1
|
Mughrabi IT, Gerber M, Jayaprakash N, Palandira SP, Al-Abed Y, Datta-Chaudhuri T, Smith C, Pavlov VA, Zanos S. Voltammetry in the spleen assesses real-time immunomodulatory norepinephrine release elicited by autonomic neurostimulation. J Neuroinflammation 2023; 20:236. [PMID: 37848937 PMCID: PMC10583388 DOI: 10.1186/s12974-023-02902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits. METHODS In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves. We defined the stimulus-elicited charge generated at the oxidation potential for NE (~ 0.88 V) as the "NE voltammetry signal" and quantified the dependence of the signal on NE dose and intensity of neurostimulation. We correlated the NE voltammetry signal with the anti-inflammatory effect of splenic nerve stimulation (SpNS) in a model of lipopolysaccharide- (LPS) induced endotoxemia, quantified as suppression of TNF release. RESULTS The NE voltammetry signal is proportional to the estimated peak NE blood concentration, with 0.1 μg/mL detection threshold. In response to SpNS, the signal increases within seconds, returns to baseline minutes later, and is blocked by interventions that deplete NE or inhibit NE release. The signal is elicited by efferent, but not afferent, electrical or optogenetic vagus nerve stimulation, and by splanchnic nerve stimulation. The magnitude of the signal during SpNS is inversely correlated with subsequent TNF suppression in endotoxemia and explains 40% of the variance in TNF measurements. CONCLUSIONS FSCV in the spleen provides a marker for real-time monitoring of anti-inflammatory activation of the splenic innervation during autonomic stimulation.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Michael Gerber
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Corey Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
2
|
Woo MS, Shafiq M, Fitzek A, Dottermusch M, Altmeppen H, Mohammadi B, Mayer C, Bal LC, Raich L, Matschke J, Krasemann S, Pfefferle S, Brehm TT, Lütgehetmann M, Schädler J, Addo MM, Schulze Zur Wiesch J, Ondruschka B, Friese MA, Glatzel M. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol 2023; 146:387-394. [PMID: 37452829 PMCID: PMC10412500 DOI: 10.1007/s00401-023-02612-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Theo Brehm
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marylyn M Addo
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Stathopoulou TR, Perkins J, Shearing PR, Aristovich K, Holder D. Organotopic organization of the porcine mid-cervical vagus nerve. Front Neurosci 2023; 17:963503. [PMID: 37205051 PMCID: PMC10185768 DOI: 10.3389/fnins.2023.963503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. Methods and results We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. Discussion Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more.
Collapse
Affiliation(s)
- Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Francesco Iacoviello
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | | | - Justin Perkins
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Paul R. Shearing
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
4
|
Lee HJ, Wi S, Park S, Oh BM, Seo HG, Lee WH. Exploratory Investigation of the Effects of Tactile Stimulation Using Air Pressure at the Auricular Vagus Nerve on Heart Rate Variability. Ann Rehabil Med 2023; 47:68-77. [PMID: 36599294 PMCID: PMC10020049 DOI: 10.5535/arm.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To explore the effects of tactile stimulation using air pressure at the auricular branch of the vagus nerve on autonomic activity in healthy individuals. METHODS Three types of tactile stimulation were used in this study: continuous low-amplitude, continuous high-amplitude, and pulsed airflow. The tactile stimulations were provided to the cymba concha to investigate autonomic activity in 22 healthy participants. The mean heart rate (HR) and parameters of HR variability, including the standard deviation of R-R intervals (SDNN) and root mean square of successive R-R interval differences (RMSSD) were compared at baseline, stimulation, and recovery periods. RESULTS Two-way repeated measures ANOVA indicated a significant main effect of time on HR (p=0.001), SDNN (p=0.003), and RMSSD (p<0.001). These parameters showed significant differences between baseline and stimulation periods and baseline and recovery periods in the post-hoc analyses. There were no significant differences in the changes induced by stimulation type and the interaction between time and stimulation type for all parameters. One-way repeated measures ANOVA showed that HR, SDNN, and RMSSD did not differ significantly among the three time periods during sham stimulation. CONCLUSION Parasympathetic activity can be enhanced by auricular tactile stimulation using air pressure, targeting the cymba concha. Further studies are warranted to investigate the optimal stimulation parameters for potential clinical significance.