1
|
Fotedar N, Lüders HO. Nocturnal paroxysmal dystonia to sleep-related hypermotor epilepsy: A critical review. Epilepsia 2024; 65:2506-2518. [PMID: 39046177 DOI: 10.1111/epi.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Sleep-related paroxysmal motor episodes (SPMEs) have been described by various names, including nocturnal paroxysmal dystonia, nocturnal frontal lobe epilepsy (NFLE), and sleep-related hypermotor epilepsy. The underlying pathophysiology has been debated over the years, with these episodes assumed to be a form of paroxysmal dystonia or parasomnia versus a form of epilepsy. In most studies published on SPMEs and their variants (paroxysmal arousals, nocturnal paroxysmal dystonia, and episodic nocturnal wanderings) in the early 1990s, the authors speculated on the pathophysiology but did not commit to one idea. It was not until the mid-1990s that epilepsy became the leading prospect. We performed a narrative review of the major articles that have described this syndrome in a chronological fashion. We identified three eras, 1972-1993, 1994-1998, and 1999 to the present, each era marked by a landmark study. Our critical review of these early studies shows that the neurophysiological data supporting epilepsy as the sole basis for all SPME cases is very weak. In 1994-1995, a familial pattern of this syndrome was described and the term autosomal dominant NFLE was coined, with the authors claiming that all their patients had a form of frontal lobe epilepsy. With the exception of a few reference cases, the neurophysiological evidence that all patients had frontal lobe epilepsy was very weak. Compared to articles published on surgical series of frontal lobe epilepsy, the percentage of SPME cases with positive interictal/ictal electroencephalograms remained very low, seriously questioning the epileptic basis of the syndrome. Our critical review and analysis of the published literature shows that the evidence presented in favor of SPMEs being a homogenous focal epilepsy syndrome is very weak. Neurologists must recognize that SPMEs could be a form of movement disorder, parasomnia, or epilepsy. We recommend a pragmatic semiology-based classification of these episodes using the four-dimensional classification system.
Collapse
Affiliation(s)
- Neel Fotedar
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hans O Lüders
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
3
|
Henning O, Markhus R, Dornish EEJ, Kostov KH, Heimisdottir F, Nakken KO. Strange episodes during sleep - epilepsy or parasomnia? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2024; 144:23-0579. [PMID: 38506017 DOI: 10.4045/tidsskr.23.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
In some forms of epilepsy, the seizures occur almost exclusively during sleep. This is particularly the case with hypermotor frontal lobe seizures. Clinically it can be difficult to distinguish such seizures from parasomnias and psychogenic non-epileptic seizures. This clinical review article aims to highlight the importance of making the correct diagnosis, as these conditions require completely different treatment.
Collapse
Affiliation(s)
- Oliver Henning
- EEG-laboratoriet, Spesialsykehuset for epilepsi, Oslo universitetssykehus
| | - Rune Markhus
- EEG-laboratoriet, Spesialsykehuset for epilepsi, Oslo universitetssykehus
| | | | | | | | - Karl O Nakken
- Spesialsykehuset for epilepsi, Oslo universitetssykehus
| |
Collapse
|
4
|
Kim W, Lee H, Lee KW, Yang E, Kim S. The Association of Nocturnal Seizures and Interictal Cardiac/Central Autonomic Function in Frontal Lobe Epilepsy: Heart Rate Variability and Central Autonomic Network Analysis. Neuropsychiatr Dis Treat 2023; 19:2081-2091. [PMID: 37810949 PMCID: PMC10559795 DOI: 10.2147/ndt.s426263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Patients with epilepsy frequently experience autonomic dysfunction, closely related to sudden unexplained death in epilepsy (SUDEP). SUDEP occurs most often at night or during sleep, and frequent nocturnal seizures are an established risk factor. This study investigated the influence of nocturnal seizures on autonomic dysfunction in epilepsy. Patients and Methods This retrospective study enrolled frontal lobe epilepsy (FLE) patients who performed 24-hour EEG monitoring. All participants were divided into nocturnal FLE (NFLE, > 90% of seizures occurring during sleep) or diurnal FLE (DFLE) groups. EEG and ECG signals were simultaneously obtained during waking and sleep stages. EEG current density source and connectivity analysis of the autonomic network were performed. ECG was analyzed across time and frequency domains heart rate variability (HRV) analysis method was used. The obtained parameters were compared between the NFLE and DFLE groups. Results Fifteen NFLE and 16 DFLE patients were enrolled with no significant difference in age, sex, disease duration, seizure frequency, or the number of anti-seizure medications between the two groups. During sleep, a decrease in HRV parameters and an increase of the beta-1 (13-22 Hz) current source density power in the bilateral paracentral lobule (BA4,5,6), precuneus (BA7), and cingulate (BA31) were observed in the NFLE group compared to DFLE group. The NFLE group also showed hyperconnectivity in the central autonomic (12 edges distributed over 10 nodes), sympathetic (2 edges distributed over 3 nodes), and parasympathetic (4 edges distributed over 6 nodes) beta-1 frequency band networks during sleep. During wakefulness, central and cardiac autonomic variables were not significantly different between the NFLE and DFLE groups. Conclusion Interictal cardiac and central autonomic dysfunction occurred simultaneously and can be attributed to the brain-heart autonomic axis. Our findings suggest that nocturnal seizures may contribute to interictal autonomic dysfunction during sleep in people with epilepsy.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjo Lee
- Department of Neurology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjin Yang
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seonghoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
El Youssef N, Marchi A, Bartolomei F, Bonini F, Lambert I. Sleep and epilepsy: A clinical and pathophysiological overview. Rev Neurol (Paris) 2023; 179:687-702. [PMID: 37598088 DOI: 10.1016/j.neurol.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
The interaction between sleep and epilepsy is complex. A better understanding of the mechanisms linking sleep and epilepsy appears increasingly important as it may improve diagnosis and therapeutic strategies in patients with epilepsy. In this narrative review, we aim to (i) provide an overview of the physiological and pathophysiological processes linking sleep and epilepsy; (ii) present common sleep disorders in patients with epilepsy; (iii) discuss how sleep and sleep disorders should be considered in new therapeutic approaches to epilepsy such as neurostimulation; and (iv) present the overall nocturnal manifestations and differential diagnosis between epileptic seizures and parasomnia.
