1
|
Grote A, Delev D, Hoffmann H, Elger C, von Lehe M. Epilepsy-surgery for fronto-basal lesions: Management, outcome, and review of literature. Seizure 2024; 123:104-112. [PMID: 39541917 DOI: 10.1016/j.seizure.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND In this study, we isolated a cohort of patients who have refractory epilepsy who underwent surgery with frontobasal focus. This work aimed to develop prognostic factors associated with a better seizure outcome and identify risk factors determining postoperative morbidity. METHODS We identified all patients with frontobasal epilepsy who underwent surgery due to refractory epilepsy at the University Hospital Bonn over 22 years. Although this is a retrospective study, all data sets were collected prospectively. We evaluated both surgical and functional outcomes. RESULTS In total, 32 patients were identified for inclusion in this study. With a long and stable postoperative seizure outcome averaging 109 months, we were able to show that patients with frontobasal epilepsy can achieve a better outcome (53 % seizure-free, ILAE1) than patients with frontal epilepsy. In contrast to other brain regions, the resection size (isolated or extended) did not influence the outcome. Low-grade tumors, on the other hand, were associated with a better seizure outcome, and gliosis or non-specific histological findings with a worse seizure outcome. Stereo-EEG with depth electrodes is more suitable for invasive diagnostics at the frontal base than strip or grid electrodes. Patients who did not become seizure-free after surgery and underwent a second surgery did not profit significantly concerning seizure outcome. CONCLUSION Patients with frontobasal epilepsy who are operated on early in the course of the disease, are MRI-positive, and have a tumor as an epileptogenic pathology have the best chance of seizure freedom.
Collapse
Affiliation(s)
- Alexander Grote
- Clinic for Neurosurgery, University Hospital of Philipps University Marburg, Marburg, Germany; University Hospital of Bonn, Bonn, Germany
| | - Daniel Delev
- University Hospital of Bonn, Bonn, Germany; Clinic for Neurosurgery, University Hospital of Erlangen, Erlangen, Germany
| | | | - Christian Elger
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marec von Lehe
- University Hospital of Bonn, Bonn, Germany; Clinic for Neurosurgery, Brandenburg Medical School, Neuruppin, Germany.
| |
Collapse
|
2
|
Detchou D, Barrie U. Occipital lobe epilepsy surgery: treating seizures in the posterior cortex. Neurosurg Rev 2024; 47:514. [PMID: 39212792 DOI: 10.1007/s10143-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Occipital lobe epilepsy (OLE) is an uncommon type of extratemporal epilepsy constituting roughly 2-13% of symptomatic partial epilepsies and epilepsy surgery cases. Over two-thirds of patients with OLE present with two characteristics: (1) ictal semiology compatible with an occipital seizure focus (e.g., ictal blindness, visual perceptual disturbance, eye blinking, nystagmus), and (2) lateralizing features referable to the posterior cortex (e.g., visual field defects, contralateral head deviation). The remaining one-third of patients present with ≥ 2 seizure types, indicative of spread to other lobes. A common representation of this cortical spread is the altered mental status and generalized tonic-clonic activity seen in patient with OLE. While the key clinical symptoms include visual hallucinations, it may be difficult to elicit on history, especially from children, and are not always present.
Collapse
Affiliation(s)
- Donald Detchou
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
3
|
van Dalen T, Kirkham JF, Chari A, D'Arco F, Moeller F, Eltze C, Cross JH, Tisdall MM, Thornton RC. Characterizing Frontal Lobe Seizure Semiology in Children. Ann Neurol 2024; 95:1138-1148. [PMID: 38624073 DOI: 10.1002/ana.26922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE The objective was to analyze seizure semiology in pediatric frontal lobe epilepsy patients, considering age, to localize the seizure onset zone for surgical resection in focal epilepsy. METHODS Fifty patients were identified retrospectively, who achieved seizure freedom after frontal lobe resective surgery at Great Ormond Street Hospital. Video-electroencephalography recordings of preoperative ictal seizure semiology were analyzed, stratifying the data based on resection region (mesial or lateral frontal lobe) and age at surgery (≤4 vs >4). RESULTS Pediatric frontal lobe epilepsy is characterized by frequent, short, complex seizures, similar to adult cohorts. Children with mesial onset had higher occurrence of head deviation (either direction: 55.6% vs 17.4%; p = 0.02) and contralateral head deviation (22.2% vs 0.0%; p = 0.03), ictal body-turning (55.6% vs 13.0%; p = 0.006; ipsilateral: 55.6% vs 4.3%; p = 0.0003), and complex motor signs (88.9% vs 56.5%; p = 0.037). Both age groups (≤4 and >4 years) showed hyperkinetic features (21.1% vs 32.1%), contrary to previous reports. The very young group showed more myoclonic (36.8% vs 3.6%; p = 0.005) and hypomotor features (31.6% vs 0.0%; p = 0.003), and fewer behavioral features (36.8% vs 71.4%; p = 0.03) and reduced responsiveness (31.6% vs 78.6%; p = 0.002). INTERPRETATION This study presents the most extensive semiological analysis of children with confirmed frontal lobe epilepsy. It identifies semiological features that aid in differentiating between mesial and lateral onset. Despite age-dependent differences, typical frontal lobe features, including hyperkinetic seizures, are observed even in very young children. A better understanding of pediatric seizure semiology may enhance the accuracy of onset identification, and enable earlier presurgical evaluation, improving postsurgical outcomes. ANN NEUROL 2024;95:1138-1148.
Collapse
Affiliation(s)
- Thijs van Dalen
- Department of Pediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Jessica F Kirkham
- Department of Pediatric Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Aswin Chari
- Department of Pediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Felice D'Arco
- Department of Pediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Friederike Moeller
- Department of Pediatric Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute for Child Health, London, UK
| | - Christin Eltze
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute for Child Health, London, UK
| | - J Helen Cross
- Department of Pediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute for Child Health, London, UK
| | - Martin M Tisdall
- Department of Pediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Rachel C Thornton
- Department of Pediatric Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Department of Neurophysiology, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
4
|
Sharma N, Mallela AN, Abou-Al-Shaar H, Aung T, Gonzalez-Martinez J. Trans-Interhemispheric Stereoelectroencephalography Depth Electrode Placement for Mesial Frontal Lobe Explorations in Medically Refractory Epilepsy: A Technical Note and Case Series. Oper Neurosurg (Hagerstown) 2023; 24:582-589. [PMID: 36786750 DOI: 10.1227/ons.0000000000000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/18/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is an established and safe methodology for extra-operative invasive monitoring in patients with medical refractory epilepsy. SEEG has several advantages such as the ability to record deep cortical structures, mapping the epileptogenic zone in a three-dimensional manner, and analyze bihemispheric regions without the need for bilateral craniotomies. In patients with bilateral hemispheric hypotheses, especially the mesial surface of frontal lobes, bilateral lead placement is compulsory to further define and localize the epileptogenic zone. In this particular cohort of patients, bilateral monitoring may be accomplished from a single entry point using trans-interhemispheric placement of the electrodes. The use of trans-interhemispheric monitoring offers several advantages including sparing the need for additional leads. OBJECTIVE To test the hypothesis that, given the lack of the falx as a limiting structure in the ventral and mesial frontal lobe regions, trans-interhemispheric SEEG placement is feasible and a potential benefit for the SEEG method. METHODS We report on 6 patients who underwent bilateral monitoring using trans-interhemispheric SEEG lead placement and discuss the operative technique. RESULTS Six patients underwent trans-interhemispheric monitoring, with a median of 3 leads per patient (19 total). Trajectory error was minimal (<0.3 mm), and operating room time was comparable with that in previous reports. All leads were placed without adverse events, mislocalization, electrode hemorrhages, or any other complications. All patients had successful localization of the epileptogenic zone. CONCLUSION Trans-interhemispheric SEEG to monitor the mesial wall of frontal lobe regions is technically feasible. No adverse events were observed, suggesting a favorable safety profile.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Thandar Aung
- Department of Neurology and Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Neurology and Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Wee RWS, Nash A, Angus-Leppan H. Deep phenotyping of frontal lobe epilepsy compared to other epilepsy syndromes. J Neurol 2023; 270:3072-3081. [PMID: 36847847 DOI: 10.1007/s00415-023-11639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
AIMS Frontal lobe epilepsy (FLE) is understudied and often misdiagnosed. We sought to comprehensively phenotype FLE and to differentiate FLE from other focal and generalised epilepsy syndromes. METHODS This was a retrospective, observational cohort study of 1078 cases of confirmed epilepsy in a tertiary neurology centre in London. Data sources were electronic health records, investigation reports and clinical letters. RESULTS 166 patients had FLE based on clinical findings and investigations-97 with identifiable electroencephalography (EEG) foci in frontal areas (definite FLE), while 69 had no frontal EEG foci (probable FLE). Apart from EEG findings, probable and definite FLE did not differ in other features. FLE was distinct from generalized epilepsy, which tended to present with tonic-clonic seizures and be due to genetic causes. FLE and temporal lobe epilepsy (TLE) both featured focal unaware seizures and underlying structural or metabolic aetiology. FLE, TLE and generalized epilepsy differed in their EEG (P = 0.0003) and MRI (P = 0.002) findings, where FLE had a higher rate of normal EEG and abnormal MRI findings compared to TLE. CONCLUSIONS EEG is often normal for FLE, and abnormalities are commonly identified with MRI. There was no difference in the clinical features of definite and probable FLE, suggesting they represent the same clinical entity. The diagnosis of FLE can be made even when scalp EEG is normal. This large medical cohort provides hallmark features of FLE that differentiate it from TLE and other epilepsy syndromes.