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Soohyun Wi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sungwoo Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.,Institute on Aging, Seoul National University, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Hyung Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Castillo G, Gaitero L, Fonfara S, Czura CJ, Monteith G, James F. Transcutaneous Cervical Vagus Nerve Stimulation Induces Changes in the Electroencephalogram and Heart Rate Variability of Healthy Dogs, a Pilot Study. Front Vet Sci 2022; 9:878962. [PMID: 35769324 PMCID: PMC9234651 DOI: 10.3389/fvets.2022.878962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous cervical vagus nerve stimulation (tcVNS) has been used to treat epilepsy in people and dogs. Objective electroencephalographic (EEG) and heart rate variability (HRV) data associated with tcVNS have been reported in people. The question remained whether EEG and electrocardiography (ECG) would detect changes in brain activity and HRV, respectively, after tcVNS in dogs. Simultaneous EEG and Holter recordings, from 6 client-owned healthy dogs were compared for differences pre- and post- tcVNS in frequency band power analysis (EEG) and HRV. The feasibility and tolerance of the patients to the tcVNS were also noted. In a general linear mixed model, the average power per channel per frequency band was found to be significantly different pre- and post-stimulation in the theta (p = 0.02) and alpha bands (p = 0.04). The pooled power spectral analysis detected a significant decrease in the alpha (p < 0.01), theta (p = 0.01) and beta (p = 0.035) frequencies post-stimulation. No significant interaction was observed between dog, attitude, and stimulation in the multivariate model, neither within the same dog nor between individuals. There was a significant increase in the HRV measured by the standard deviation of the inter-beat (SDNN) index (p < 0.01) and a decrease in mean heart rate (p < 0.01) after tcVNS. The tcVNS was found to be well-tolerated. The results of this pilot study suggest that EEG and ECG can detect changes in brain activity and HRV associated with tcVNS in healthy dogs. Larger randomized controlled studies are required to confirm the results of this study and to assess tcVNS potential therapeutic value.
Collapse
Affiliation(s)
- Gibrann Castillo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Luis Gaitero
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Fiona James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- *Correspondence: Fiona James
| |
Collapse
|
6
|
Tarotin I, Mastitskaya S, Ravagli E, Perkins JD, Holder D, Aristovich K. Overcoming temporal dispersion for measurement of activity-related impedance changes in unmyelinated nerves. J Neural Eng 2022; 19. [PMID: 35413701 DOI: 10.1088/1741-2552/ac669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Objective.Fast neural electrical impedance tomography is an imaging technique that has been successful in visualising electrically evoked activity of myelinated fibres in peripheral nerves by measurement of the impedance changes (dZ) accompanying excitation. However, imaging of unmyelinated fibres is challenging due to temporal dispersion (TP) which occurs due to variability in conduction velocities of the fibres and leads to a decrease of the signal below the noise with distance from the stimulus. To overcome TP and allow electrical impedance tomography imaging in unmyelinated nerves, a new experimental and signal processing paradigm is required allowing dZ measurement further from the site of stimulation than compound neural activity is visible. The development of such a paradigm was the main objective of this study.Approach.A finite element-based statistical model of TP in porcine subdiaphragmatic nerve was developed and experimentally validatedex-vivo. Two paradigms for nerve stimulation and processing of the resulting data-continuous stimulation and trains of stimuli, were implemented; the optimal paradigm for recording dispersed dZ in unmyelinated nerves was determined.Main results.While continuous stimulation and coherent spikes averaging led to higher signal-to-noise ratios (SNRs) at close distances from the stimulus, stimulation by trains was more consistent across distances and allowed dZ measurement at up to 15 cm from the stimulus (SNR = 1.8 ± 0.8) if averaged for 30 min.Significance.The study develops a method that for the first time allows measurement of dZ in unmyelinated nerves in simulation and experiment, at the distances where compound action potentials are fully dispersed.