Collapse
Affiliation(s)
- N El Youssef
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - A Marchi
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - F Bartolomei
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - F Bonini
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - I Lambert
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France.
| |
Collapse
|
6
|
Wan X, Wang W, Wu X, Tan Q, Su X, Zhang S, Yang X, Li S, Shao H, Yue Q, Gong Q. Progressive structural damage in sleep-related hypermotor epilepsy. J Neurosci Res 2023. [PMID: 37183389 DOI: 10.1002/jnr.25203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
This study aimed to explore the alterations in gray matter volume (GMV) based on high-resolution structural data and the temporal precedence of structural alterations in patients with sleep-related hypermotor epilepsy (SHE). After preprocessing of T1 structural images, the voxel-based morphometry and source-based morphometry (SBM) methods were applied in 60 SHE patients and 56 healthy controls to analyze the gray matter volumetric alterations. Furthermore, a causal network of structural covariance (CaSCN) was constructed using Granger causality analysis based on structural data of illness duration ordering to assess the causal impact of structural changes in abnormal gray matter regions. The GMVs of SHE patients were widely reduced, mainly in the bilateral cerebellums, fusiform gyri, the right angular gyrus, the right postcentral gyrus, and the left parahippocampal gyrus. In addition to those regions, the results of the SBM analysis also found decreased GMV in the bilateral frontal lobes, precuneus, and supramarginal gyri. The analysis of CaSCN showed that along with disease progression, the cerebellum was the prominent node that tended to affect other brain regions in SHE patients, while the frontal lobe was the transition node and the supramarginal gyrus was the prominent node that may be easily affected by other brain regions. Our study found widely affected regions of decreased GMVs in SHE patients; these regions underlie the morphological basis of epileptic networks, and there is a temporal precedence relationship between them.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weina Wang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Hanbing Shao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| |
Collapse
|
7
|
Wang R, Wang H, Shi L, Han C, Che Y. Epileptic Seizure Detection Using Geometric Features Extracted from SODP Shape of EEG Signals and AsyLnCPSO-GA. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1540. [PMID: 36359630 PMCID: PMC9689850 DOI: 10.3390/e24111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Epilepsy is a neurological disorder that is characterized by transient and unexpected electrical disturbance of the brain. Seizure detection by electroencephalogram (EEG) is associated with the primary interest of the evaluation and auxiliary diagnosis of epileptic patients. The aim of this study is to establish a hybrid model with improved particle swarm optimization (PSO) and a genetic algorithm (GA) to determine the optimal combination of features for epileptic seizure detection. First, the second-order difference plot (SODP) method was applied, and ten geometric features of epileptic EEG signals were derived in each frequency band (δ, θ, α and β), forming a high-dimensional feature vector. Secondly, an optimization algorithm, AsyLnCPSO-GA, combining a modified PSO with asynchronous learning factor (AsyLnCPSO) and the genetic algorithm (GA) was proposed for feature selection. Finally, the feature combinations were fed to a naïve Bayesian classifier for epileptic seizure and seizure-free identification. The method proposed in this paper achieved 95.35% classification accuracy with a tenfold cross-validation strategy when the interfrequency bands were crossed, serving as an effective method for epilepsy detection, which could help clinicians to expeditiously diagnose epilepsy based on SODP analysis and an optimization algorithm for feature selection.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Haodong Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Lianshuan Shi
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| |
Collapse
|
8
|
Toprani S, Meador KJ, Robalino CP, Brown CA, Matthews AG, Gerard EE, Penovich P, Gedzelman E, Cavitt J, Hwang ST, Kalayjian LA, Sam M, Pack A, Pennell PB. Effect of Epilepsy on Sleep Quality During Pregnancy and Postpartum. Neurology 2022; 99:e1584-e1597. [PMID: 35853745 PMCID: PMC9559942 DOI: 10.1212/wnl.0000000000200959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study seeks to understand how sleep is affected in pregnant women with epilepsy (WWE) relative to healthy pregnant women during pregnancy and postpartum and to nonpregnant WWE during comparative periods. Sleep affects maternal health and mood during pregnancy. Maternal sleep disturbances are related to poor fetal growth and increased fetal deaths. Epilepsy is the most common neurologic condition in pregnancy. Sleep disruption can worsen epileptic seizures. The interplay between epilepsy, pregnancy, and sleep is poorly understood. METHODS The Maternal Outcomes and Neurodevelopmental Effects of Antiepileptic Drugs (MONEAD) study is an NIH-funded, prospective, observational, multicenter study, enrolling women from December 2012 through January 2016. Sleep quality was assessed using the average Pittsburgh Sleep Quality Index collected during pregnancy, postpartum, or analogous periods. Sleep scores range from 0 to 21 with higher scores indicating worse sleep quality; scores >5 are associated with poor sleep quality. RESULTS Of 351 pregnant WWE, 105 healthy pregnant women, and 109 nonpregnant WWE enrolled in the MONEAD study, data from 241 pregnant WWE, 74 healthy pregnant women, and 84 nonpregnant WWE were analyzed. Pregnant WWE had worse sleep (a higher mean sleep score) during pregnancy compared with healthy pregnant women in unadjusted analysis (p = 0.006), but no longer significant in adjusted analysis (p = 0.062); pregnant WWE (least square mean sleep score [95% CI] = 5.8 [5.5-6.1]) vs healthy pregnant women (5.1 [4.6-5.7]). During postpartum period, WWE (5.6 [5.4-5.9]) had similarly impaired sleep compared with healthy women (5.7 [5.2-6.2]; adjusted p = 0.838). Sleep was significantly worse in pregnant WWE vs nonpregnant WWE (for comparable period) in pregnancy and postpartum in unadjusted and adjusted analyses; adjusted scores for pregnant WWE in pregnancy (5.7 [5.4-6.0]) and those in postpartum (5.7 [5.4-6.0]) compared with those for nonpregnant WWE (4.7 [4.2-5.3]; p = 0.002) and (4.1 [3.6-4.7]; p < 0.001), respectively. Sleep quality between pregnancy and postpartum varied only in healthy pregnant women (change in mean score = 0.8 [0.2-1.3]; p = 0.01), whose sleep was worse in postpartum. DISCUSSION Pregnant WWE had worse sleep during pregnancy and postpartum period than nonpregnant WWE during comparable periods in the adjusted analysis. TRIAL REGISTRATION INFORMATION The study is registered at ClinicalTrials.gov as NCT01730170.