Collapse
Affiliation(s)
- Ryan W S Wee
- Barnet Hospital, London, UK.,Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK
| | - Adina Nash
- Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK
| | - Heather Angus-Leppan
- Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK. .,UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
7
|
Kim J, Lee DA, Lee HJ, Park KM. Glymphatic system dysfunction in patients with occipital lobe epilepsy. J Neuroimaging 2023; 33:455-461. [PMID: 36627235 DOI: 10.1111/jon.13083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We aimed to investigate the glymphatic system function in patients with occipital lobe epilepsy (OLE) and healthy controls using diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. METHODS We retrospectively included 23 patients with OLE and 30 healthy controls. The participants underwent brain MRI, which was normal, and diffusion tensor imaging. We used the DSI Studio for data preprocessing, obtained the fiber orientation and diffusivities, and calculated the DTI-ALPS index from the diffusivity values associated with the projection and association fibers in the left hemisphere. RESULTS There were no differences in mean age (31.6 years [range: 13-58] vs. 31.3 years [range: 20-57], p = .912) and male sex ratio (10/23 [43.5%] vs. 15/30 [50.0%]) between the groups. Compared to healthy controls, the diffusivities in patients with OLE were higher along the Y-axis in the projection fiber and along the Z-axis in the association fiber and lower along the Y-axis in the association fiber. The DTI-ALPS index in patients with OLE was lower than that in the healthy controls (1.421 ± 0.171 vs. 1.667 ± 0.271, p < .001, 95% confidence interval of difference = 0.117-0.376, Test statistic t = 3.823). We found no association between the DTI-ALPS index and clinical characteristics in OLE. CONCLUSION The DTI-ALPS index in patients with OLE was significantly lower than that in healthy controls, suggesting glymphatic system dysfunction in OLE. The DTI-ALPS index could help assess the glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
8
|
Nakamura T, Sato Y, Kobayashi Y, Kawauchi Y, Shimizu K, Mizutani T. Visualization of ictal networks using gamma oscillation regularity correlation analysis in focal motor epilepsy: Illustrative cases. Surg Neurol Int 2022; 13:105. [PMID: 35399885 PMCID: PMC8986657 DOI: 10.25259/sni_193_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Background Focal motor epilepsy is difficult to localize within the epileptogenic zone because ictal activity quickly spreads to the motor cortex through ictal networks. We previously reported the usefulness of gamma oscillation (30-70 Hz) regularity (GOR) correlation analysis using interictal electrocorticographic (ECoG) data to depict epileptogenic networks. We conducted GOR correlation analysis using ictal ECoG data to visualize the ictal networks originating from the epileptogenic zone in two cases - a 26-year-old woman with negative motor seizures and a 53-year-old man with supplementary motor area (SMA) seizures. Case Description In both cases, we captured several habitual seizures during monitoring after subdural electrode implantation and performed GOR correlation analysis using ictal ECoG data. A significantly high GOR suggestive of epileptogenicity was identified in the SMA ipsilateral to the lesions, which were connected to the motor cortex through supposed ictal networks. We resected the high GOR locations in the SMA and the patients' previously identified tumors were removed. The patients were seizure-free without any neurological deficits after surgery. Conclusion The GOR correlation analysis using ictal ECoG data could be a powerful tool for visualizing ictal networks in focal motor epilepsy.
Collapse
Affiliation(s)
| | - Yosuke Sato
- Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Japan
| | | | | | | | | |
Collapse
|
9
|
Rodriguez-Cruces R, Royer J, Larivière S, Bassett DS, Caciagli L, Bernhardt BC. Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Netw Neurosci 2022; 6:320-338. [PMID: 35733426 PMCID: PMC9208009 DOI: 10.1162/netn_a_00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological conditions, traditionally defined as a disorder of recurrent seizures. Cognitive and affective dysfunction are increasingly recognized as core disease dimensions and can affect patient well-being, sometimes more than the seizures themselves. Connectome-based approaches hold immense promise for revealing mechanisms that contribute to dysfunction and to identify biomarkers. Our review discusses emerging multimodal neuroimaging and connectomics studies that highlight network substrates of cognitive/affective dysfunction in the common epilepsies. We first discuss work in drug-resistant epilepsy syndromes, that is, temporal lobe epilepsy, related to mesiotemporal sclerosis (TLE), and extratemporal epilepsy (ETE), related to malformations of cortical development. While these are traditionally conceptualized as ‘focal’ epilepsies, many patients present with broad structural and functional anomalies. Moreover, the extent of distributed changes contributes to difficulties in multiple cognitive domains as well as affective-behavioral challenges. We also review work in idiopathic generalized epilepsy (IGE), a subset of generalized epilepsy syndromes that involve subcortico-cortical circuits. Overall, neuroimaging and network neuroscience studies point to both shared and syndrome-specific connectome signatures of dysfunction across TLE, ETE, and IGE. Lastly, we point to current gaps in the literature and formulate recommendations for future research. Epilepsy is increasingly recognized as a network disorder characterized by recurrent seizures as well as broad-ranging cognitive difficulties and affective dysfunction. Our manuscript reviews recent literature highlighting brain network substrates of cognitive and affective dysfunction in common epilepsy syndromes, namely temporal lobe epilepsy secondary to mesiotemporal sclerosis, extratemporal epilepsy secondary to malformations of cortical development, and idiopathic generalized epilepsy syndromes arising from subcortico-cortical pathophysiology. We discuss prior work that has indicated both shared and distinct brain network signatures of cognitive and affective dysfunction across the epilepsy spectrum, improves our knowledge of structure-function links and interindividual heterogeneity, and ultimately aids screening and monitoring of therapeutic strategies.
Collapse
Affiliation(s)
- Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Mehvari Habibabadi J, Moein H, Jourahmad Z, Ahmadian M, Basiratnia R, Zare M, Hashemi Fesharaki SS, Badihian S, Barekatain M, Tabrizi N. Outcome of epilepsy surgery in lesional epilepsy: Experiences from a developing country. Epilepsy Behav 2021; 122:108221. [PMID: 34352668 DOI: 10.1016/j.yebeh.2021.108221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Our aim was to report the postoperative seizure outcome and associated factors in patients with lesional epilepsy, in a low-income setting. METHODS This longitudinal prospective study included patients who underwent epilepsy surgery at Kashani Comprehensive Epilepsy Center between 2014 and 2019. Post-surgical outcomes were reported according to the Engel score, and patients were classified into two groups of seizure free (SF) and not-seizure free (NSF). RESULTS A total of 148 adult patients, with a mean age of 30.45 ± 9.23 years were included. The SF outcome was reported in 86.5% of patients and antiepileptic drugs (AEDs) were reduced or discontinued in 45.9%. The mean follow-up duration was 26.7 ± 14.9 months. Temporal lobe lesions (76.3%) and mesial temporal sclerosis (MTS) (56.7%) were the most frequent etiologies. Temporal lesion (Incidence relative risk (IRR): 1.76, 95% CI [1.08-2.87], p = 0.023), prior history of CNS infection (IRR:1.18, 95% CI [1.03-1.35], p = 0.019), use of intra-operative ECoG (IRR:1.73, 95% CI [1.06-2.81], p = 0.028), and absence of IEDs in postoperative EEG (IRR: 1.41, 95% CI [1.18-1.70], p < 0.001) were positive predictors for a favorable outcome. CONCLUSION Many patients with drug-resistant lesional epilepsy showed a favorable response to surgery. We believe that resective epilepsy surgery in low-income settings is a major treatment option. The high frequency of patients with drug-resistant epilepsy in developing countries is associated with high rates of morbidity and mortality. Hence, strategies to increase access to epilepsy surgery in these settings are urgently needed.
Collapse
Affiliation(s)
| | - Houshang Moein
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Jourahmad
- Kashani Comprehensive Epilepsy Center, Kashani Hospital, Isfahan, Iran
| | - Mana Ahmadian
- Kashani Comprehensive Epilepsy Center, Kashani Hospital, Isfahan, Iran.
| | - Reza Basiratnia
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zare
- Kashani Comprehensive Epilepsy Center, Kashani Hospital, Isfahan, Iran
| | | | - Shervin Badihian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Majid Barekatain
- Psychosomatic Research Center, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Tabrizi
- Department of Neurology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Cossu G, González-López P, Pralong E, Kalser J, Messerer M, Daniel RT. Unilateral prefrontal lobotomy for epilepsy: technique and surgical anatomy. Neurosurg Focus 2021; 48:E10. [PMID: 32234977 DOI: 10.3171/2020.1.focus19938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgery for frontal lobe epilepsy remains a challenge because of the variable seizure outcomes after surgery. Disconnective procedures are increasingly applied to isolate the epileptogenic focus and avoid complications related to extensive brain resection. Previously, the authors described the anterior quadrant disconnection procedure to treat large frontal lobe lesions extending up to but not involving the primary motor cortex. In this article, they describe a surgical technique for unilateral disconnection of the prefrontal cortex, while providing an accurate description of the surgical and functional anatomy of this disconnective procedure. METHODS The authors report the surgical treatment of a 5-month-old boy who presented with refractory epilepsy due to extensive cortical dysplasia of the left prefrontal lobe. In addition, with the aim of both describing the subcortical intrinsic anatomy and illustrating the different connections between the prefrontal lobe and the rest of the brain, the authors dissected six human cadaveric brain hemispheres. These dissections were performed from lateral to medial and from medial to lateral to reveal the various tracts sectioned during the three different steps in the surgery, namely the intrafrontal disconnection, anterior callosotomy, and frontobasal disconnection. RESULTS The first step of the dissection involves cutting the U-fibers. During the anterior intrafrontal disconnection, the superior longitudinal fasciculus in the depth of the middle frontal gyrus, the uncinate fasciculus, and the inferior frontooccipital fasciculus in the depth of the inferior frontal gyrus at the level of the anterior insular point are visualized and sectioned, followed by sectioning of the anterior limb of the internal capsule. Once the frontal horn is reached, the anterior callosotomy can be performed to disconnect the genu and the rostrum of the corpus callosum. The intrafrontal disconnection is deepened toward the falx, and at the medial surface, the cingulum is sectioned. The frontobasal disconnection involves cutting the anterior limb of the anterior commissure. CONCLUSIONS This technique allows selective isolation of the epileptogenic focus located in the prefrontal lobe to avoid secondary propagation. Understanding the surface and white matter fiber anatomy is essential to safely perform the procedure and obtain a favorable seizure outcome.