Collapse
Affiliation(s)
- Ilya Tarotin
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Justin D Perkins
- Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Xie YL, Wang S, Wu Q, Chen X. Vagus nerve stimulation for upper limb motor impairment after ischemic stroke: A meta-analysis. Medicine (Baltimore) 2021; 100:e27871. [PMID: 34797327 PMCID: PMC8601340 DOI: 10.1097/md.0000000000027871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Upper limb motor impairment is a common complication following stroke. Although few treatments are used to enhance motor function, still approximately 60% of survivors are left with upper limb motor impairment. Several studies have investigated vagus nerve stimulation (VNS) as a potential technique for upper limb function. However, the efficacy and safety of VNS on upper limb motor function after ischemic stroke have not been systematically evaluated. Therefore, a meta-analysis based on randomized controlled trial will be conducted to determine the efficacy and safety of VNS on upper limb motor function after ischemic stroke. METHOD We searched PUBMED, MEDLINE, EMBASE, Cochrane Library, Web of Science, China National Knowledge Infrastructure Library (CNKI), and Wan Fang Database until April 1, 2021. RESULTS Six studies consisting of 234 patients were included in the analysis. Compared with control group, VNS improved upper limb function via Fugl-Meyer Assessment-Upper Extremity (mean difference = 3.26, 95% confidence interval [CI] [2.79, 3.74], P < .00001) and Functional Independence Measurement (mean difference = 6.59, 95%CI [5.77, 7.41], P < .00001), but showed no significant change on Wolf motor function test (standardized mean difference = 0.31, 95%CI [-0.15, 0.77], P = .19). The number of adverse events were not significantly different between the studied groups (risk ratio = 1.05, 95%CI [0.85, 1.31], P = .64). CONCLUSION VNS resulted in improvement of motor function in patients after ischemic stroke, especially in the sub-chronic stage. Moreover, compared with implanted VNS, transcutaneous VNS exhibited greater efficacy in poststroke patients. Based on this meta-analysis, VNS could be a feasible and safe therapy for upper limb motor impairment.
Collapse
|
8
|
Yaghouby F, Jang K, Hoang U, Asgari S, Vasudevan S. Sex Differences in Vagus Nerve Stimulation Effects on Rat Cardiovascular and Immune Systems. Front Neurosci 2020; 14:560668. [PMID: 33240036 PMCID: PMC7677457 DOI: 10.3389/fnins.2020.560668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background Investigations into the benefits of vagus nerve stimulation (VNS) through pre-clinical and clinical research have led to promising findings for treating several disorders. Despite proven effectiveness of VNS on conditions such as epilepsy and depression, understanding of off-target effects and contributing factors such as sex differences can be beneficial to optimize therapy design. New Methods In this article, we assessed longitudinal effects of VNS on cardiovascular and immune systems, and studied potential sex differences using a rat model of long-term VNS. Rats were implanted with cuff electrodes around the left cervical vagus nerve for VNS, and wireless physiological monitoring devices for continuous monitoring of cardiovascular system using electrocardiogram (ECG) signals. ECG morphology and heart rate variability (HRV) features were extracted to assess cardiovascular changes resulting from VNS in short-term and long-term timescales. We also assessed VNS effects on expression of inflammatory cytokines in blood during the course of the experiment. Statistical analysis was performed to compare results between Treatment and Sham groups, and between male and female animals from Treatment and Sham groups. Results Considerable differences between male and female rats in cardiovascular effects of VNS were observed in multiple cardiovascular features. However, the effects seemed to be transient with approximately 1-h recovery after VNS. While short-term cardiovascular effects were mainly observed in male rats, females in general showed more significant long-term effects even after VNS stopped. We did not observe notable changes or sex differences in systemic cytokine levels resulting from VNS. Comparison With Existing Methods Compared to existing methods, our study design incorporated wireless physiological monitoring and systemic blood cytokine level analysis, along with long-term VNS experiments in unanesthetized rats to study sex differences. Conclusion The contribution of sex differences for long-term VNS off-target effects on cardiovascular and immune systems was assessed using awake behaving rats. Although VNS did not change the concentration of inflammatory biomarkers in systemic circulation for male and female rats, we observed significant differences in cardiovascular effects of VNS characterized using ECG morphology and HRV analyses.