Collapse
Affiliation(s)
- Sheela Toprani
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA.
| | - Kimford J Meador
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Chelsea P Robalino
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Carrie Anne Brown
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Abigail G Matthews
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Elizabeth E Gerard
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Patricia Penovich
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Evan Gedzelman
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Jennifer Cavitt
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Sean T Hwang
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Laura A Kalayjian
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Maria Sam
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Alison Pack
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| | - Page B Pennell
- From the Stanford University (S.T., K.J.M.), Palo Alto, CA; Emmes (C.P.R., C.A.B., A.G.M.), Rockville, MD; Northwestern University (E.E.G.), Chicago, IL; Minnesota Epilepsy Group (P.P.), Roseville; Emory University (E.G.), Atlanta, GA; University of Cincinnati (J.C.), OH; Northwell Health (S.T.H.), New Hyde Park, NY; University of Southern California (L.A.K.), Los Angeles; Wake Forest University Health Sciences (M.S.), Winston-Salem, NC; Columbia University (A.P.), New York; and University of Pittsburgh Medical Center (P.B.P.), PA
| |
Collapse
|
9
|
Villa C, Arrigoni F, Rivellini E, Lavitrano M, De Gioia L, Ferini-Strambi L, Combi R. Exome Sequencing in an ADSHE Family: VUS Identification and Limits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12548. [PMID: 36231847 PMCID: PMC9565017 DOI: 10.3390/ijerph191912548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is the familial form of a focal epilepsy characterized by hyperkinetic focal seizures, mainly arising during non-rapid eye movements (NREM) sleep. Mutations associated with ADSHE account for a small proportion of the genetically determined cases, suggesting the existence of other disease-causing genes. Here, we reported the results obtained by performing trio-based whole-exome sequencing (WES) in an Italian family showing ADSHE and investigated the structural impact of putative variants by in silico modeling analysis. We identified a p.(Trp276Gly) variant in MOXD1 gene encoding the monooxigenase DBH like 1 protein, cosegregating with the disease and annotated as VUS under the ACMG recommendations. Structural bioinformatic analysis predicted a high destabilizing effect of this variant, due to the loss of important hydrophilic bonds and an expansion of cavity volume in the protein hydrophobic core. Although our data support a functional effect of the p.(Trp276Gly) variant, we highlight the need to identify additional families carrying MOXD1 mutations or functional analyses in suitable models to clarify its role in ADSHE pathogenesis. Moreover, we discuss the importance of VUS reporting due to the low rate of pathogenic variant identification by NGS in epilepsy and for future reinterpretation studies.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, 20127 Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Sleep and Epilepsy. Neurol Clin 2022; 40:769-783. [DOI: 10.1016/j.ncl.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Pelliccia V, Avanzini P, Rizzi M, Caruana F, Tassi L, Francione S, Gozzo F, Mariani V, d'Orio P, Castana L, Mai R, Terzaghi M, Nobili L, Sartori I. Association Between Semiology and Anatomo-Functional Localization in Patients With Cingulate Epilepsy: A Cohort Study. Neurology 2022; 98:e2211-e2223. [PMID: 35190463 DOI: 10.1212/wnl.0000000000200145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cingulate epilepsy (CE) is a rare and challenging type of focal epilepsy, due to the polymorphic semiology of the seizures, mimicking other types of epilepsy, and the limited utility of scalp-EEG. METHODS We selected consecutive drug-resistant subjects with CE who were seizure-free after surgery, with seizure onset zone (SOZ) confirmed in the CC (cingulate cortex) by histology and/or SEEG. We analysed subjective and objective ictal manifestations using video recordings and correlated semeiology with anatomical CC subregions (anterior, anterior middle, posterior middle and posterior) localization of SOZ. RESULTS We analysed 122 seizures in 57 patients. Seizures were globally characterized by complex behaviors, typically natural seeming and often accompanied by emotional components.All objective ictal variables considered (pronation of the body or getting up from a lying/sitting position, tonic/dystonic posturing, hand movements, asymmetry, vocalizations, fluidity and repetitiveness of motor manifestations, awareness and emotional and autonomic components) were differently distributed among CC subregions (p<.05) Along the rostro-caudal axis fluidity and repetitiveness of movement, vocalizations, body pronation and emotional components decrease anterior-posteriorly, while tonic/dystonic postures, signs of lateralization and awareness increase.Vestibular and asymmetric somatosensory, somatosensory and epigastric and enteroceptive/autonomic symptoms were distributed differently among CC subregions (p<.05). Along the rostro-caudal axis vestibular, somatosensory and somatosensory asymmetric symptoms increase anterior-posterior. DISCUSSION CE is characterized by a spectrum of semeiological manifestations with a topographic distribution. CE semiology could indicate which cingulate sector is mainly involved.
Collapse
Affiliation(s)
- Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | | | - Michele Rizzi
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | | | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Stefano Francione
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Francesca Gozzo
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | | | - Piergiorgio d'Orio
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy.,CNR Institute of Neuroscience, Parma, Italy
| | - Laura Castana
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Roberto Mai
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Michele Terzaghi
- Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| |
Collapse
|
12
|
Arenas-Cabrera C, Baena-Palomino P, Sánchez-García J, Oliver-Romero M, Chocrón-González Y, Caballero-Martínez M. Sleep-related hypermotor epilepsy with genetic diagnosis: description of a case series in a tertiary referral hospital. J Cent Nerv Syst Dis 2022; 14:11795735211060114. [PMID: 35177946 PMCID: PMC8844731 DOI: 10.1177/11795735211060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Sleep-related hypermotor epilepsy (SHE) is characterized by asymmetric tonic/dystonic posturing and/or complex hyperkinetic seizures occurring mostly during sleep. Experts agree that SHE should be considered a unique syndrome. PURPOSE We present 8 cases of SHE for which a genetic diagnosis was carried out using a multigene epilepsy panel. Methods We retrospectively screened familial and isolated cases of SHE in current follow-ups in our center. Results We included 8 (5F/3M) patients, 5 of whom had a positive familial history of epilepsy. We identified a pathogenic mutation in CHRNA4, CHRNB2, and 3 different pathogenic changes in DEPDC5. Conclusions Awareness of SHE needs to be raised, given its implications for finding an appropriate treatment, its relationship to cognitive and psychiatric comorbidities, and the opportunity to prevent the disorder in the descendants. We present our series with their clinical, radiological, electroencephalographic, and genetic characteristics, in which we found 3 pathogenic mutations in the DEPDC5 gene but not previously reported in the literature. Identifying new pathogenic mutations or new genes responsible for SHE will facilitate a better understanding of the disease and a correct genetic counseling.
