were cultured in stromal or tenogenic medium within bioreactors during combined perfusion and centrifugal fluid motion for 7, 14, or 21 days under 10% strain. Viable cell distribution and number, tendon-related gene expression, and micro- and ultra-structure were evaluated with calcein-AM/EthD-1 staining, resazurin reduction, RT-PCR, and light, transmission, and scanning electron microscopy. Fibromodulin was localized with immunohistochemistry. Cell number and gene expression were compared between culture media and among culture periods (p < 0.05). Results: Viable cells were distributed throughout constructs for up to 21 days of culture, and cell numbers were higher in tenogenic medium. Individual cells had a round or rhomboid shape with scant ECM in stromal medium in contrast to clusters of parallel, elongated cells surrounded by highly organized ECM in tenogenic medium after 21 days of culture. Transcription factor, extracellular matrix, and mature tendon gene expression profiles confirmed ASC differentiation to a tendon progenitor-like cell in tenogenic medium. Construct micro- and ultra-structure were consistent with tendon neotissue and fibromodulin was present in the ECM after culture in tenogenic medium. Conclusion: Long-term culture in custom bioreactors with combined perfusion and centrifugal tenogenic medium circulation supports differentiation of equine adult ASCs into tendon progenitor-like cells capable of neotissue formation.
Collapse
|
3
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
4
|
Pechanec MY, Beall JM, Katzman S, Maga EA, Mienaltowski MJ. Examining the Effects of In Vitro Co-Culture of Equine Adipose-Derived Mesenchymal Stem Cells With Tendon Proper and Peritenon Cells. J Equine Vet Sci 2023; 126:104262. [PMID: 36841345 DOI: 10.1016/j.jevs.2023.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA
| | - Scott Katzman
- School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Elizabeth A Maga
- Department of Animal Science, University of California Davis, Davis, CA
| | | |
Collapse
|
5
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Fu S, Lan Y, Wang G, Bao D, Qin B, Zheng Q, Liu H, Wong VKW. External stimulation: A potential therapeutic strategy for tendon-bone healing. Front Bioeng Biotechnol 2023; 11:1150290. [PMID: 37064229 PMCID: PMC10102526 DOI: 10.3389/fbioe.2023.1150290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Injuries at the tendon-bone interface are very common in the field of sports medicine, and healing at the tendon-bone interface is complex. Injuries to the tendon-bone interface can seriously affect a patient’s quality of life, so it is essential to restore stability and promote healing of the tendon-bone interface. In addition to surgical treatment, the healing of tendons and bones can also be properly combined with extracorporeal stimulation therapy during the recovery process. In this review, we discuss the effects of extracorporeal shock waves (ESWs), low-intensity pulsed ultrasound (LIPUS), and mechanical stress on tendon-bone healing, focusing on the possible mechanisms of action of mechanical stress on tendon-bone healing in terms of transcription factors and biomolecules. The aim is to provide possible therapeutic approaches for subsequent clinical treatment.
Collapse
Affiliation(s)
- Shijie Fu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yujian Lan
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dingsu Bao
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiu Zheng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Huan Liu, ; Vincent Kam Wai Wong,
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Huan Liu, ; Vincent Kam Wai Wong,
| |
Collapse
|
7
|
Stem Cell Applications and Tenogenic Differentiation Strategies for Tendon Repair. Stem Cells Int 2023; 2023:3656498. [PMID: 36970597 PMCID: PMC10033217 DOI: 10.1155/2023/3656498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Tendons are associated with a high injury risk because of their overuse and age-related tissue degeneration. Thus, tendon injuries pose great clinical and economic challenges to the society. Unfortunately, the natural healing capacity of tendons is far from perfect, and they respond poorly to conventional treatments when injured. Consequently, tendons require a long period of healing and recovery, and the initial strength and function of a repaired tendon cannot be completely restored as it is prone to a high rate of rerupture. Nowadays, the application of various stem cell sources, including mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), for tendon repair has shown great potential, because these cells can differentiate into a tendon lineage and promote functional tendon repair. However, the mechanism underlying tenogenic differentiation remains unclear. Moreover, no widely adopted protocol has been established for effective and reproducible tenogenic differentiation because of the lack of definitive biomarkers for identifying the tendon differentiation cascades. This work is aimed at reviewing the literature over the past decade and providing an overview of background information on the clinical relevance of tendons and the urgent need to improve tendon repair; the advantages and disadvantages of different stem cell types used for boosting tendon repair; and the unique advantages of reported strategies for tenogenic differentiation, including growth factors, gene modification, biomaterials, and mechanical stimulation.