Collapse
Affiliation(s)
- Farid Yaghouby
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Kee Jang
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Uyen Hoang
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Sepideh Asgari
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| | - Srikanth Vasudevan
- U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, United States
| |
Collapse
|
9
|
Ahmed U, Chang YC, Cracchiolo M, Lopez MF, Tomaio JN, Datta-Chaudhuri T, Zanos TP, Rieth L, Al-Abed Y, Zanos S. Anodal block permits directional vagus nerve stimulation. Sci Rep 2020; 10:9221. [PMID: 32513973 PMCID: PMC7280203 DOI: 10.1038/s41598-020-66332-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
Vagus nerve stimulation (VNS) is a bioelectronic therapy for disorders of the brain and peripheral organs, and a tool to study the physiology of autonomic circuits. Selective activation of afferent or efferent vagal fibers can maximize efficacy and minimize off-target effects of VNS. Anodal block (ABL) has been used to achieve directional fiber activation in nerve stimulation. However, evidence for directional VNS with ABL has been scarce and inconsistent, and it is unknown whether ABL permits directional fiber activation with respect to functional effects of VNS. Through a series of vagotomies, we established physiological markers for afferent and efferent fiber activation by VNS: stimulus-elicited change in breathing rate (ΔBR) and heart rate (ΔHR), respectively. Bipolar VNS trains of both polarities elicited mixed ΔHR and ΔBR responses. Cathode cephalad polarity caused an afferent pattern of responses (relatively stronger ΔBR) whereas cathode caudad caused an efferent pattern (stronger ΔHR). Additionally, left VNS elicited a greater afferent and right VNS a greater efferent response. By analyzing stimulus-evoked compound nerve potentials, we confirmed that such polarity differences in functional responses to VNS can be explained by ABL of A- and B-fiber activation. We conclude that ABL is a mechanism that can be leveraged for directional VNS.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Jacquelyn N Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
10
|
Johnson EC, Helen Cross J, Reilly C. Physical activity in people with epilepsy: A systematic review. Epilepsia 2020; 61:1062-1081. [DOI: 10.1111/epi.16517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Emma C. Johnson
- Research Department Young Epilepsy Surrey UK
- Great Ormond Street Hospital for Children National Health Service Trust London UK
| | - J. Helen Cross
- Research Department Young Epilepsy Surrey UK
- Great Ormond Street Hospital for Children National Health Service Trust London UK
- University College London Great Ormond Street Institute of Child Health London UK
| | - Colin Reilly
- Research Department Young Epilepsy Surrey UK
- University College London Great Ormond Street Institute of Child Health London UK
| |
Collapse
|
11
|
de la Garza MA, Poldiak D, Shade R, Salinas FS, Papanastassiou AM, Szabó CÁ. Cardiac changes in epileptic baboons with high-frequency microburst VNS therapy: A pilot study. Epilepsy Res 2019; 155:106156. [PMID: 31284120 PMCID: PMC6684821 DOI: 10.1016/j.eplepsyres.2019.106156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
The epileptic baboon provides a natural model of idiopathic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). We sought to evaluate autonomic differences, including heart rate (HR), heart rate variability (HRV) and corrected QT-duration (QTc) between two epileptic (EB1, EB2) and one control (CB) baboon, and the autonomic effects of high-frequency (HF) microburst Vagal Nerve Stimulation (VNS) Therapy in the epileptic baboons. At baseline, EB2's HR was increased over both EB1 and CB, and EB1's HRV was decreased compared to the others. QTc-intervals were significantly prolonged in both epileptic baboons. EB1 became free of generalized tonic-clonic seizures (GTCS) with VNS therapy, whereas EB2's GTCS were reduced by a third. HR decreased in both epileptic baboons, but while HRV improved in EB1, it decreased in EB2. EB2 succumbed to SUDEP after 9 months. This pilot study demonstrates abnormalities in HR, HRV and QTc-intervals in epileptic baboons. HF VNS Therapy demonstrated different effects on HRV in the two epileptic baboons, which, in addition to persistent GTCS and elevated HR, may have contributed to SUDEP risk in EB2. Future studies are needed to establish normative values for HRV and determine variability of HR, HRV and QTc-intervals in epileptic baboons.
Collapse
Affiliation(s)
- Melissa A de la Garza
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.