Collapse
Affiliation(s)
| | | | - Javier Sánchez-García
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Sevilla (IBIS), University Hospital Virgen Del Rocío/CSIC/University of Sevilla, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Sevilla, Spain
| | - María Oliver-Romero
- Department of Neurosurgery, University Hospital Virgen Del Rocío, Sevilla, Spain
| | | | | |
Collapse
|
13
|
Jain K, Jith A, Mathew K. Nocturnal frontal lobe epilepsy presenting as sleepwalking episodes and restless leg syndrome-like symptoms. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_154_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
15
|
Pani SM, Fraschini M, Figorilli M, Tamburrino L, Ferri R, Puligheddu M. Sleep-related hypermotor epilepsy and non-rapid eye movement parasomnias: Differences in the periodic and aperiodic component of the electroencephalographic power spectra. J Sleep Res 2021; 30:e13339. [PMID: 33769647 PMCID: PMC8518869 DOI: 10.1111/jsr.13339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022]
Abstract
Over the last two decades, our understanding of clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviours has improved considerably, although it is far from complete. Indeed, even if many core characteristics of sleep-related hypermotor epilepsy and non-rapid eye movement parasomnias have been clarified, some crucial points remain controversial, and the overlap of the behavioural patterns between these disorders represents a diagnostic challenge. In this work, we focused on segments of multichannel sleep electroencephalogram free from clinical episodes, from two groups of subjects affected by sleep-related hypermotor epilepsy (N = 15) and non-rapid eye movement parasomnias (N = 16), respectively. We examined sleep stages N2 and N3 of the first part of the night (cycles 1 and 2), and assessed the existence of differences in the periodic and aperiodic components of the electroencephalogram power spectra between the two groups, using the Fitting Oscillations & One Over f (FOOOF) toolbox. A significant difference in the gamma frequency band was found, with an increased relative power in sleep-related hypermotor epilepsy subjects, during both N2 (p < .001) and N3 (p < .001), and a significant higher slope of the aperiodic component in non-rapid eye movement parasomnias, compared with sleep-related hypermotor epilepsy, during N3 (p = .012). We suggest that the relative power of the gamma band and the slope extracted from the aperiodic component of the electroencephalogram signal may be helpful to characterize differences between subjects affected by non-rapid eye movement parasomnias and those affected by sleep-related hypermotor epilepsy.
Collapse
Affiliation(s)
- Sara M. Pani
- PhD Program in NeuroscienceDepartment of Biomedical SciencesUniversity of CagliariCagliariItaly
- Sleep CentreDepartment of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Matteo Fraschini
- Department of Electrical and Electronic Engineering (DIEE)University of CagliariCagliariItaly
| | - Michela Figorilli
- Sleep CentreDepartment of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Ludovica Tamburrino
- Sleep CentreDepartment of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | | | - Monica Puligheddu
- Sleep CentreDepartment of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| |
Collapse
|
16
|
Abstract
Electroencephalogram (EEG) recording is essential in the evaluation of complex movement and behaviors during sleep, but in particular for differentiating epileptic versus nonepileptic events. In general, epileptiform discharges occur with greater density in the first few nonerapid eye movement cycles, and approximately 12% to 20% of seizures occur exclusively at night. This review examines the epilepsy types and syndromes whose presentation is strongly influenced by the sleep state, with an appraisal about the role that sleep plays in facilitating seizures, while deleaneatign EEG findings and clinical manifestation. The review will summarize the typical semiology of sleep-related hypermotor seizures and contrasted with those occurring during none/rapid eye movement parasomnias and sleep-related movement disorders.
Collapse
Affiliation(s)
- Ting Wu
- Ronald Reagan Medical Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Room 1-240, Los Angeles, CA 90095, USA
| | - Alon Y Avidan
- UCLA Sleep Disorders Center, UCLA Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Boulevard, RNRC, C153, Mail Code 176919, Los Angeles, CA, USA.
| | - Jerome Engel
- UCLA Seizure Disorder Center, Brain Research Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Wang W, Wu X, Su X, Sun H, Tan Q, Zhang S, Lu L, Gao H, Liu W, Yang X, Zhou D, Kemp GJ, Yue Q, Gong Q. Metabolic alterations of the dorsolateral prefrontal cortex in sleep-related hypermotor epilepsy: A proton magnetic resonance spectroscopy study. J Neurosci Res 2021; 99:2657-2668. [PMID: 34133770 DOI: 10.1002/jnr.24866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy whose neurobiological underpinnings remain poorly understood. The present study aimed to identify possible neurochemical alterations in the dorsolateral prefrontal cortex (DLPFC) in participants with SHE using proton magnetic resonance spectroscopy (1 H MRS). Thirty-nine participants with SHE (mean age, 30.7 years ± 11.3 [standard deviation], 24 men) and 59 controls (mean age, 29.4 years ± 10.4, 29 men) were consecutively and prospectively recruited and underwent brain magnetic resonance imaging and 1 H MRS in the bilateral DLPFCs. Brain concentrations of metabolites, including N-acetyl aspartate (NAA), myo-inositol (mI), choline, creatine, the sum of glutamate and glutamine, glutathione (GSH) and γ-aminobutyric acid, were estimated with LCModel and corrected for the partial volume effect of cerebrospinal fluid using tissue segmentation. ANCOVA analyses revealed lower concentration of NAA in the left DLPFC in participants with SHE compared with controls. A significant difference of NAA concentration between DLPFC in the two hemispheres (left > right) was observed only in the control group. We further confirmed a higher GSH concentration in men than in women in SHE participants, which probably indicates that men are more susceptible to this disease. The mI concentration in the right DLPFC was negatively correlated with epilepsy duration. This study demonstrates that DLPFC is an important brain region involved in the pathophysiology of SHE, in which both neurons and astrocytes appear impaired, and the elevated GSH level may suggest an abnormality related to oxidative stress.
Collapse
Affiliation(s)
- Weina Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenyu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
18
|
REM sleep behavior disorder: Mimics and variants. Sleep Med Rev 2021; 60:101515. [PMID: 34186416 DOI: 10.1016/j.smrv.2021.101515] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia with dream-enactment behaviors occurring during REM sleep and associated with the lack of the physiological REM sleep muscle atonia. It can be isolated and secondary to other neurological or medical conditions. Isolated RBD heralds in most cases a neurodegenerative condition due to an underlying synucleinopathy and consequently its recognition is crucial for prognostic implications. REM sleep without atonia on polysomnography is a mandatory diagnostic criterion. Different conditions may mimic RBD, the most frequent being obstructive sleep apnea during sleep, non-REM parasomnia, and sleep-related hypermotor epilepsy. These diseases might also be comorbid with RBD, challenging the evaluation of disease severity, the treatment choices and the response to treatment evaluation. Video-PSG is the gold standard for a correct diagnosis and will distinguish between different or comorbid sleep disorders. Careful history taking together with actigraphy may give important clues for the differential diagnosis. The extreme boundaries of RBD might also be seen in more severe and complex conditions like status dissociatus or in the sleep disorders' scenario of anti IgLON5 disease, but in the latter both clinical and neurophysiological features will differ. A step-by-step approach is suggested to guide the differential diagnosis.