Collapse
|
8
|
Ackerman JE, Best KT, Muscat SN, Pritchett EM, Nichols AE, Wu CL, Loiselle AE. Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep 2022; 41:111706. [PMID: 36417854 PMCID: PMC9741867 DOI: 10.1016/j.celrep.2022.111706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined. In the present study, we combine lineage tracing of adult Scleraxis-lineage cells with spatial transcriptomic profiling to define the overarching molecular programs that govern tendon healing and cell-fate decisions. Pseudotime analysis identified three fibroblast trajectories (synthetic, fibrotic, and reactive) and key transcription factors regulating these fate-switching decisions, including the progression of adult Scleraxis-lineage cells through the reactive trajectory. Collectively, this resource defines the molecular mechanisms that coordinate the temporo-spatial healing phenotype, which can be leveraged to inform therapeutic candidate selection.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Katherine T. Best
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth M. Pritchett
- Genomics Research Center, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Senior author
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
9
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
10
|
Pentzold S, Wildemann B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J Biol Eng 2022; 16:5. [PMID: 35241113 PMCID: PMC8896085 DOI: 10.1186/s13036-022-00283-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background Tenocytes as specialised fibroblasts and inherent cells of tendons require mechanical load for their homeostasis. However, how mechanical overload compared to physiological load impacts on the tenogenic differentiation potential of fibroblasts is largely unknown. Methods Three-dimensional bioartificial tendons (BATs) seeded with murine fibroblasts (cell line C3H10T1/2) were subjected to uniaxial sinusoidal elongation at either overload conditions (0–16%, Ø 8%) or physiological load (0–8%, Ø 4%). This regime was applied for 2 h a day at 0.1 Hz for 7 days. Controls were unloaded, but under static tension. Results Cell survival did not differ among overload, physiological load and control BATs. However, gene expression of tenogenic and extra-cellular matrix markers (Scx, Mkx, Tnmd, Col1a1 and Col3a1) was significantly decreased in overload versus physiological load and controls, respectively. In contrast, Mmp3 was significantly increased at overload compared to physiological load, and significantly decreased under physiological load compared to controls. Mkx and Tnmd were significantly increased in BATs subjected to physiological load compared to controls. Proinflammatory interleukin-6 showed increased protein levels comparing load (both over and physiological) versus unloaded controls. Alignment of the cytoskeleton in strain direction was decreased in overload compared to physiological load, while other parameters such as nuclear area, roundness or cell density were less affected. Conclusions Mechanical overload decreases tenogenic differentiation and increases ECM remodelling/inflammation in 3D-stimulated fibroblasts, whereas physiological load may induce opposite effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-022-00283-y.