Collapse
Affiliation(s)
- Giulia Cossu
- 1Department of Neurosurgery, University Hospital of Lausanne
| | | | - Etienne Pralong
- 1Department of Neurosurgery, University Hospital of Lausanne
| | - Judith Kalser
- 3Department of Pediatrics, Section of Neuro-Pediatrics, University Hospital of Lausanne, Switzerland; and
| | | | | |
Collapse
|
12
|
Kaufmann E, Bartolomei F, Boon P, Chabardes S, Colon AJ, Eross L, Fabó D, Gonçalves-Ferreira A, Imbach LL, Van Paesschen W, Peltola J, Rego R, Theys T, Voges B. European Expert Opinion on ANT-DBS therapy for patients with drug-resistant epilepsy (a Delphi consensus). Seizure 2020; 81:201-209. [PMID: 32861153 DOI: 10.1016/j.seizure.2020.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Although deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) represents an established third-line therapy for patients with drug-resistant focal epilepsy, guiding reports on practical treatment principles remain scarce. METHODS An Expert Panel (EP) of 10 European neurologists and 4 neurosurgeons was assembled to share their experience with ANT-DBS therapy. The process included a review of the current literature, which served as a basis for an online survey completed by the EP prior to and following a face-to-face meeting (Delphi method). An agreement level of ≥71 % was considered as consensus. RESULTS Out of 86 reviewed studies, 46 (53 %) were selected to extract information on the most reported criteria for patient selection, management, and outcome. The Delphi process yielded EP consensus on 4 parameters for selection of good candidates and patient management as well as 7 reasons of concern for this therapy. Since it was not possible to give strict device programming advice due to low levels of evidence, the experts shared their clinical practice: all of them start with monopolar stimulation, 79 % using the cycling mode. Most (93 %) EP members set the initial stimulation frequency and pulse width according to the SANTE parameters, while there is more variability in the amplitudes used. Further agreement was achieved on a list of 7 patient outcome parameters to be monitored during the follow-up. CONCLUSIONS Although current evidence is too low for definite practical guidelines, this EP report could support the selection and management of patients with ANT-DBS.
Collapse
Affiliation(s)
- Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, University Hospital, LMU Munich, Munich, Germany.
| | - Fabrice Bartolomei
- Inserm, INS, Brain Dynamics Institute, Aix Marseille University, Marseille, France; APHM, Clinical Neurophysiology, Timone Hospital, Marseille, France
| | - Paul Boon
- Reference Center for Refractory Epilepsy, Ghent University Hospital Belgium - Academic Center for Epileptology, Heeze-Maastricht, the Netherlands
| | - Stéphan Chabardes
- Department of Neurosurgery-Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Department of Neurosurgery, Grenoble Alpes University Hospital, Grenoble, France; Grenoble Institute of Neurosciences GIN-INSERM U1216/CEA/UGA, Grenoble, France; Grenoble Alpes University, Grenoble, France
| | - Albert J Colon
- Academic Centre for Epileptology, Maastricht Universitair Medisch Centrum+, Maastricht, the Netherlands; Academic Centre for Epileptology, Kempenhaeghe, Heeze, the Netherlands
| | - Loránd Eross
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary; Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Antonio Gonçalves-Ferreira
- Department of Neurosurgery, University Hospital Santa Maria, Faculdade Medicina Lisboa, Lisbon, Portugal
| | - Lukas L Imbach
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wim Van Paesschen
- Department of Neurology, UZ Leuven, Leuven, Belgium; Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium
| | - Jukka Peltola
- Department of Neurology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Ricardo Rego
- Department of Neurophysiology, Hospital De São João, Porto, Portugal
| | - Tom Theys
- Laboratory for Experimental Neurosurgery and Neuroanatomy and the Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Berthold Voges
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Hamburg, Germany
| |
Collapse
|
13
|
Kamalboor H, Alhindi H, Alotaibi F, Althubaiti I, Alkhateeb M. Frontal disconnection surgery for drug-resistant epilepsy: Outcome in a series of 16 patients. Epilepsia Open 2020; 5:475-486. [PMID: 32913955 PMCID: PMC7469852 DOI: 10.1002/epi4.12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To evaluate the effectiveness of frontal disconnection surgery in seizure control and related consequences in a consecutive patient series. METHODS We conducted a retrospective analysis of patients who underwent frontal disconnection surgery for drug-resistant epilepsy (DRE). Baseline epilepsy characteristics, detailed presurgical evaluation including epileptogenic zone (EZ) localization, magnetic resonance imaging (MRI) detection of epileptogenic lesion, and pathological findings were reviewed. Patients were followed postoperatively for seizure outcome at 1 year. RESULTS A total of 16 patients were identified (six children and 10 adults). Most patients had a childhood onset of DRE with a median duration of epilepsy of 6.5 years (interquartile range 3.5-17.5 years) before surgery. In 10 (62.5%) patients, the EZ was localized to the frontal lobe, while in six patients, the EZ involved also adjacent lobes or consisted of multiple foci. In 10 (62.5%) patients, an epileptogenic lesion was detected on presurgical MRI, four of which (40%) had all MRI abnormalities confined to the frontal lobe. Two-thirds of the patients (11/16; 68.8%) underwent isolated frontal disconnection procedure, while remaining patients had frontal disconnection combined with resection of an adjacent lobe. Of the 12 patients in whom biopsy was taken from the disconnected frontal lobe, six (50%) had pathology-proven focal cortical dysplasia. We observed surgical-related complications in three (18.8%) cases, neurological deficits in other three (18.8%) patients, and worsening cognitive abilities in one (6.3%) patient. Overall, eight (50%) patients became completely seizure-free (ILAE 1) at one-year follow-up. SIGNIFICANCE Frontal disconnection surgery for DRE can result in seizure freedom in certain patients, especially when the EZ is strictly limited to the ipsilateral frontal region, and the MRI shows an epileptogenic lesion that is purely frontal in location. Frontal lobe disconnection procedure is safe and has a limited complication rate. However, further studies with larger patient population will yield more significance.
Collapse
Affiliation(s)
- Hamda Kamalboor
- King Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
- Rashid HospitalDubaiUnited Arab Emirates
| | - Hindi Alhindi
- King Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Faisal Alotaibi
- King Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | | | | |
Collapse
|
14
|
Perera T, Gaxiola-Valdez I, Singh S, Peedicail J, Sandy S, Lebel RM, Li E, Milne-Ives M, Szostakiwskyj J, Federico P. Localizing the seizure onset zone by comparing patient postictal hypoperfusion to healthy controls. J Neurosci Res 2020; 98:1517-1531. [PMID: 32476173 DOI: 10.1002/jnr.24646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/10/2022]
Abstract
Arterial spin labeling (ASL) MRI can provide seizure onset zone (SOZ) localizing information in up to 80% of patients. Clinical implementation of this technique is limited by the need to obtain two scans per patient: a postictal scan that is subtracted from an interictal scan. We aimed to determine whether it is possible to limit the number of ASL scans to one per patient by comparing patient postictal ASL scans to baseline scans of 100 healthy controls. Eighteen patients aged 20-55 years underwent ASL MRI <90 min after a seizure and during the interictal period. Each postictal cerebral blood flow (CBF) map was statistically compared to average baseline CBF maps from 100 healthy controls (pvcASL; patient postictal CBF vs. control baseline CBF). The pvcASL maps were compared to subtraction ASL maps (sASL; patient baseline CBF minus patient postictal CBF). Postictal CBF reductions from pvcASL and sASL maps were seen in 17 of 18 (94.4%) and 14 of 18 (77.8%) patients, respectively. Maximal postictal hypoperfusion seen in pvcASL and sASL maps was concordant with the SOZ in 10 of 17 (59%) and 12 of 14 (86%) patients, respectively. In seven patients, both pvcASL and sASL maps showed similar results. In two patients, sASL showed no significant hypoperfusion, while pvcASL showed significant hypoperfusion concordant with the SOZ. We conclude that pvcASL is clinically useful and although it may have a lower overall concordance rate than sASL, pvcASL does provide localizing or lateralizing information for specific cases that would be otherwise missed through sASL.
Collapse
Affiliation(s)
- Tefani Perera
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Shaily Singh
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph Peedicail
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sherry Sandy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - R Marc Lebel
- GE Healthcare, Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emmy Li
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Madison Milne-Ives
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | | | - Paolo Federico
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
15
|
Andrews JP, Chang EF. Epilepsy: Neocortical. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Samuel P J, Menon RN, Chandran A, Thomas SV, Vilanilam G, Abraham M, Radhakrishnan A. Seizure outcome and its predictors after frontal lobe epilepsy surgery. Acta Neurol Scand 2019; 140:259-267. [PMID: 31188464 DOI: 10.1111/ane.13139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Frontal lobe epilepsy (FLE) surgery is the second most common focal resective surgery for drug-resistant epilepsy. Not many studies are available regarding the long-term surgical outcome of FLE. We studied the longitudinal outcome and predictors of seizure outcome following FLE surgery in a sizeable cohort of patients. MATERIALS & METHODS A total of 73 consecutive patients who underwent FLE surgery between January 1997 and May 2015 with a minimum follow-up of 1 year (range 1-16 years) were studied. Primary outcome was seizure freedom at last follow-up (Engel Class IA). "Seizure freedom" separately was defined as absence of seizures till last follow-up. Outcome predictors were subjected to multivariate analysis. Using Kaplan-Meier curve, we assessed the post-operative seizure freedom over time. RESULTS Twenty-five patients (34%) were seizure-free till last follow-up. The seizure freedom was 45%, 34%, 26%, 20% and 14% at the end of 1st, 2nd, 3rd, 4th and 5th post-operative year, respectively. Engel class I outcomes were 48%, 41%, 56%, 57% and 53% at end of 1st, 2nd, 3rd, 4th and 5th post-operative year, respectively. Predictors of seizure recurrence on multivariate analysis were older age at surgery (P = 0.032), longer duration of epilepsy (P = 0.031), presence of interictal epileptiform discharges in post-operative EEG on 7th day (P = 0.005), 3 months (P = 0.005) and 1 year (P = 0.0179). In subgroup analysis, duration of epilepsy of less than 2 years before surgery was a significant predictor for achieving seizure freedom (P = 0.029). CONCLUSIONS These results emphasize early surgery for better outcome in frontal lobe epilepsy. Post-operative EEG remained a good predictor for long-term outcome.