Collapse
|
19
|
Grigg-Damberger M, Foldvary-Schaefer N. Bidirectional relationships of sleep and epilepsy in adults with epilepsy. Epilepsy Behav 2021; 116:107735. [PMID: 33561767 DOI: 10.1016/j.yebeh.2020.107735] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/15/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
This targeted review addresses the best accepted and most intriguing recent observations on the complex relationships between sleep and epilepsy. Ten to 15% of all epilepsies are sleep-related. Included in these is sleep-related hypermotor epilepsy, renamed from nocturnal frontal lobe epilepsy by a 2016 consensus conference since 30% of cases are extra-frontal, seizures are related to sleep rather than clock time, and the predominant semiology is hypermotor. Stereo-EEG is providing crucial insights into network activation in sleep-related epilepsies and definition of the epileptogenic zone. Pathologic high-frequency oscillations, a promising biomarker for identifying the epileptogenic zone, are most frequent in NREM sleep, lowest in wakefulness and REM sleep, similar to interictal epileptiform discharges (IEDs). Most sleep-related seizures are followed by awakening or arousal and IEDs cause arousals and increase after arousals, likely contributing to sleep/wake complaints. Sleep/wake disorders are 2-3 times more common in adults with epilepsy than the general population; these comorbidities are associated with poorer quality of life and may impact seizure control. Treatment of sleep apnea reduces seizures in many cases. An emerging area of research is in circadian biology and epilepsy. Over 90% of people with epilepsy have seizures with circadian periodicity, in part related to sleep itself, and the majority of SUDEP cases occur in sleep. Recognizing these bidirectional relationships is important for patient and caregiver education and counseling and optimizing epilepsy outcomes.
Collapse
Affiliation(s)
| | - Nancy Foldvary-Schaefer
- Sleep Disorders and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Maytum J, Garcia J, Leighty D, Belew J. Utility of the Frontal Lobe Epilepsy Parasomnia Scale in Evaluation of Children With Nocturnal Events. J Neurosci Nurs 2021; 53:34-38. [PMID: 33298683 DOI: 10.1097/jnn.0000000000000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT BACKGROUND: Sleep-related hypermotor epilepsy (SHE) and nocturnal non-rapid eye movement parasomnias are difficult to differentiate. Neurologists and sleep medicine clinicians largely rely on clinical history when evaluating nocturnal spells. When the diagnosis is in question, referral for video electroencephalogram monitoring is the standard. However, there are no guidelines as to when this evaluation is needed. The Frontal Lobe Epilepsy Parasomnia (FLEP) scale was developed to assist clinicians in differentiating the two among adults. The aim of this study was to provide a preliminary evaluation of the FLEP for use with children. METHODS: This was a retrospective pilot instrument validation study with a convenience sample of 17 children seen in neurology or sleep medicine clinics. To determine concurrent validity, FLEP scores were compared with clinical diagnoses by neurology providers confirmed by electroencephalography. RESULTS: With a cutoff score of 2, the modified FLEP distinguished between children with and without SHE. The FLEP tool had a specificity of 0.58, implying that 7 of the 12 children without SHE would have been accurately recommended to follow up for parasomnia management rather than more urgent evaluation of potential frontal lobe epilepsy. CONCLUSIONS: With some minor adaptations for children, the FLEP satisfactorily distinguished between SHE and non-SHE patients.
Collapse
|
21
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
22
|
do Nascimento Vinholes L, Sousa da Silva A, Marinho Tassi E, Corrêa Borges de Lacerda G. Heart rate variability in frontal lobe epilepsy: Association with SUDEP risk. Acta Neurol Scand 2021; 143:62-70. [PMID: 32749695 DOI: 10.1111/ane.13330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Frontal lobe epilepsy (FLE) may impair autonomic heart rate modulation. Decreased heart rate variability (HRV) may enhance risk of sudden death. Our objective was to describe whole day and wakefulness/sleep HRV parameters from FLE patients in comparison with those of healthy controls and correlate HRV parameters to SUDEP-7 scores. METHODS Ten patients with FLE and 15 healthy controls underwent a 24-hour electrocardiogram holter. The SUDEP-7 score was calculated for patients. Subgroups were identified according to active epilepsy, number of generalized seizures, cognitive deficit, medication load, and time-length of epilepsy. Time-domain SDNN, SDNNi, SDANN, rMSDD, and pNN50 and frequency-domain LF, HF, and LF/HF parameters were analyzed. Wilcoxon and Spearman correlation tests were used. A P < .05 was considered significant. RESULTS Patients SDNN, SDNNi, rMSSD, and pNN50 were decreased in 24-hour recordings. Although a tendency for a protective effect of sleep was seen for both patients and controls, intragroup comparisons of sleeping/waking states revealed a significant increase in sleep rMSSD (P = .046) and pNN50 (P = .041) only for controls. All 24-hour time-domain parameters and LF were inversely and significantly correlated to SUDEP-7, particularly SDANN (ρ = -0.896, P = .00019), known to deteriorate with diminished physical activity and decreased in patients with more generalized seizures. Wakefulness parameters did not correlate to SUDEP-7, whereas correlations to sleep parameters were very strong, particularly with rMSSD (ρ = -0.945, P = .00012). Cognitive deficit was associated with decreased pNN50, sleep pNN50, and LH. CONCLUSION HRV is impaired in patients with FLE. Low HRV scores are associated with increased risk for SUDEP as measured by the SUDEP-7 score.
Collapse
Affiliation(s)
| | - Alexandre Sousa da Silva
- Mathematics and Statistical Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| | - Eduardo Marinho Tassi
- Cardiology Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| | - Glenda Corrêa Borges de Lacerda
- Neurology Post‐Graduation Program Neurology Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| |
Collapse
|
23
|
Moore JL, Carvalho DZ, St Louis EK, Bazil C. Sleep and Epilepsy: a Focused Review of Pathophysiology, Clinical Syndromes, Co-morbidities, and Therapy. Neurotherapeutics 2021; 18:170-180. [PMID: 33786803 PMCID: PMC8116418 DOI: 10.1007/s13311-021-01021-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 10/21/2022] Open
Abstract
A healthy brain requires balancing of waking and sleeping states. The normal changes in waking and sleeping states result in neurophysiological conditions that either increase or decrease the tendency of seizures and interictal discharges to occur. This article reviews the manifold and complex relationships between sleep and epilepsy and discusses treatment of the sleep-related epilepsies. Several forms of epilepsy predominantly or exclusively manifest during sleep and seizures tend to arise especially from light NREM sleep. Diagnostic interictal epileptiform discharges on the electroencephalogram are also most likely to be activated during deep NREM sleep stage N3. Epileptiform discharges and antiepileptic medications may in turn detrimentally impact sleep. Co-morbid sleep disorders also have the potential to worsen seizure control. Sleep has an important key association with sudden unexpected death in epilepsy (SUDEP). Further research is necessary to understand the complex relationships between sleep and epileptic disorders and their treatments.