Collapse
Affiliation(s)
- Stefan Pentzold
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
11
|
Wang Y, Zhang J, Lin Y, Cheng S, Wang D, Rao M, Jiang Y, Huang X, Chen R, Xie Y, Yin P, Cheng B. A Global Phosphorylation Atlas of Proteins Within Pathological Site of Rotator Cuff Tendinopathy. Front Mol Biosci 2022; 8:787008. [PMID: 35242811 PMCID: PMC8886731 DOI: 10.3389/fmolb.2021.787008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff tendinopathy (RCT) is the most common cause of shoulder pain, therefore posing an important clinical problem. Understanding the mechanism and biochemical changes of RCT would be of crucial importance and pave the path to targeting novel and effective therapeutic strategies in translational perspectives and clinical practices. Phosphorylation, as one of the most important and well-studied post-translational modifications, is tightly associated with protein activity and protein functional regulation. Here in this study, we generated a global protein phosphorylation atlas within the pathological site of human RCT patients. By using Tandem Mass Tag (TMT) labeling combined with mass spectrometry, an average of 7,741 phosphorylation sites (p-sites) and 3,026 proteins were identified. Compared with their normal counterparts, 1,668 p-sites in 706 proteins were identified as upregulated, while 73 p-sites in 57 proteins were downregulated. GO enrichment analyses have shown that majority of proteins with upregulated p-sites functioned in neutrophil-mediated immunity whereas downregulated p-sites are mainly involved in muscle development. Furthermore, pathway analysis identified NF-κB–related TNF signaling pathway and protein kinase C alpha type (PKCα)–related Wnt signaling pathway were associated with RCT pathology. At last, a weighted kinase-site phosphorylation network was built to identify potentially core kinase, from which serine/threonine-protein kinase 39 (STLK3) and mammalian STE20-like protein kinase 1 (MST1) were proposed to be positively correlated with the activation of Wnt pathway.
Collapse
Affiliation(s)
- Yezhou Wang
- School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Jiawei Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing, China
| | - Yuan Lin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Duanyang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Man Rao
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yuheng Jiang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ruijing Chen
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yong Xie
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Pengbin Yin, ; Biao Cheng,
| | - Biao Cheng
- School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Pengbin Yin, ; Biao Cheng,
| |
Collapse
|
12
|
Ding L, Zhou B, Hou Y, Xu L. Stem cells in tendon regeneration and factors governing tenogenesis. Curr Stem Cell Res Ther 2022; 17:503-512. [PMID: 35086458 DOI: 10.2174/1574888x17666220127111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Tendons are connective tissue structures of paramount importance to the human ability of locomotion. Tendinopathy and tendon rupture can be resistant to treatment and often recurs, thus resulting in a significant health problem with a relevant social impact worldwide. Unfortunately, existing treatment approaches are suboptimal. A better understanding of the basic biology of tendons may provide a better way to solve these problems and promote tendon regeneration. Stem cells, either obtained from tendons or non-tendon sources, such as bone marrow (BMSCs), adipose tissue (AMSCs), as well as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have received increasing attention toward enhancing tendon healing. There are many studies showing that stem cells can contribute to improving tendon healing. Hence, in this review, the current knowledge of BMSCs, AMSCs, TSPCs, ESCs and iPSCs for tendon regeneration, as well as the advantages and limitations among them, has been highlighted. Moreover, the transcriptional and bioactive factors governing tendon healing processes have been discussed.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - BingYu Zhou
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
14
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
15
|
Chen G, Fan D, Zhang W, Wang S, Gu J, Gao Y, He L, Li W, Zhang C, Li M, Zhang Y, Liu Z, Hao Q. Mkx mediates tenogenic differentiation but incompletely inhibits the proliferation of hypoxic MSCs. Stem Cell Res Ther 2021; 12:426. [PMID: 34321079 PMCID: PMC8317301 DOI: 10.1186/s13287-021-02506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia has been shown to be able to induce tenogenic differentiation and proliferation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation and proliferation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs. Methods qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit-8 assay, colony formation unit assay, cell cycle analysis, and EdU assay were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA. Results Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs and increased much higher in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after downregulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties, and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values, the clone numbers, the percentage of cells in S phage, and cell proliferation potential of both normoxic and hypoxic BMSCs were all significantly increased after knockdown of Mkx and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was upregulated. Conclusions These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs but could not completely repress the proliferation of hypoxic MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02506-3.