Collapse
Affiliation(s)
- Joseph Samuel P
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Ramshekhar N. Menon
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Anuvitha Chandran
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Sanjeev V. Thomas
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - George Vilanilam
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Mathew Abraham
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Ashalatha Radhakrishnan
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| |
Collapse
|
17
|
Bonini F, McGonigal A, Scavarda D, Carron R, Régis J, Dufour H, Péragut JC, Laguitton V, Villeneuve N, Chauvel P, Giusiano B, Trébuchon A, Bartolomei F. Predictive Factors of Surgical Outcome in Frontal Lobe Epilepsy Explored with Stereoelectroencephalography. Neurosurgery 2019; 83:217-225. [PMID: 28673029 DOI: 10.1093/neuros/nyx342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resective surgery established treatment for pharmacoresistant frontal lobe epilepsy (FLE), but seizure outcome and prognostic indicators are poorly characterized and vary between studies. OBJECTIVE To study long-term seizure outcome and identify prognostic factors. METHODS We retrospectively analyzed 42 FLE patients having undergone surgical resection, mostly preceded by invasive recordings with stereoelectroencephalography (SEEG). Postsurgical outcome up to 10-yr follow-up and prognostic indicators were analyzed using Kaplan-Meier analysis and multivariate and conditional inference procedures. RESULTS At the time of last follow-up, 57.1% of patients were seizure-free. The estimated chance of seizure freedom was 67% (95% confidence interval [CI]: 54-83) at 6 mo, 59% (95% CI: 46-76) at 1 yr, 53% (95% CI: 40-71) at 2 yr, and 46% (95% CI: 32-66) at 5 yr. Most relapses (83%) occurred within the first 12 mo. Multivariate analysis showed that completeness of resection of the epileptogenic zone (EZ) as defined by SEEG was the main predictor of seizure outcome. According to conditional inference trees, in patients with complete resection of the EZ, focal cortical dysplasia as etiology and focal EZ were positive prognostic indicators. No difference in outcome was found in patients with positive vs negative magnetic resonance imaging. CONCLUSION Surgical resection in drug-resistant FLE can be a successful therapeutic approach, even in the absence of neuroradiologically visible lesions. SEEG may be highly useful in both nonlesional and lesional FLE cases, because complete resection of the EZ as defined by SEEG is associated with better prognosis.
Collapse
Affiliation(s)
- Francesca Bonini
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paedia-tric Neurosurgery Department, Marse-ille, France
| | - Romain Carron
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | - Jean Régis
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | - Henry Dufour
- APHM, Timone Hospital, Neurosurgery Department, Marseille, France
| | - Jean-Claude Péragut
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | | | - Nathalie Villeneuve
- Hôpital Henri Gastaut, Marseille, France.,Service de Neuropédiatrie, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Patrick Chauvel
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Bernard Giusiano
- Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Agnès Trébuchon
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| |
Collapse
|
18
|
Mehvari Habibabadi J, Zare M, Tabrizi N. The Role of Interictal Epileptiform Discharges in Epilepsy Surgery Outcome. Int J Prev Med 2019; 10:101. [PMID: 31360348 PMCID: PMC6592222 DOI: 10.4103/ijpvm.ijpvm_237_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
Background: Epilepsy surgery is a fundamental treatment in refractory epilepsy. Video electroencephalographic (v-EEG) monitoring plays an essential role in presurgical evaluation of patients. However there are reports of favorable outcome based on interictal and magnetic resonance imaging (MRI) findings without any need for v-EEG monitoring in patients with temporal lobe epilepsy (TLE). This study aimed to investigate the prognostic effect of concordance between interictal findings and ictal and MRI data on postsurgical outcome of TLE and extratemporal lobe epilepsy (ETLE). Methods: A retrospective study was conducted on 199 patients with refractory focal epilepsy who were admitted for presurgical evaluation. The concordance between irritative zone (IZ) and seizure onset zone (SOZ) and also IZ and MRI lesion was registered, and subsequently the prognostic effect of relevancy on 1-year follow-up result based on Engel criteria was investigated. Results: In TLE and ETLE regarding relevancy between IZ and SOZ, 77.8% and 73.2% were concordant, 2.5% and 0% were discordant, and 19.6% and 26.8% had overlap, respectively. Concordance between IZ and MRI lesion was found in 76.6% and 51.2% of patients with TLE and ETLE while discordance was recorded in 2.5% and 12.2% and overlap registered in 20.9% and 36.6%, respectively. The concordance of interictal findings had no effect on postsurgical outcome of patients with TLE and ETLE. Conclusions: Our study showed that concordance of IZ with SOZ and MRI has no independent effect on postsurgical outcome of patients with TLE and ETLE. We suggest that excluding exceptional cases, v-EEG monitoring should be considered as the mainstay of presurgical evaluation.
Collapse
Affiliation(s)
| | - Mohamad Zare
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Tabrizi
- Department of Neurology, Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
19
|
Abstract
BACKGROUND This is an updated version of the original Cochrane review, published in 2015.Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary between at least 20% and up to 70%. If the epileptogenic zone can be located, surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.Secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence, and to identify the factors that correlate with remission of seizures postoperatively. SEARCH METHODS For the latest update, we searched the following databases on 11 March 2019: Cochrane Register of Studies (CRS Web), which includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid, 1946 to March 08, 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs) that included at least 30 participants in a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), with an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome related to postoperative seizure control. Cohort studies or case series were included in the previous version of this review. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportions of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RRs) and 95% confidence intervals (95% CIs). MAIN RESULTS We identified 182 studies with a total of 16,855 included participants investigating outcomes of surgery for epilepsy. Nine studies were RCTs (including two that randomised participants to surgery or medical treatment (99 participants included in the two trials received medical treatment)). Risk of bias in these RCTs was unclear or high. Most of the remaining 173 non-randomised studies followed a retrospective design. We assessed study quality using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses, we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across domains.In terms of freedom from seizures, two RCTs found surgery (n = 97) to be superior to medical treatment (n = 99); four found no statistically significant differences between anterior temporal lobectomy (ATL) with or without corpus callosotomy (n = 60), between subtemporal or transsylvian approach to selective amygdalohippocampectomy (SAH) (n = 47); between ATL, SAH and parahippocampectomy (n = 43) or between 2.5 cm and 3.5 cm ATL resection (n = 207). One RCT found total hippocampectomy to be superior to partial hippocampectomy (n = 70) and one found ATL to be superior to stereotactic radiosurgery (n = 58); and another provided data to show that for Lennox-Gastaut syndrome, no significant differences in seizure outcomes were evident between those treated with resection of the epileptogenic zone and those treated with resection of the epileptogenic zone plus corpus callosotomy (n = 43). We judged evidence from the nine RCTs to be of moderate to very low quality due to lack of information reported about the randomised trial design and the restricted study populations.Of the 16,756 participants included in this review who underwent a surgical procedure, 10,696 (64%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to recording of adverse events to be very poor.In total, 120 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography, history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection, and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation, and presence of postoperative discharges were prognostic factors of outcome.Twenty-nine studies reported multi-variable models of prognostic factors, and showed that the direction of association of factors with outcomes was generally the same as that found in univariate analyses.We observed variability in many of our analyses, likely due to small study sizes with unbalanced group sizes and variation in the definition of seizure outcome, the definition of prognostic factors, and the influence of the site of surgery AUTHORS' CONCLUSIONS: Study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcomes. Future research should be of high quality, follow a prospective design, be appropriately powered, and focus on specific issues related to diagnostic tools, the site-specific surgical approach, and other issues such as extent of resection. Researchers should investigate prognostic factors related to the outcome of surgery via multi-variable statistical regression modelling, where variables are selected for modelling according to clinical relevance, and all numerical results of the prognostic models are fully reported. Journal editors should not accept papers for which study authors did not record adverse events from a medical intervention. Researchers have achieved improvements in cancer care over the past three to four decades by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Jennifer Cotton
- The Clatterbridge Cancer Centre NHS Foundation TrustWirralUK
| | - Sacha Gandhi
- NHS Ayrshire and ArranDepartment of General SurgeryAyrUKKA6 6DX
| | - Jennifer Weston
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneFazakerleyLiverpoolMerseysideUKL9 7LJ
| | - Ajay Sudan
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Roberto Ramirez
- Royal Manchester Children's HospitalHospital RoadPendleburyManchesterUKM27 4HA
| | - Richard Newton
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | | |
Collapse
|
20
|
CT perfusion measurement of postictal hypoperfusion: localization of the seizure onset zone and patterns of spread. Neuroradiology 2019; 61:991-1010. [PMID: 31152191 DOI: 10.1007/s00234-019-02227-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Seizures are often followed by a period of transient neurological dysfunction and postictal alterations in cerebral blood flow may underlie these symptoms. Recent animal studies have shown reduced local cerebral blood flow at the seizure onset zone (SOZ) lasting approximately 1 h following seizures. Using arterial spin labelling (ASL) MRI, we observed postictal hypoperfusion at the SOZ in 75% of patients. The clinical implementation of ASL as a tool to identify the SOZ is hampered by the limited availability of MRI on short notice. Computed tomography perfusion (CTP) also measures blood flow and may circumvent the logistical limitations of MRI. Thus, we aimed to measure the extent of postictal hypoperfusion using CTP. METHODS Fourteen adult patients with refractory focal epilepsy admitted for presurgical evaluation were prospectively recruited and underwent CTP scanning within 80 min of a habitual seizure. Patients also underwent a baseline scan after they were seizure-free for > 24 h. The acquired scans were qualitatively assessed by two reviewers by visual inspection and quantitatively assessed through a subtraction pipeline to identify areas of significant postictal hypoperfusion. RESULTS Postictal blood flow reductions of > 15 ml/100 g-1/min-1 were seen in 12/13 patients using the quantitative method of analysis. In 10/12 patients, the location of the hypoperfusion was partially or fully concordant with the presumed SOZ. In all patients, additional areas of scattered hypoperfusion were seen in areas corresponding to seizure spread. CONCLUSION CTP can reliably measure postictal hypoperfusion which is maximal at the presumed SOZ.