| | - David Poldiak
- emka TECHNOLOGIES, Inc., Falls Church, VA, United States
| | - Robert Shade
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Felipe S Salinas
- Research Imaging Institute, UT Health San Antonio, San Antonio, TX, United States; South Texas Veterans Health Care System, San Antonio, TX, United States
| | | | - C Ákos Szabó
- Departments of Neurology and South Texas Comprehensive Epilepsy Center, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Garamendi-Ruiz I, Gómez-Esteban JC. Cardiovascular autonomic effects of vagus nerve stimulation. Clin Auton Res 2017; 29:183-194. [DOI: 10.1007/s10286-017-0477-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
|
13
|
Garamendi I, Acera M, Agundez M, Galbarriatu L, Marinas A, Pomposo I, Valle E, Palma JA, Gomez-Esteban JC. Cardiovascular autonomic and hemodynamic responses to vagus nerve stimulation in drug-resistant epilepsy. Seizure 2016; 45:56-60. [PMID: 27919011 DOI: 10.1016/j.seizure.2016.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Vagus nerve stimulation (VNS) is used as an adjunctive therapy for treating patients with drug-resistant epilepsy. The impact of VNS on cardiovascular autonomic function remains to be fully understood. We determined changes in cardiovascular sympathetic and parasympathetic, and hemodynamic function in association with VNS in patients with drug-resistant focal epilepsy. METHOD Longitudinal (n=15) evaluation of beat-to-beat blood pressure (BP) and heart rate variability (HRV), baroreflex sensibility, and hemodynamic function performed before VNS implantation, 6-months after implantation, and a mean of 12-months after implantation; and cross-sectional study (n=14) of BP and HR variability and baroreflex sensitivity during VNS on and VNS off. RESULTS In the longitudinal study, no differences were observed between the baseline, the 6-month visit, and the final visit in markers of parasympathetic cardiovagal tone or baroreflex sensitivity. Systolic and diastolic BP upon 5-min of head-up tilt increased significantly after VNS implantation (Systolic BP: -16.69±5.65mmHg at baseline, 2.86±16.54mmHg at 6-month, 12.25±12.95mmHg at final visit, p=0.01; diastolic BP: -14.84±24.72mmHg at baseline, 0.86±16.97mmHg at 6-month, and 17±12.76mmHg at final visit, p=0.001). CONCLUSION VNS does not seem to produce alterations in parasympathetic cardiovagal tone, regardless of the laterality of the stimulus. We observed a slight increase in sympathetic cardiovascular modulations. These changes had no significant hemodynamic implications. These findings contribute to the understanding of potential mechanisms of action of VNS.
Collapse
Affiliation(s)
- Iñigo Garamendi
- Epilepsy Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain.
| | - Marian Acera
- Epilepsy Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain
| | - Marta Agundez
- Epilepsy Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain
| | | | - Ainhoa Marinas
- Epilepsy Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain
| | - Iñigo Pomposo
- Department of Neurosurgery, Cruces University Hospital, Spain
| | - Elena Valle
- Epilepsy Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain
| | - Jose-Alberto Palma
- Dysautonomia Center, Department of Neurology, New York University Medical Center, New York, NY, USA
| | - Juan C Gomez-Esteban
- Autonomic and Movement Disorders Unit, Biocruces Research Institute, Barakado, Bizkaia, Spain; Department of Neurosciences, University of Basque Country, Leioa, Spain.
| |
Collapse
|
14
|
Sivakumar SS, Namath AG, Tuxhorn IE, Lewis SJ, Galán RF. Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy. J Neurophysiol 2016; 115:1988-99. [PMID: 26888110 DOI: 10.1152/jn.01120.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that epilepsy affects the activity of the autonomic nervous system even in the absence of seizures, which should manifest as differences in heart rate variability (HRV) and cardiac cycle. To test this hypothesis, we investigated ECG traces of 91 children and adolescents with generalized epilepsy and 25 neurologically normal controls during 30 min of stage 2 sleep with interictal or normal EEG. Mean heart rate (HR) and high-frequency HRV corresponding to respiratory sinus arrhythmia (RSA) were quantified and compared. Blood pressure (BP) measurements from physical exams of all subjects were also collected and analyzed. RSA was on average significantly stronger in patients with epilepsy, whereas their mean HR was significantly lower after adjusting for age, body mass index, and sex, consistent with increased parasympathetic tone in these patients. In contrast, diastolic (and systolic) BP at rest was not significantly different, indicating that the sympathetic tone is similar. Remarkably, five additional subjects, initially diagnosed as neurologically normal but with enhanced RSA and lower HR, eventually developed epilepsy, suggesting that increased parasympathetic tone precedes the onset of epilepsy in children. ECG waveforms in epilepsy also displayed significantly longer TP intervals (ventricular diastole) relative to the RR interval. The relative TP interval correlated positively with RSA and negatively with HR, suggesting that these parameters are linked through a common mechanism, which we discuss. Altogether, our results provide evidence for imbalanced autonomic function in generalized epilepsy, which may be a key contributing factor to sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Siddharth S Sivakumar
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Amalia G Namath
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ingrid E Tuxhorn
- Division of Pediatric Epilepsy, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Stephen J Lewis
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|