Collapse
Affiliation(s)
- Guanyin Chen
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Dong Fan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaohui Liu
- Department of Rehabilitation and Physiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Gögele C, Hoffmann C, Konrad J, Merkel R, Schwarz S, Tohidnezhad M, Hoffmann B, Schulze-Tanzil GG. Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile. Cell Tissue Res 2021; 384:675-690. [PMID: 33835257 PMCID: PMC8211585 DOI: 10.1007/s00441-021-03416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
Mechanical stress of ligaments varies; hence, ligament fibroblasts must adapt their expression profile to novel mechanomilieus to ensure tissue resilience. Activation of the mechanoreceptors leads to a specific signal transduction, the so-called mechanotransduction. However, with regard to their natural three-dimensional (3D) microenvironment cell reaction to mechanical stimuli during emigrating from a 3D spheroid culture is still unclear. This study aims to provide a deeper understanding of the reaction profile of anterior cruciate ligament (ACL)-derived fibroblasts exposed to cyclic uniaxial strain in two-dimensional (2D) monolayer culture and during emigration from 3D spheroids with respect to cell survival, cell and cytoskeletal orientation, distribution, and expression profile. Monolayers and spheroids were cultured in crosslinked polydimethyl siloxane (PDMS) elastomeric chambers and uniaxially stretched (14% at 0.3 Hz) for 48 h. Cell vitality, their distribution, nuclear shape, stress fiber orientation, focal adhesions, proliferation, expression of ECM components such as sulfated glycosaminoglycans, collagen type I, decorin, tenascin C and cell-cell communication-related gap junctional connexin (CXN) 43, tendon-related markers Mohawk and tenomodulin (myodulin) were analyzed. In contrast to unstretched cells, stretched fibroblasts showed elongation of stress fibers, cell and cytoskeletal alignment perpendicular to strain direction, less rounded cell nuclei, increased numbers of focal adhesions, proliferation, amplified CXN43, and main ECM component expression in both cultures. The applied cyclic stretch protocol evoked an anabolic response and enhanced tendon-related marker expression in ACL-derived fibroblasts emigrating from 3D spheroids and seems also promising to support in future tissue formation in ACL scaffolds seeded in vitro with spheroids.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Christina Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Konrad
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Silke Schwarz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| |
Collapse
|
17
|
Nakamichi R, Asahara H. Regulation of tendon and ligament differentiation. Bone 2021; 143:115609. [PMID: 32829041 PMCID: PMC7770025 DOI: 10.1016/j.bone.2020.115609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
Tendons transmit power from muscles to bones, and ligaments maintain the stability of joints, thus producing smooth and flexible movements of articular joints. However, tendons have poor self-healing ability upon damage due to injuries, diseases, or aging. To maintain homeostasis or promote regeneration of the tendon/ligament, it is critical to understand the mechanism responsible for the coordination of tendon/ligament-specific gene expression and subsequent cell differentiation. In this review, we have discussed the core molecular mechanisms involved in the development and homeostasis of tendons and ligaments, with particular focus on transcription factors, signaling, and mechanical stress.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
18
|
Comparative Analysis of Tenogenic Gene Expression in Tenocyte-Derived Induced Pluripotent Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells in Response to Biochemical and Biomechanical Stimuli. Stem Cells Int 2021; 2021:8835576. [PMID: 33510795 PMCID: PMC7825360 DOI: 10.1155/2021/8835576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tendon is highly prone to injury, overuse, or age-related degeneration in both humans and horses. Natural healing of injured tendon is poor, and cell-based therapeutic treatment is still a significant clinical challenge. In this study, we extensively investigated the expression of tenogenic genes in equine bone marrow mesenchymal stem cells (BMSCs) and tenocyte-derived induced pluripotent stem cells (teno-iPSCs) stimulated by growth factors (TGF-β3 and BMP12) combined with ectopic expression of tenogenic transcription factor MKX or cyclic uniaxial mechanical stretch. Western blotting revealed that TGF-β3 and BMP12 increased the expression of transcription factors SCX and MKX in both cells, but the tenocyte marker tenomodulin (TNMD) was detected only in BMSCs and upregulated by either inducer. On the other hand, quantitative real-time PCR showed that TGF-β3 increased the expression of EGR1, COL1A2, FMOD, and TNC in BMSCs and SCX, COL1A2, DCN, FMOD, and TNC in teno-iPSCs. BMP12 treatment elevated SCX, MKX, DCN, FMOD, and TNC in teno-iPSCs. Overexpression of MKX increased SCX, DCN, FMOD, and TNC in BMSCs and EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 further enhanced TNC in BMSCs. Moreover, mechanical stretch increased SCX, EGR1, DCN, ELN, and TNC in BMSCs and SCX, MKX, EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 tended to further elevate SCX, ELN, and TNC in BMSCs and SCX, MKX, COL1A2, DCN, and TNC in teno-iPSCs, while BMP12 further uptrended the expression of SCX and DCN in BMSCs and DCN in teno-iPSCs. Additionally, the aforementioned tenogenic inducers also affected the expression of signaling regulators SMAD7, ETV4, and SIRT1 in BMSCs and teno-iPSCs. Taken together, our data demonstrate that, in respect to the tenocyte-lineage-specific gene expression, BMSCs and teno-iPSCs respond differently to the tenogenic stimuli, which may affect the outcome of their application in tendon repair or regeneration.