Collapse
|
21
|
18F-FDG in the presurgical evaluation of epilepsies: a pictorial essay. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Outcome after individualized stereoelectroencephalography (sEEG) implantation and navigated resection in patients with lesional and non-lesional focal epilepsy. J Neurol 2019; 266:910-920. [PMID: 30701313 DOI: 10.1007/s00415-019-09213-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Refined localization of the epileptogenic zone (EZ) in patients with pharmacoresistant focal epilepsy proceeding to resective surgery might improve postoperative outcome. We here report seizure outcome after stereo EEG (sEEG) evaluation with individually planned stereotactically implanted depth electrodes and subsequent tailored resection. METHODS A cohort of consecutive patients with pharmacoresistant focal epilepsy, evaluated with a non-invasive evaluation protocol and invasive monitoring with personalized, stereotactically implanted depth electrodes for sEEG was analyzed. Co-registration of post-implantation CT scan to presurgical MRI data was used for 3D reconstructions of the patients' brain surface and mapping of neurophysiology data. Individual multimodal 3D maps of the EZ were used to guide subsequent tailored resections. The outcome was rated according to the Engel classification. RESULTS Out of 914 patients who underwent non-invasive presurgical evaluation, 85 underwent sEEG, and 70 were included in the outcome analysis. Median follow-up was 31.5 months. Seizure-free outcome (Engel class I A-C, ILAE class 1-2) was achieved in 83% of the study cohort. Patients exhibiting lesional and non-lesional (n = 42, 86% vs. n = 28, 79%), temporal and extratemporal (n = 45, 80% vs. n = 25, 84%), and right- and left-hemispheric epilepsy (n = 44, 82% vs. n = 26, 85%) did similarly well. This remains also true for those with an EZ adjacent to or distant from eloquent cortex (n = 21, 86% vs. n = 49, 82%). Surgical outcome was independent of resected tissue volume. CONCLUSION Favourable post-surgical outcome can be achieved in patients with resistant focal epilepsy, using individualized sEEG evaluation and tailored navigated resection, even in patients with non-lesional or extratemporal focal epilepsy.
Collapse
|
23
|
Morace R, Casciato S, Quarato PP, Mascia A, D'Aniello A, Grammaldo LG, De Risi M, Di Gennaro G, Esposito V. Long-term seizure outcome in frontal lobe epilepsy surgery. Epilepsy Behav 2019; 90:93-98. [PMID: 30522059 DOI: 10.1016/j.yebeh.2018.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of this study was to report long-term seizure outcome in patients who underwent frontal lobe epilepsy (FLE) surgery. METHOD This retrospective study included 44 consecutive subjects who underwent resective surgery for intractable FLE at IRCCS NEUROMED (period 2001-2014), followed up for at least 2 years (mean: 8.7 years). All patients underwent noninvasive presurgical evaluation and/or invasive electroencephalography (EEG) monitoring when nonconcordant data were obtained or epileptogenic zone was hypothesized to be close to the eloquent cortex. Electroclinical, neuroimaging, surgical data, and histology were compared to seizure outcome. RESULTS Mean epilepsy duration was 19 years; mean age at surgery was 31.6 years. Preoperative magnetic resonance imaging (MRI) showed a frontal lesion in 86.4 % of cases. Scalp video-electroencephalography (VEEG) monitoring detected a focal ictal onset in 90% of cases. Twenty-seven patients (61.4%) underwent invasive recordings. Resections involved dorsolateral (47.7%), medial (9%), orbital (13.6%), and rolandic (13.6%) region. Lobectomy within functional boundaries was performed in the remaining 7 cases (16%). Transient and permanent neurological deficits were observed in 2 and 3 cases, respectively. Histology revealed focal cortical dysplasia (45.5%), World Health Organization (WHO) I-II grade tumors (15.9%), gliosis (22.7%), vascular malformations (4.5%), Rasmussen encephalitis (6.8%), and normal tissue (4.5%). At last observation 68.1% of patients were in Engel's class I, 11.4% in class II, 9% in class III, and 11.4% in class IV. A favorable outcome was associated with focal ictal scalp EEG onset (p = 0.0357). CONCLUSION Surgery is a safe treatment option in drug-resistant FLE with a satisfying long-term outcome. These data highlight the importance of an appropriate selection of potential surgical candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincenzo Esposito
- IRCCS "NEUROMED", Pozzilli, IS, Italy; Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| |
Collapse
|
24
|
Xu C, Yu T, Zhang G, Wang Y, Li Y. Prognostic Factors and Longitudinal Change in Long-Term Outcome of Frontal Lobe Epilepsy Surgery. World Neurosurg 2019; 121:e32-e38. [DOI: 10.1016/j.wneu.2018.08.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
25
|
Shang K, Wang J, Fan X, Cui B, Ma J, Yang H, Zhou Y, Zhao G, Lu J. Clinical Value of Hybrid TOF-PET/MR Imaging-Based Multiparametric Imaging in Localizing Seizure Focus in Patients with MRI-Negative Temporal Lobe Epilepsy. AJNR Am J Neuroradiol 2018; 39:1791-1798. [PMID: 30237304 DOI: 10.3174/ajnr.a5814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Temporal lobe epilepsy is the most common type of epilepsy. Early surgical treatment is superior to prolonged medical therapy in refractory temporal lobe epilepsy. Successful surgical operations depend on the correct localization of the epileptogenic zone. This study aimed to evaluate the clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing the epileptogenic zone in patients with MR imaging-negative for temporal lobe epilepsy. MATERIALS AND METHODS Twenty patients with MR imaging-negative temporal lobe epilepsy who underwent preoperative evaluation and 10 healthy controls were scanned using PET/MR imaging with simultaneous acquisition of PET and arterial spin-labeling. On the basis of the standardized uptake value and cerebral blood flow, receiver operating characteristic analysis and a logistic regression model were used to evaluate the predictive value for the localization. Statistical analyses were performed using statistical parametric mapping. The values of the standardized uptake value and cerebral blood flow, as well as the asymmetries of metabolism and perfusion, were compared between the 2 groups. Histopathologic findings were used as the criterion standard. RESULTS Complete concordance was noted in lateralization and localization among the PET, arterial spin-labeling, and histopathologic findings in 12/20 patients based on visual assessment. Concordance with histopathologic findings was also obtained for the remaining 8 patients based on the complementary PET and arterial spin-labeling information. Receiver operating characteristic analysis showed that the sensitivity and specificity of PET, arterial spin-labeling, and combined PET and arterial spin-labeling were 100% and 81.8%, 83.3% and 54.5%, and 100% and 90.9%, respectively. When we compared the metabolic abnormalities in patients with those in healthy controls, hypometabolism was detected in the middle temporal gyrus (P < .001). Metabolism and perfusion asymmetries were also located in the temporal lobe (P < .001). CONCLUSIONS PET/MR imaging-based multiparametric imaging involving arterial spin-labeling may increase the clinical value of localizing the epileptogenic zone by providing concordant and complementary information in patients with MR imaging-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- K Shang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Wang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - X Fan
- Neurosurgery (X.F., G.Z.)
| | - B Cui
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Ma
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - H Yang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - Y Zhou
- Department of Radiology (Y.Z.), Johns Hopkins University, Baltimore, Maryland
| | - G Zhao
- Neurosurgery (X.F., G.Z.)