Collapse
Affiliation(s)
- J Layne Moore
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Departments of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Diego Z Carvalho
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Departments of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Erik K St Louis
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Departments of Neurology, Mayo Clinic, Rochester, MN, USA.
- Departments of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, USA.
| | - Carl Bazil
- Division of Epilepsy and Sleep, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Pavone P, Pappalardo XG, Ohazuruike UNN, Striano P, Parisi P, Corsello G, Marino SD, Ruggieri M, Parano E, Falsaperla R. Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment. J Epilepsy Res 2020; 10:84-91. [PMID: 33659201 PMCID: PMC7903043 DOI: 10.14581/jer.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a de novo deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4–BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
25
|
Longardner K, Desai S, Nespeca M, Bainbridge M, Friedman J. Photosensitive Epilepsy Syndromes Mimicking Motor Tics. Mov Disord Clin Pract 2020; 7:S89-S92. [PMID: 33015234 DOI: 10.1002/mdc3.13053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Katherine Longardner
- Department of Neurosciences University of California San Diego San Diego California USA
| | - Soaham Desai
- Pramukhswami Medical College Karamsad India.,Shree Krishna Hospital Gokal Nagar India
| | - Mark Nespeca
- Department of Neurosciences University of California San Diego San Diego California USA.,Department of Pediatrics University of California San Diego San Diego California USA.,Division of Neurology Rady Children's Hospital San Diego San Diego California USA
| | | | - Jennifer Friedman
- Department of Neurosciences University of California San Diego San Diego California USA.,Department of Pediatrics University of California San Diego San Diego California USA.,Division of Neurology Rady Children's Hospital San Diego San Diego California USA.,Rady Children's Institute of Genomic Medicine San Diego California USA
| |
Collapse
|
26
|
Zupcic SG, Zupcic M, Duzel V, Simurina T, Sakic L, Grubjesic I, Tonković D, Udovic IS, Ferreri VM. The potential role of micro-RNA-211 in the pathogenesis of sleep-related hypermotor epilepsy. Med Hypotheses 2020; 143:110115. [DOI: https:/doi.org/10.1016/j.mehy.2020.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
27
|
Abstract
We aimed to explore the link between NREM sleep and epilepsy. Based on human and experimental data we propose that a sleep-related epileptic transformation of normal neurological networks underlies epileptogenesis. Major childhood epilepsies as medial temporal lobe epilepsy (MTLE), absence epilepsy (AE) and human perisylvian network (PN) epilepsies - made us good models to study. These conditions come from an epileptic transformation of the affected functional systems. This approach allows a system-based taxonomy instead of the outworn generalized-focal classification. MTLE links to the memory-system, where epileptic transformation results in a switch of normal sharp wave-ripples to epileptic spikes and pathological high frequency oscillations, compromising sleep-related memory consolidation. Absence epilepsy (AE) and juvenile myoclonic epilepsy (JME) belong to the corticothalamic system. The burst-firing mode of NREM sleep normally producing sleep-spindles turns to an epileptic working mode ejecting bilateral synchronous spike-waves. There seems to be a progressive transition from AE to JME. Shared absences and similar bilateral synchronous discharges show the belonging of the two conditions, while the continuous age windows - AE affecting schoolchildren, JME the adolescents - and the increased excitability in JME compared to AE supports the notion of progression. In perisylvian network epilepsies - idiopathic focal childhood epilepsies and electrical status epilepticus in sleep including Landau-Kleffner syndrome - centrotemporal spikes turn epileptic, with the potential to cause cognitive impairment. Postinjury epilepsies modeled by the isolated cortex model highlight the shared way of epileptogenesis suggesting the derailment of NREM sleep-related homeostatic plasticity as a common step. NREM sleep provides templates for plasticity derailing to epileptic variants under proper conditions. This sleep-origin explains epileptiform discharges' link and similarity with NREM sleep slow oscillations, spindles and ripples. Normal synaptic plasticity erroneously overgrowing homeostatic processes may derail toward an epileptic working-mode manifesting the involved system's features. The impact of NREM sleep is unclear in epileptogenesis occurring in adolescence and adulthood, when plasticity is lower. The epileptic process interferes with homeostatic synaptic plasticity and may cause cognitive impairment. Its type and degree depends on the affected network's function. We hypothesize a vicious circle between sleep end epilepsy. The epileptic derailment of normal plasticity interferes with sleep cognitive functions. Sleep and epilepsy interconnect by the pathology of plasticity.
Collapse
Affiliation(s)
- Péter Halász
- Szentágothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szűcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Rini J, Ochoa J. Pharyngeal dysesthesias as aura in epilepsy localized to the non-dominant frontal operculum misdiagnosed as non-epileptic seizures. Neurocase 2020; 26:227-230. [PMID: 32615856 PMCID: PMC7474535 DOI: 10.1080/13554794.2020.1789177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
The diagnosis of atypical paroxysmal events represents a significant challenge for clinicians when differentiating epileptic from nonepileptic events. The ictal manifestations of pharyngeal dysesthesias are often misdiagnosed and difficult to distinguish clinically, given their subtle features such as pharyngeal discomfort with and without autonomic symptomology. We report a rare case of isolated ictal pharyngeal dysesthesias localizing to the non-dominant frontal operculum lobe misdiagnosed as psychogenic and later confirmed by continuous video-EEG monitoring.
Collapse
Affiliation(s)
- James Rini
- Behavioral Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Juan Ochoa
- Department of Neurology, University of South Alabama Medical Center, Mobile, AL, USA
| |
Collapse
|
29
|
Zupcic SG, Zupcic M, Duzel V, Simurina T, Sakic L, Grubjesic I, Tonković D, Udovic IS, Ferreri VM. The potential role of micro-RNA-211 in the pathogenesis of sleep-related hypermotor epilepsy. Med Hypotheses 2020; 143:110115. [PMID: 32763656 DOI: 10.1016/j.mehy.2020.110115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Sleep-related hypermotor epilepsy (SHE) is a rare epileptic syndrome characterized by epileptic seizures which occur during the non-rapid eye movement (NREM) stage of sleep. It manifests with hypermotor semiology resembling violent limb movements and an asymmetric tonic-dystonic posture. The genes which are responsible for the autosomal dominant form of SHE (ADSHE) and whose function is to code the sub-unit of the neuronal acetylcholine receptor are well known. Considering that ADSHE is a prototype of SHE, it is thought that the dysfunction of the cortico-subcortical cholinergic network, which regulates the cycle of sleep, has a key role in the epileptogenesis of this syndrome. Namely, studies to date, have shown that the hypercholinergic activity is sufficient for the development of epileptic seizures, even though the exact mechanism remains to be elucidated. NREM parasomnias are sleep disorders that are the most difficult to differentiate from SHE due to a similar clinical presentation. Considering the clinical similarities, NREM occurrence and probable genetic connection, it is considered that fundamentally, both of these conditions share a common pathophysiological mechanism i.e. cholinergic dysfunction. The main difference between SHE and NREM parasomnias are the genuine epileptic seizures that are responsible for the semiology in SHE. These genuine seizures are not present in NREM parasomnias. Why this is so, remains to be elucidated. Considering that animal studies have shown that dynamic changes and the decreased levels of microRNA-211 contribute to epileptic seizures and to changes in cholinergic pathways, our hypothesis is that epileptic seizures and the development of epileptogenesis in SHE are a consequence of cholinergic dysfunction and decreased levels of microRNA-211 as opposed to NREM parasomnias where there is a stable level of microRNA-211, preventing epileptogenesis despite the cholinergic system dysfunction.