Collapse
|
19
|
Atkinson F, Evans R, Guest JE, Bavin EP, Cacador D, Holland C, Guest DJ. Cyclical strain improves artificial equine tendon constructs in vitro. J Tissue Eng Regen Med 2020; 14:690-700. [PMID: 32181983 DOI: 10.1002/term.3030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023]
Abstract
Tendon injuries are a common cause of morbidity in humans. They also occur frequently in horses, and the horse provides a relevant, large animal model in which to test novel therapies. To develop novel cell therapies that can aid tendon regeneration and reduce subsequent reinjury rates, the mechanisms that control tendon tissue regeneration and matrix remodelling need to be better understood. Although a range of chemical cues have been explored (growth factors, media etc.), the influence of the mechanical environment on tendon cell culture has yet to be fully elucidated. To mimic the in vivo environment, in this study, we have utilised a novel and affordable, custom-made bioreactor to apply a cyclical strain to tendon-like constructs generated in three-dimensional (3D) culture by equine tenocytes. Dynamic shear analysis (DSA), dynamic scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy were used to determine the mechanical and chemical properties of the resulting tendon-like constructs. Our results demonstrate that equine tenocytes exposed to a 10% cyclical strain have an increased amount of collagen gel contraction after 7 and 8 days of culture compared with cells cultured in 3D in the absence of external strain. While all the tendon-like constructs have a very similar chemical composition to native tendon, the application of strain improves their mechanical properties. We envisage that these results will contribute towards the development of improved biomimetic artificial tendon models for the development of novel strategies for equine regenerative therapies.
Collapse
Affiliation(s)
- Francesca Atkinson
- Animal Health Trust, Suffolk, UK.,Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | - Christopher Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
20
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
21
|
In Vivo and In Vitro Mechanical Loading of Mouse Achilles Tendons and Tenocytes-A Pilot Study. Int J Mol Sci 2020; 21:ijms21041313. [PMID: 32075290 PMCID: PMC7072865 DOI: 10.3390/ijms21041313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical force is a key factor for the maintenance, adaptation, and function of tendons. Investigating the impact of mechanical loading in tenocytes and tendons might provide important information on in vivo tendon mechanobiology. Therefore, the study aimed at understanding if an in vitro loading set up of tenocytes leads to similar regulations of cell shape and gene expression, as loading of the Achilles tendon in an in vivo mouse model. In vivo: The left tibiae of mice (n = 12) were subject to axial cyclic compressive loading for 3 weeks, and the Achilles tendons were harvested. The right tibiae served as the internal non-loaded control. In vitro: tenocytes were isolated from mice Achilles tendons and were loaded for 4 h or 5 days (n = 6 per group) based on the in vivo protocol. Histology showed significant differences in the cell shape between in vivo and in vitro loading. On the molecular level, quantitative real-time PCR revealed significant differences in the gene expression of collagen type I and III and of the matrix metalloproteinases (MMP). Tendon-associated markers showed a similar expression profile. This study showed that the gene expression of tendon markers was similar, whereas significant changes in the expression of extracellular matrix (ECM) related genes were detected between in vivo and in vitro loading. This first pilot study is important for understanding to which extent in vitro stimulation set-ups of tenocytes can mimic in vivo characteristics.