| | - J Lu
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.) .,Radiology (J.L.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Harward SC, Chen WC, Rolston JD, Haglund MM, Englot DJ. Seizure Outcomes in Occipital Lobe and Posterior Quadrant Epilepsy Surgery: A Systematic Review and Meta-Analysis. Neurosurgery 2018; 82:350-358. [PMID: 28419330 PMCID: PMC5640459 DOI: 10.1093/neuros/nyx158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/19/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Occipital lobe epilepsy (OLE) is an uncommon but debilitating focal epilepsy syndrome with seizures often refractory to medical management. While surgical resection has proven a viable treatment, previous studies examining postoperative seizure freedom rates are limited by small sample size and patient heterogeneity, thus exhibiting significant variability in their results. OBJECTIVE To review the medical literature on OLE so as to investigate rates and predictors of both seizure freedom and visual outcomes following surgery. METHODS We reviewed manuscripts exploring surgical resection for drug-resistant OLE published between January 1990 and June 2015 on PubMed. Seizure freedom rates were analyzed and potential predictors were evaluated with separate meta-analyses. Postoperative visual outcomes were also examined. RESULTS We identified 27 case series comprising 584 patients with greater than 1 yr of follow-up. Postoperative seizure freedom (Engel class I outcome) was observed in 65% of patients, and was significantly predicted by age less than 18 yr (odds ratio [OR] 1.54, 95% confidence interval [CI] 1.13-2.18), focal lesion on pathological analysis (OR 2.08, 95% CI 1.58-2.89), and abnormal preoperative magnetic resonance imaging (OR 3.24, 95% 2.03-6.55). Of these patients, 175 also had visual outcomes reported with 57% demonstrating some degree of visual decline following surgery. We did not find any relationship between postoperative visual and seizure outcomes. CONCLUSION Surgical resection for OLE is associated with favorable outcomes with nearly two-thirds of patients achieving postoperative seizure freedom. However, patients must be counseled regarding the risk of visual decline following surgery.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - William C Chen
- Department of Neuro-logical Surgery, University of California San Francisco, San Francisco, California
| | - John D Rolston
- Department of Neuro-logical Surgery, University of California San Francisco, San Francisco, California
| | - Michael M Haglund
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Gaxiola-Valdez I, Singh S, Perera T, Sandy S, Li E, Federico P. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 2017; 140:2895-2911. [PMID: 29053782 DOI: 10.1093/brain/awx241] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
Neurological dysfunction following epileptic seizures is a well-recognized phenomenon. Several potential mechanisms have been suggested to explain postictal dysfunction, with alteration in cerebral blood flow being one possibility. These vascular disturbances may be long lasting and localized to brain areas involved in seizure generation and propagation, as supported by both animal and human studies. Therefore, measuring perfusion changes in the postictal period may help localize the seizure onset zone. Arterial spin labelling is a non-invasive, rapid and reproducible magnetic resonance imaging technique that measures cerebral perfusion. To this end, we measured postictal perfusion in patients with drug resistant focal epilepsy who were admitted to our seizure-monitoring unit for presurgical evaluation. Twenty-one patients were prospectively recruited and underwent arterial spin labelling scanning within 90 min of a habitual seizure. Patients also underwent a similar scan in the interictal period, after they were seizure-free for at least 24 h. The acquired scans were subtracted to identify the areas of significant postictal hypoperfusion. The location of the maximal hypoperfusion was compared to the presumed seizure onset zone to assess for concordance. Also, the localizing value of this technique was compared to other structural and functional imaging modalities. Postictal perfusion reductions of >15 units (ml/100 g/l) were seen in 15/21 patients (71.4%). In 12/15 (80%) of these patients, the location of the hypoperfusion was partially or fully concordant with the location of the presumed seizure onset zone. This technique compared favourably to other neuroimaging modalities, being similar or superior to structural magnetic resonance imaging in 52% of cases, ictal single-photon emission computed tomography in 60% of cases and interictal positron emission tomography in 71% of cases. Better arterial spin labelling results were obtained in patients in whom the seizure onset zone was discernible based on non-invasive data. Thus, this technique is a safe, non-invasive and relatively inexpensive tool to detect postictal hypoperfusion that may provide useful data to localize the seizure onset zone. This technique may be incorporated into the battery of conventional investigations for presurgical evaluation of patients with drug resistant focal epilepsy.
Collapse
Affiliation(s)
- Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Shaily Singh
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Tefani Perera
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Sherry Sandy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Emmy Li
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Pindrik J, Hoang N, Tubbs RS, Rocque BJ, Rozzelle CJ. Trans-falcine and contralateral sub-frontal electrode placement in pediatric epilepsy surgery: technical note. Childs Nerv Syst 2017; 33:1379-1388. [PMID: 28578510 DOI: 10.1007/s00381-017-3469-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/21/2017] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Phase II monitoring with intracranial electroencephalography (ICEEG) occasionally requires bilateral placement of subdural (SD) strips, grids, and/or depth electrodes. While phase I monitoring often demonstrates a preponderance of unilateral findings, individual studies (video EEG, single photon emission computed tomography [SPECT], and positron emission tomography [PET]) can suggest or fail to exclude a contralateral epileptogenic onset zone. This study describes previously unreported techniques of trans-falcine and sub-frontal insertion of contralateral SD grids and depth electrodes for phase II monitoring in pediatric epilepsy surgery patients when concern about bilateral abnormalities has been elicited during phase I monitoring. METHODS Pediatric patients with medically refractory epilepsy undergoing stage I surgery for phase II monitoring involving sub-frontal and/or trans-falcine insertion of SD grids and/or depth electrodes at the senior author's institution were retrospectively reviewed. Intra-operative technical details of sub-frontal and trans-falcine approaches were studied, while intra-operative complications or events were noted. Operative techniques included gentle subfrontal retraction and elevation of the olfactory tracts (while preserving the relationship between the olfactory bulb and cribriform plate) to insert SD grids across the midline for coverage of the contralateral orbito-frontal regions. Trans-falcine approaches involved accessing the inter-hemispheric space, bipolar cauterization of the anterior falx cerebri below the superior sagittal sinus, and sharp dissection using a blunt elevator and small blade scalpel. The falcine window allowed contralateral SD strip, grid, and depth electrodes to be inserted for coverage of the contralateral frontal regions. RESULTS The study cohort included seven patients undergoing sub-frontal and/or trans-falcine insertion of contralateral SD strip, grid, and/or depth electrodes from February 2012 through June 2015. Five patients (71%) experienced no intra-operative events related to contralateral ICEEG electrode insertion. Intra-operative events of frontal territory venous engorgement (1/7, 14%) due to sacrifice of anterior bridging veins draining into the SSS and avulsion of a contralateral bridging vein (1/7, 14%), probably due to prior anterior corpus callosotomy, each occurred in one patient. There were no intra-operative or peri-operative complications in any of the patients studied. Two patients required additional surgery for supplemental SD strip and/or depth electrodes via burr hole craniectomy to enhance phase II monitoring. All patients proceeded to stage II surgery for resection of ipsilateral epileptogenic onset zones without adverse events. CONCLUSIONS Trans-falcine and sub-frontal insertion of contralateral SD strip, grid, and depth electrodes are previously unreported techniques for achieving bilateral frontal coverage in phase II monitoring in pediatric epilepsy surgery. This technique obviates the need for contralateral craniotomy and parenchymal exposure with limited, remediable risks. Larger case series using the method described herein are now necessary.
Collapse
Affiliation(s)
- Jonathan Pindrik
- Division of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nguyen Hoang
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Brandon J Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, AL, USA
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, AL, USA
| |
Collapse
|
29
|
Ramantani G, Kadish NE, Mayer H, Anastasopoulos C, Wagner K, Reuner G, Strobl K, Schubert-Bast S, Wiegand G, Brandt A, Korinthenberg R, Mader I, van Velthoven V, Zentner J, Schulze-Bonhage A, Bast T. Frontal Lobe Epilepsy Surgery in Childhood and Adolescence: Predictors of Long-Term Seizure Freedom, Overall Cognitive and Adaptive Functioning. Neurosurgery 2017; 83:93-103. [DOI: 10.1093/neuros/nyx340] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/16/2017] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Although frontal lobe resections account for one-third of intralobar resections in pediatric epilepsy surgery, there is a dearth of information regarding long-term seizure freedom, overall cognitive and adaptive functioning.
OBJECTIVE
To identify outcome predictors and define the appropriate timing for surgery.
METHODS
We retrospectively analyzed the data of 75 consecutive patients aged 10.0 ± 4.9 yr at surgery that had an 8.1 yr mean follow-up.
RESULTS
Etiology comprised focal cortical dysplasia (FCD) in 71% and benign tumors in 16% cases. All patients but one had a magnetic resonance imaging-visible lesion. At last follow-up, 63% patients remained seizure-free and 37% had discontinued antiepileptic drugs. Presurgical predictors of seizure freedom were a shorter epilepsy duration, strictly regional epileptic discharges in electroencephalography (EEG), and an epileptogenic zone and/or lesion distant from eloquent cortex. Postsurgical predictors were the completeness of resection and the lack of early postoperative seizures or epileptic discharges in EEG. Higher presurgical overall cognitive and adaptive functioning was related to later epilepsy onset and to a sublobar epileptogenic zone and/or lesion. Following surgery, scores remained stable in the majority of patients. Postsurgical gains were determined by higher presurgical performance and tumors vs FCD.
CONCLUSION
Our findings highlight the favorable long-term outcomes following frontal lobe epilepsy surgery in childhood and adolescence and underline the importance of early surgical intervention in selected candidates. Early postsurgical relapses and epileptic discharges in EEG constitute key markers of treatment failure and should prompt timely reevaluation. Postsurgical overall cognitive and adaptive functioning is stable in most patients, whereas those with benign tumors have higher chances of improvement.
Collapse
Affiliation(s)
| | - Navah Ester Kadish
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Hans Mayer
- Epilepsy Centre Kork, Kehl-Kork, Germany
| | - Constantin Anastasopoulos
- Division of Neuropediatrics and Muscular Disorders, University Children's Hospital, Freiburg, Germany
| | - Kathrin Wagner
- Epilepsy Centre, University Hospital Freiburg, Freiburg, Germany
| | - Gitta Reuner
- Department of General Pediatrics, University Children's Hospital, Heidelberg, Germany
| | | | - Susanne Schubert-Bast
- Department of General Pediatrics, University Children's Hospital, Heidelberg, Germany
| | - Gert Wiegand
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Armin Brandt
- Epilepsy Centre, University Hospital Freiburg, Freiburg, Germany
| | - Rudolf Korinthenberg
- Division of Neuropediatrics and Muscular Disorders, University Children's Hospital, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Vera van Velthoven
- Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
30
|
Shi J, Lacuey N, Lhatoo S. Surgical outcome of MRI-negative refractory extratemporal lobe epilepsy. Epilepsy Res 2017; 133:103-108. [PMID: 28477458 DOI: 10.1016/j.eplepsyres.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study is to determine outcome of resective epilepsy surgery in MRI-negative extratemporal lobe epilepsy (MNETLE) patients who underwent invasive evaluations and to determine factors governing outcome. METHODS We studied 28 patients who underwent resective epilepsy surgery for MNETLE from August 2006 to November 2015, in whom complete follow-up information was available. Electro-clinical, pathological and surgical data were evaluated. 24 patients (82.8%) were explored with intracranial EEG (9 stereoelectroencephalography (SEEG), 7 subdural grids and 8 both). All patients were followed for at least 6 months. RESULTS During a mean follow up period of 32 [6-113] months, 13 (46.4%) patients became seizure-free (ILAE 1) and 18 (64.3%) had a good (ILAE 1, 2, 3) outcome. 21 (75.0%) patients had focal cortical dysplasia (FCD). Univariate analysis showed that more restricted (regional) interictal and ictal epileptiform discharges in surface EEG were significantly associated with seizure freedom (P=0.016 and P=0.024). Multivariate analysis confirmed that having ≥120 electrode contacts in the evaluation is an independent variable predicting seizure freedom (HR=4.283, 95% CI=1.342-13.676, P=0.014). CONCLUSION Invasive EEG is a powerful tool in the pre-surgical evaluation of patients with MNETLE. Invasive EEG implantation that include the irritative zone and EEG onset zone as indicated by surface EEG, as well as wider brain coverage predict seizure freedom, contingent upon a sound anatomo-electro-clinical hypothesis for implantation.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Neurosurgery, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China.