Collapse
Affiliation(s)
- Sandra Graf Zupcic
- Clinical Hospital Centre Rijeka, Clinic of Neurology, Rijeka, Croatia; University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia.
| | - Miroslav Zupcic
- University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia; Clinical Hospital Centre Rijeka, Clinic of Anesthesiology and Intensive Care Medicine, Rijeka, Croatia; J. J. Strossmayer University, Faculty of Medicine, Osijek, Croatia
| | - Viktor Duzel
- Barking, Havering and Redbridge University Hospitals NHS Trust, Department of Anaesthesia, London, United Kingdom
| | - Tatjana Simurina
- J. J. Strossmayer University, Faculty of Medicine, Osijek, Croatia; Department of Health Studies, University of Zadar, General Hospital Zadar, Department of Anesthesiology and Intensive Care Medicine, Zadar, Croatia
| | - Livija Sakic
- J. J. Strossmayer University, Faculty of Dental Medicine and Health, Osijek, Croatia; University Hospital "Sveti Duh", Clinic of Anesthesiology, Reanimatology and Intensive Care Medicine, Zagreb, Croatia
| | - Igor Grubjesic
- Clinical Hospital Centre Rijeka, Clinic of Anesthesiology and Intensive Care Medicine, Rijeka, Croatia
| | - Dinko Tonković
- School of Medicine, University of Zagreb, Croatia; Clinical Hospital Centre Zagreb, Clinic of Anesthesiology, Reanimatology and Intensive Care Medicine, Zagreb, Croatia
| | - Ingrid Sutic Udovic
- University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia
| | | |
Collapse
|
30
|
Chiba S. Abnormal behaviors during sleep from the viewpoint of sleep epileptology: current and future perspectives on diagnosis. SLEEP SCIENCE AND PRACTICE 2020. [DOI: 10.1186/s41606-019-0041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAbnormal behaviors during sleep (ABDS) exhibit a myriad of symptoms. Their underlying diseases are also diverse, which include NREM/REM-related parasomnias, epilepsy and mental disorders. Since ABDS may severely affect a patient’s quality of life, giving an early and accurate diagnosis of the underlying disease (by analyzing video-polysomnographic data during the manifestation of ABDS) is of great importance. However, accurate diagnosis of ABDS is rather difficult. Recently it has been suggested that the pathology of (NREM/REM-related) parasomnias and epilepsy are closely related. In order to unravel the pathophysiological substrate of ABDS, it is essential to develop a novel approach based on sleep epileptology, a field which targets the interface between sleep medicine and epileptology.
Collapse
|
31
|
Asioli GM, Rossi S, Bisulli F, Licchetta L, Tinuper P, Provini F. Therapy in Sleep-Related Hypermotor Epilepsy (SHE). Curr Treat Options Neurol 2020; 22:1. [PMID: 31997091 DOI: 10.1007/s11940-020-0610-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and discuss current options and new advances in the treatment of sleep-related hypermotor epilepsy (SHE), focusing on pharmacological and surgical treatments. RECENT FINDINGS Carbamazepine (CBZ) has traditionally been regarded as the first-line treatment option in SHE patients. In patients showing an unsatisfactory response to monotherapy, topiramate (TPM), lacosamide (LCM) and acetazolamide (ACZ) could be reasonable add-on strategies. The increasing understanding of the role of neuronal nicotinic acetylcholine receptor (nAChR) in SHE pathophysiology has led to the evaluation of compounds able to modulate this receptor system, including nicotine patches and fenofibrate. Despite polytherapy with two or more antiepileptic drugs (AEDs), about one-third of SHE patients suffer from drug-resistant seizures. In selected drug-resistant patients, epilepsy surgery is a therapeutic approach that offers high probability of recovery, with up to two-third of patients becoming seizure-free after resection of the epileptogenic zone. An evidence-based approach from randomized placebo-controlled trials in SHE patients is lacking, and current treatment recommendations are based only on case reports and small series. Furthermore, most of these case reports and case series involve patients with a known genetic defect, which only accounts for a small proportion of SHE patients. Therefore, a prospective study in a large cohort of sporadic SHE patients is necessary in order to provide clinicians with an evidence-based treatment for this rare form of epilepsy. An early and effective anti-epileptic treatment is mandatory for SHE patients, in order to prevent the risk of increasing seizure frequency throughout the disease course with relevant impact on patients' cognitive profile and daytime performances.
Collapse
Affiliation(s)
- Gian Maria Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Simone Rossi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Laura Licchetta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. .,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy. .,Department of Biomedical and Neuromotor Sciences, IRCCS, Istituto delle Scienze Neurologiche, Via Altura, 3, 40123, Bologna, Italy.