Collapse
|
22
|
Gögele C, Hahn J, Elschner C, Breier A, Schröpfer M, Prade I, Meyer M, Schulze-Tanzil G. Enhanced Growth of Lapine Anterior Cruciate Ligament-Derived Fibroblasts on Scaffolds Embroidered from Poly(l-lactide- co-ε-caprolactone) and Polylactic Acid Threads Functionalized by Fluorination and Hexamethylene Diisocyanate Cross-Linked Collagen Foams. Int J Mol Sci 2020; 21:E1132. [PMID: 32046263 PMCID: PMC7037627 DOI: 10.3390/ijms21031132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022] Open
Abstract
Reconstruction of ruptured anterior cruciate ligaments (ACLs) is limited by the availability and donor site morbidity of autografts. Hence, a tissue engineered graft could present an alternative in the future. This study was undertaken to determine the performance of lapine (L) ACL-derived fibroblasts on embroidered poly(l-lactide-co-ε-caprolactone) (P(LA-CL)) and polylactic acid (PLA) scaffolds in regard to a tissue engineering approach for ACL reconstruction. Surface modifications of P(LA-CL)/PLA by gas-phase fluorination and cross-linking of a collagen foam using either ethylcarbodiimide (EDC) or hexamethylene diisocyanate (HMDI) were tested regarding their influence on cell adhesion, growth and gene expression. The experiments were performed using embroidered P(LA-CL)/PLA scaffolds that were seeded dynamically or statically with LACL-derived fibroblasts. Scaffold cytocompatibility, cell survival, numbers, metabolic activity, ultrastructure and sulfated glycosaminoglycan (sGAG) synthesis were evaluated. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of collagen type I (COL1A1), decorin (DCN), tenascin C (TNC), Mohawk (MKX) and tenomodulin (TNMD). All tested scaffolds were highly cytocompatible. A significantly higher cellularity and larger scaffold surface areas colonized by cells were detected in HMDI cross-linked and fluorinated scaffolds compared to those cross-linked with EDC or without any functionalization. By contrast, sGAG synthesis was higher in controls. Despite the fact that the significance level was not reached, gene expressions of ligament extracellular matrix components and differentiation markers were generally higher in fluorinated scaffolds with cross-linked collagen foams. LACL-derived fibroblasts maintained their differentiated phenotype on fluorinated scaffolds supplemented with a HMDI cross-linked collagen foam, making them a promising tool for ACL tissue engineering.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany;
- Department of Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Judith Hahn
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Dresden, Hohe Straße 6, 01069 Dresden, Germany; (J.H.); (C.E.); (A.B.)
| | - Cindy Elschner
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Dresden, Hohe Straße 6, 01069 Dresden, Germany; (J.H.); (C.E.); (A.B.)
| | - Annette Breier
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Dresden, Hohe Straße 6, 01069 Dresden, Germany; (J.H.); (C.E.); (A.B.)
| | - Michaela Schröpfer
- Forschungsinstitut für Leder und Kunststoffbahnen (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany; (M.S.); (I.P.); (M.M.)
| | - Ina Prade
- Forschungsinstitut für Leder und Kunststoffbahnen (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany; (M.S.); (I.P.); (M.M.)
| | - Michael Meyer
- Forschungsinstitut für Leder und Kunststoffbahnen (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany; (M.S.); (I.P.); (M.M.)
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany;
| |
Collapse
|
23
|
Dai GC, Li YJ, Chen MH, Lu PP, Rui YF. Tendon stem/progenitor cell ageing: Modulation and rejuvenation. World J Stem Cells 2019; 11:677-692. [PMID: 31616543 PMCID: PMC6789185 DOI: 10.4252/wjsc.v11.i9.677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury. The role of tendon stem/progenitor cells (TSPCs) in tendon maintenance and regeneration has received increasing attention in recent years. The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect, or cause ageing, and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment. In this review, recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs, including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process, are analyzed. During the ageing process, TSPCs ageing might occur as a natural part of the tendon ageing, but could also result from decreased levels of growth factor, hormone deficits and changes in other related factors. Here, we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing, including moderate exercise, cell extracellular matrix condition, growth factors and hormones; these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Min-Hao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|