| | - Nuria Lacuey
- Epilepsy Center, UH Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Samden Lhatoo
- Epilepsy Center, UH Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
31
|
Magnetoencephalography-guided surgery in frontal lobe epilepsy using neuronavigation and intraoperative MR imaging. Epilepsy Res 2016; 126:26-36. [DOI: 10.1016/j.eplepsyres.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
|
32
|
Gold JA, Sher Y, Maldonado JR. Frontal Lobe Epilepsy: A Primer for Psychiatrists and a Systematic Review of Psychiatric Manifestations. PSYCHOSOMATICS 2016; 57:445-64. [DOI: 10.1016/j.psym.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
33
|
Mayoral M, Marti-Fuster B, Carreño M, Carrasco JL, Bargalló N, Donaire A, Rumià J, Perissinotti A, Lomeña F, Pintor L, Boget T, Setoain X. Seizure-onset zone localization by statistical parametric mapping in visually normal18F-FDG PET studies. Epilepsia 2016; 57:1236-44. [DOI: 10.1111/epi.13427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Mayoral
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
| | - Berta Marti-Fuster
- Biomedical Imaging Group; Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona Spain
- Biophysics and Bioengineering Unit; Physiological Sciences Department I; School of Medicine; University of Barcelona; Spain
| | - Mar Carreño
- Neurology Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Josep L. Carrasco
- Biostatistics; Public Health Department; School of Medicine; University of Barcelona; Barcelona Spain
| | - Núria Bargalló
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Radiology Department; Hospital Clinic; Barcelona Spain
| | - Antonio Donaire
- Neurology Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Jordi Rumià
- Neurosurgery Department; Hospital Clinic; Barcelona Spain
| | | | - Francisco Lomeña
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| | - Luis Pintor
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Psychiatry and Psychology Department; Hospital Clinic; Barcelona Spain
| | - Teresa Boget
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Psychiatry and Psychology Department; Hospital Clinic; Barcelona Spain
| | - Xavier Setoain
- Nuclear Medicine Department; Hospital Clinic; Barcelona Spain
- Biomedical Imaging Group; Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
| |
Collapse
|
34
|
Abstract
Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy.
Collapse
|
35
|
Abstract
AbstractThe role of fludeoxyglucose F 18 positron emission tomography (PET) in the presurgical evaluation of patients with medically intractable epilepsy continues to be refined. The purpose of this study was to systematically review the literature to assess the diagnostic accuracy and utility of PET in this setting. Thirty-nine studies were identified through MEDLINE and EMBASE databases that met the inclusion criteria. In adult patients, PET hypometabolism showed a 56 to 90% agreement with seizure onset localized by intracranial electroencephalogram (pediatric: 21 to 86%). In temporal lobe epilepsy patients with good surgical outcome, PET displayed moderate to high sensitivity in localizing the seizure focus (range: 71 to 89%). The sensitivity increased by 8 to 23% when PET results were combined with magnetic resonance imaging or electroencephalogram. PET has been shown to affect patient management by improving the guidance of intracranial electrodes placement, altering the decision to perform surgery, or excluding patients from further evaluation.
Collapse
|
36
|
Baud MO, Vulliemoz S, Seeck M. Recurrent secondary generalization in frontal lobe epilepsy: Predictors and a potential link to surgical outcome? Epilepsia 2015. [DOI: 10.1111/epi.13086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxime O. Baud
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Serge Vulliemoz
- Epilepsy Center; Geneva University Hospital; Geneva Switzerland
| | - Margitta Seeck
- Epilepsy Center; Geneva University Hospital; Geneva Switzerland
| |
Collapse
|
37
|
Abstract
BACKGROUND Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary according to the age of the participants and which focal epilepsies are included, but have been reported as at least 20% and in some studies up to 70%. If the epileptogenic zone can be located surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.The secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence and to identify the factors that correlate to remission of seizures postoperatively. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialised Register (June 2013), the Cochrane Central Register of Controlled Trials (CENTRAL 2013, Issue 6), MEDLINE (Ovid) (2001 to 4 July 2013), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) for relevant trials up to 4 July 2013. SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs), cohort studies or case series, with either a prospective and/or retrospective design, including at least 30 participants, a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome relating to postoperative seizure control. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportion of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RR) and 95% confidence intervals. MAIN RESULTS We identified 177 studies (16,253 participants) investigating the outcome of surgery for epilepsy. Four studies were RCTs (including one that randomised participants to surgery or medical treatment). The risk of bias in the RCTs was unclear or high, limiting our confidence in the evidence that addressed the primary review objective. Most of the remaining 173 non-randomised studies had a retrospective design; they were of variable size, were conducted in a range of countries, recruited a wide demographic range of participants, used a wide range of surgical techniques and used different scales used to measure outcomes. We performed quality assessment using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across the domains.In terms of freedom from seizures, one RCT found surgery to be superior to medical treatment, two RCTs found no statistically significant difference between anterior temporal lobectomy (ATL) with or without corpus callosotomy or between 2.5 cm or 3.5 cm ATL resection, and one RCT found total hippocampectomy to be superior to partial hippocampectomy. We judged the evidence from the four RCTs to be of moderate to very low quality due to the lack of information reported about the randomised trial design and the restricted study populations.Of the 16,253 participants included in this review, 10,518 (65%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to the recording of adverse events to be very poor.In total, 118 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: an abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography (EEG), history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation or presence of postoperative discharges were prognostic factors of outcome. We observed variability between studies for many of our analyses, likely due to the small study sizes with unbalanced group sizes, variation in the definition of seizure outcome, definition of the prognostic factor and the influence of the site of surgery, all of which we observed to be related to postoperative seizure outcome. Twenty-nine studies reported multivariable models of prognostic factors and the direction of association of factors with outcome was generally the same as found in the univariate analyses. However, due to the different multivariable analysis approaches and selective reporting of results, meaningful comparison of multivariate analysis with univariate meta-analysis is difficult. AUTHORS' CONCLUSIONS The study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcome. Future research should be of high quality, have a prospective design, be appropriately powered and focus on specific issues related to diagnostic tools, the site-specific surgical approach and other issues such as the extent of resection. Prognostic factors related to the outcome of surgery should be investigated via multivariable statistical regression modelling, where variables are selected for modelling according to clinical relevance and all numerical results of the prognostic models are fully reported. Protocols should include pre- and postoperative measures of speech and language function, cognition and social functioning along with a mental state assessment. Journal editors should not accept papers where adverse events from a medical intervention are not recorded. Improvements in the development of cancer care over the past three to four decades have been achieved by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Hathersage Road, Manchester, UK, M13 0JH
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Phillips L, Walsh M. Diagnosing frontal lobe epilepsy in the ED. Am J Emerg Med 2014; 32:1299.e1-2. [PMID: 24856751 DOI: 10.1016/j.ajem.2014.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Frontal lobe seizures are a common form of epilepsy. It has a variable presentation and can often be missed in the emergency department (ED). Missing this diagnosis can lead to a delay in treatment and poor outcome for cognitive function. We hereby present a case of a 14-year-old girl who presented to our ED after the development of abnormal movements. Knowledge of the anatomy behind the development of partial seizures and the best testing modality can aid in the diagnosis. In this review, we attempt to discuss the pathophysiology of frontal lobe epilepsy and what physical examination findings and testing will best lead to a diagnosis.
Collapse
Affiliation(s)
- Lara Phillips
- Vanderbilt University Medical Center, Nashville, TN.
| | | |
Collapse
|
39
|
Kumar A, Valentín A, Humayon D, Longbottom AL, Jimenez-Jimenez D, Mullatti N, Elwes RC, Bodi I, Honavar M, Jarosz J, Selway RP, Polkey CE, Malik I, Alarcón G. Preoperative estimation of seizure control after resective surgery for the treatment of epilepsy. Seizure 2013; 22:818-26. [DOI: 10.1016/j.seizure.2013.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/03/2013] [Accepted: 06/21/2013] [Indexed: 11/15/2022] Open
|
40
|
Simasathien T, Vadera S, Najm I, Gupta A, Bingaman W, Jehi L. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol 2013; 73:646-54. [DOI: 10.1002/ana.23862] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Thitiwan Simasathien
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Sumeet Vadera
- Neurosurgery; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Imad Najm
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Ajay Gupta
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - William Bingaman
- Neurosurgery; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Lara Jehi
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| |
Collapse
|
41
|
Abstract
Dorsolateral frontal lobe seizures often present as a diagnostic challenge. The diverse semiologies may not produce lateralizing or localizing signs and can appear bizarre and suggest psychogenic events. Unfortunately, scalp electroencephalographic (EEG) and magnetic resonance imaging (MRI) are often unsatisfactory. It is not uncommon that these traditional diagnostic studies are either unhelpful or even misleading. In some cases, SPECT and positron emission tomography imaging can be an effective tool to identify the origin of seizures. However, these techniques and other emerging techniques all have limitations, and new approaches are needed to improve source localization.
Collapse
Affiliation(s)
- Ricky W Lee
- Department of Neurology, Division of Clinical Neurophysiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
42
|
Archambaud F, Bouilleret V, Hertz-Pannier L, Chaumet-Riffaud P, Rodrigo S, Dulac O, Chassoux F, Chiron C. Optimizing statistical parametric mapping analysis of 18F-FDG PET in children. EJNMMI Res 2013; 3:2. [PMID: 23289862 PMCID: PMC3558387 DOI: 10.1186/2191-219x-3-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/27/2012] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED BACKGROUND Statistical parametric mapping (SPM) procedure is an objective tool to analyze 18F-fluoro-2-deoxy-d-glucose-positron-emission tomography (FDG-PET) images and a useful complement to visual analysis. However, SPM requires a comparison to control data set that cannot be obtained in healthy children for ethical reasons. Using adults as controls showed some limitations. The purpose of the present study was to generate and validate a group of pseudo-normal children as a control group for FDG-PET studies in pediatrics. METHODS FDG-PET images of 47 children (mean ± SD age 10.2 ± 3.1 years) with refractory symptomatic (MRI-positive, n = 20) and cryptogenic (MRI-negative, n = 27) focal epilepsy planned for surgery were analyzed using visual and SPM analysis. Performances of SPM analysis were compared using two different control groups: (1) an adult control group consisting of healthy young adults (n = 25, 30.5 ± 5.8 years, adult PET template) and (2) a pediatric pseudo-control group consisting of patients (n = 24, 10.6 ± 3.1 years, children PET template) with refractory focal epilepsy but with negative MRI and with PET considered normal not only on visual analysis but also on SPM. RESULTS Among the 47 children, visual analysis succeeded detecting at least one hypometabolic area in 87% of the cases (interobserver kappa = 0.81). Regarding SPM analysis, the best compromise between sensitivity and specificity was obtained with a threshold of p less than 0.001 as an extent of more than 40 voxels. There was a significant concordance to detect hypometabolic areas between both SPM analyses [kappa (K) = 0.59; p < 0.005] and between both SPM and visual analyses (K = 0.45; p < 0.005), in symptomatic (K = 0.74; p < 0.005) as in cryptogenic patients (K = 0.26; p < 0.01). The pediatric pseudo-control group dramatically improved specificity (97% vs. 89%; p < 0.0001) by increasing the positive predictive value (86% vs. 65%). Sensitivity remained acceptable although it was not better (79% vs. 87%, p = 0.039). The main impact was to reduce by 41% the number of hypometabolic cortical artifacts detected by SPM, especially in the younger epileptic patients, which is a key point in clinical practice. CONCLUSIONS This age-matched pseudo-control group is a way to optimize SPM analysis of FDG-PET in children with epilepsy. It might also be considered for other brain pathologies in pediatrics in the future.
Collapse
Affiliation(s)
- Frederique Archambaud
- Inserm, U663, Service de Neurologie et Métabolisme, Hôpital Necker, 149 rue de Sèvres, Paris, 75015, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bekelis K, Radwan TA, Desai A, Moses ZB, Thadani VM, Jobst BC, Bujarski KA, Darcey TM, Roberts DW. Subdural interhemispheric grid electrodes for intracranial epilepsy monitoring: feasibility, safety, and utility. J Neurosurg 2012; 117:1182-8. [DOI: 10.3171/2012.8.jns12258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intracranial monitoring for epilepsy has been proven to enhance diagnostic accuracy and provide localizing information for surgical treatment of intractable seizures. The authors investigated their experience with interhemispheric grid electrodes (IHGEs) to assess the hypothesis that they are feasible, safe, and useful.
Methods
Between 1992 and 2010, 50 patients underwent IHGE implantation (curvilinear double-sided 2 × 8 or 3 × 8 grids) as part of arrays for invasive seizure monitoring, and their charts were retrospectively reviewed.
Results
Of the 50 patients who underwent intracranial investigation with IHGEs, 38 eventually underwent resection of the seizure focus. These 38 patients had a mean age of 30.7 years (range 11–58 years), and 63% were males. Complications as a result of IHGE implantation consisted of transient leg weakness in 1 patient. Of all the patients who underwent resective surgery, 21 (55.3%) had medial frontal resections, 9 of whom (43%) had normal MRI results. Localization in all of these cases was possible only because of data from IHGEs, and the extent of resection was tailored based on these data. Of the 17 patients (44.7%) who underwent other cortical resections, IHGEs were helpful in excluding medial seizure onset. Twelve patients did not undergo resection because of nonlocalizable or multifocal disease; in 2 patients localization to the motor cortex precluded resection. Seventy-one percent of patients who underwent resection had Engel Class I outcome at the 2-year follow-up.
Conclusions
The use of IHGEs in intracranial epilepsy monitoring has a favorable risk profile and in the authors' experience proved to be a valuable component of intracranial investigation, providing the sole evidence for resection of some epileptogenic foci.
Collapse
Affiliation(s)
| | | | | | | | - Vijay M. Thadani
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Barbara C. Jobst
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Krzysztof A. Bujarski
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Terrance M. Darcey
- 1Section of Neurosurgery,
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - David W. Roberts
- 1Section of Neurosurgery,
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| |
Collapse
|
44
|
Jeong W, Chung CK, Kim JS. Localization value of magnetoencephalography interictal spikes in adult nonlesional neocortical epilepsy. J Korean Med Sci 2012; 27:1391-7. [PMID: 23166423 PMCID: PMC3492676 DOI: 10.3346/jkms.2012.27.11.1391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/22/2012] [Indexed: 12/01/2022] Open
Abstract
Few studies have included magnetoencephalography (MEG) when assessing the diagnostic value of presurgical modalities in a nonlesional epilepsy population. Here, we compare single photon emission computed tomography (SPECT), positron emission tomography (PET), video-EEG (VEEG), and MEG, with intracranial EEG (iEEG) to determine the value of individual modalities to surgical decisions. We analyzed 23 adult epilepsy patients with no abnormal MRI findings who had undergone surgical resection. Localization of individual presurgical tests was determined for hemispheric and lobar locations based on visual analysis. Each localization result was compared with the ictal onset zone (IOZ) defined by using iEEG. The highest to the lowest hemispheric concordance rates were MEG (83%) > ictal VEEG (78%) > PET (70%) > ictal SPECT (57%). The highest to lowest lobar concordance rates were ictal VEEG = MEG (65%) > PET (57%) > ictal SPECT (52%). Statistical analysis showed MEG to have a higher hemispheric concordance than that of ictal SPECT (P = 0.031). We analyzed the effects of MEG clustered-area resection on surgical outcome. Patients who had resection of MEG clusters showed a better surgical outcome than those without such resection (P = 0.038). It is suggested that MEG-based localization had the highest concordance with the iEEG-defined IOZ. Furthermore, MEG cluster resection has prognostic significance in predicting surgical outcome.
Collapse
Affiliation(s)
- Woorim Jeong
- MEG Center, Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Chun Kee Chung
- MEG Center, Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - June Sic Kim
- MEG Center, Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Research Center for Sensory Organs, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
Lazow SP, Thadani VM, Gilbert KL, Morse RP, Bujarski KA, Kulandaivel K, Roth RM, Scott RC, Roberts DW, Jobst BC. Outcome of frontal lobe epilepsy surgery. Epilepsia 2012; 53:1746-55. [DOI: 10.1111/j.1528-1167.2012.03582.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
McIntosh AM, Averill CA, Kalnins RM, Mitchell LA, Fabinyi GCA, Jackson GD, Berkovic SF. Long-term seizure outcome and risk factors for recurrence after extratemporal epilepsy surgery. Epilepsia 2012; 53:970-8. [DOI: 10.1111/j.1528-1167.2012.03430.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
Positron emission tomography (PET) has been widely used in the study of seizure disorders. As a research tool, PET has been used to determine the pathophysiology of different seizures disorders, prognostic and diagnostic information, and the response to various interventions. PET imaging has also been used clinically to help with the detection of seizure foci. With the continued development of a large array of radiopharmaceuticals that can evaluate all of the components of different neurotransmitter systems as well as cerebral blood flow and metabolism, PET imaging will continue to play a key role in research and clinical applications for seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
48
|
Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF. Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. J Neurosurg 2012; 116:1042-8. [PMID: 22304450 DOI: 10.3171/2012.1.jns111620] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Frontal lobe epilepsy (FLE) is the second-most common focal epilepsy syndrome, and seizures are medically refractory in many patients. Although various studies have examined rates and predictors of seizure freedom after resection for FLE, there is significant variability in their results due to patient diversity, and inadequate follow-up may lead to an overestimation of long-term seizure freedom. METHODS In this paper the authors report a systematic review and meta-analysis of long-term seizure outcomes and predictors of response after resection for intractable FLE. Only studies of at least 10 patients examining seizure freedom after FLE surgery with postoperative follow-up duration of at least 48 months were included. RESULTS Across 1199 patients in 21 studies, the overall rate of postoperative seizure freedom (Engel Class I outcome) was 45.1%. No trend in seizure outcomes across all studies was observed over time. Significant predictors of long-term seizure freedom included lesional epilepsy origin (relative risk [RR] 1.67, 95% CI 1.36-28.6), abnormal preoperative MRI (RR 1.64, 95% CI 1.32-2.08), and localized frontal resection versus more extensive lobectomy with or without an extrafrontal component (RR 1.71, 95% CI 1.26-2.43). Within lesional FLE cases, gross-total resection led to significantly improved outcome versus subtotal lesionectomy (RR 1.99, 95% CI 1.47-2.84). CONCLUSIONS These findings suggest that FLE patients with a focal and identifiable lesion are more likely to achieve seizure freedom than those with a more poorly defined epileptic focus. While seizure freedom can be achieved in the surgical treatment of medically refractory FLE, these findings illustrate the compelling need for improved noninvasive and invasive localization techniques in FLE.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, University of California, San Francisco, California 94143-0112, USA.
| | | | | | | | | |
Collapse
|
49
|
Duchowny M, Cross JH. Preoperative evaluation in children for epilepsy surgery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:829-839. [PMID: 22939069 DOI: 10.1016/b978-0-444-52899-5.00031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Michael Duchowny
- University of Miami Leonard Miller School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
50
|
Affiliation(s)
- Sebastian Bauer
- Department of Neurology, UKGM Marburg, Philipps University, Marburg, Germany.
| | | |
Collapse
|