| |
Collapse
|
32
|
Proserpio P, Loddo G, Zubler F, Ferini-Strambi L, Licchetta L, Bisulli F, Tinuper P, Agostoni EC, Bassetti C, Tassi L, Menghi V, Provini F, Nobili L. Polysomnographic features differentiating disorder of arousals from sleep-related hypermotor epilepsy. Sleep 2019; 42:5586957. [DOI: 10.1093/sleep/zsz166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/01/2019] [Indexed: 11/15/2022] Open
Abstract
AbstractObjectiveThe differential diagnosis between sleep-related hypermotor epilepsy (SHE) and disorders of arousal (DOA) may be challenging. We analyzed the stage and the relative time of occurrence of parasomnic and epileptic events to test their potential diagnostic accuracy as criteria to discriminate SHE from DOA.MethodsVideo-polysomnography recordings of 89 patients with a definite diagnosis of DOA (59) or SHE (30) were reviewed to define major or minor events and to analyze their stage and relative time of occurrence. The “event distribution index” was defined on the basis of the occurrence of events during the first versus the second part of sleep period time. A group analysis was performed between DOA and SHE patients to identify candidate predictors and to quantify their discriminative performance.ResultsThe total number of motor events (i.e. major and minor) was significantly lower in DOA (3.2 ± 2.4) than in SHE patients (6.9 ± 8.3; p = 0.03). Episodes occurred mostly during N3 and N2 in DOA and SHE patients, respectively. The occurrence of at least one major event outside N3 was highly suggestive for SHE (p = 2*e-13; accuracy = 0.898, sensitivity = 0.793, specificity = 0.949). The occurrence of at least one minor event during N3 was highly suggestive for DOA (p = 4*e-5; accuracy = 0.73, sensitivity = 0.733, specificity = 0.723). The “event distribution index” was statistically higher in DOA for total (p = 0.012) and major events (p = 0.0026).ConclusionThe stage and the relative time of occurrence of minor and major motor manifestations represent useful criteria to discriminate DOA from SHE episodes.
Collapse
Affiliation(s)
| | - Giuseppe Loddo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Frederic Zubler
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Sleep Disorders Center, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Licchetta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Claudio Bassetti
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Tassi
- Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - Veronica Menghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Lino Nobili
- Department of Neuroscience, Niguarda Hospital, Milan, Italy
- Child Neuropsychiatry, Genoa, Italy IRCCS G. Gaslini, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| |
Collapse
|
33
|
De Gusmao CM, Silveira-Moriyama L. Paroxysmal movement disorders - practical update on diagnosis and management. Expert Rev Neurother 2019; 19:807-822. [PMID: 31353980 DOI: 10.1080/14737175.2019.1648211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Paroxysmal dyskinesias and episodic ataxias are often caused by mutations in genes related to cell membrane and synaptic function. Despite the exponential increase in publications of genetically confirmed cases, management remains largely clinical based on non-systematic evidence. Areas covered: The authors provide a historical and clinical review of the main types of paroxysmal dyskinesias and episodic ataxias, with recommendations for diagnosis and management of patients suffering from these conditions. Expert opinion: After secondary paroxysmal dyskinesias, the most common paroxysmal movement disorders are likely to be PRRT2-associated paroxysmal kinesigenic dyskinesias, which respond well to small doses of carbamazepine, and episodic ataxia type 2, which often responds to acetazolamide. Familial paroxysmal non-kinesigenic dyskinesias are largely caused by mutations in PNKD and have poor response to therapy but improve with age. Exercise-induced dyskinesias are genetically heterogeneous, caused by disorders of glucose transport, mitochondrial function, dopaminergic pathways or neurodegenerative conditions amongst others. GNAO1 and ADCY5 mutations can also cause paroxysmal movement disorders, often in the context of ongoing motor symptoms. Although a therapeutic trial is justified for classic cases and in limited resource settings, genetic testing may help direct initial or rescue therapy. Deep brain stimulation may be an option for severe cases.
Collapse
Affiliation(s)
- Claudio M De Gusmao
- Department of Neurology, Harvard Medical School, Boston Children's Hospital , Boston , MA , USA.,Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil.,Education Unit, UCL Institute of Neurology, University College London , London , UK.,Department of Neurology, Hospital Bairral, Fundação Espírita Américo Bairral , Itapira , Brazil
| |
Collapse
|
34
|
Bisulli F, Licchetta L, Tinuper P. Sleep related hyper motor epilepsy (SHE): a unique syndrome with heterogeneous genetic etiologies. SLEEP SCIENCE AND PRACTICE 2019. [DOI: 10.1186/s41606-019-0035-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Morace R, Casciato S, Quarato PP, Mascia A, D'Aniello A, Grammaldo LG, De Risi M, Di Gennaro G, Esposito V. Long-term seizure outcome in frontal lobe epilepsy surgery. Epilepsy Behav 2019; 90:93-98. [PMID: 30522059 DOI: 10.1016/j.yebeh.2018.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of this study was to report long-term seizure outcome in patients who underwent frontal lobe epilepsy (FLE) surgery. METHOD This retrospective study included 44 consecutive subjects who underwent resective surgery for intractable FLE at IRCCS NEUROMED (period 2001-2014), followed up for at least 2 years (mean: 8.7 years). All patients underwent noninvasive presurgical evaluation and/or invasive electroencephalography (EEG) monitoring when nonconcordant data were obtained or epileptogenic zone was hypothesized to be close to the eloquent cortex. Electroclinical, neuroimaging, surgical data, and histology were compared to seizure outcome. RESULTS Mean epilepsy duration was 19 years; mean age at surgery was 31.6 years. Preoperative magnetic resonance imaging (MRI) showed a frontal lesion in 86.4 % of cases. Scalp video-electroencephalography (VEEG) monitoring detected a focal ictal onset in 90% of cases. Twenty-seven patients (61.4%) underwent invasive recordings. Resections involved dorsolateral (47.7%), medial (9%), orbital (13.6%), and rolandic (13.6%) region. Lobectomy within functional boundaries was performed in the remaining 7 cases (16%). Transient and permanent neurological deficits were observed in 2 and 3 cases, respectively. Histology revealed focal cortical dysplasia (45.5%), World Health Organization (WHO) I-II grade tumors (15.9%), gliosis (22.7%), vascular malformations (4.5%), Rasmussen encephalitis (6.8%), and normal tissue (4.5%). At last observation 68.1% of patients were in Engel's class I, 11.4% in class II, 9% in class III, and 11.4% in class IV. A favorable outcome was associated with focal ictal scalp EEG onset (p = 0.0357). CONCLUSION Surgery is a safe treatment option in drug-resistant FLE with a satisfying long-term outcome. These data highlight the importance of an appropriate selection of potential surgical candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincenzo Esposito
- IRCCS "NEUROMED", Pozzilli, IS, Italy; Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| |
Collapse
|
36
|
Sleep disorders in Cimarosa’s “The Secret Marriage”. Neurol Sci 2018; 39:1805-1806. [DOI: 10.1007/s10072-018-3478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
37
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Co-morbid sleep disorders and epilepsy: A narrative review and case examples. Epilepsy Res 2018; 145:185-197. [PMID: 30048932 DOI: 10.1016/j.eplepsyres.2018.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/08/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
Abstract
Co-morbid sleep disorders, including sleep apnea, insomnia, restless legs syndrome, and the parasomnias, occur frequently in people with epilepsy. This article reviews the cardinal presenting symptoms and diagnostic features of each of these disorders to enable epileptologists to readily screen and identify sleep co-morbidities in their patients. It summarizes current evidence concerning the reciprocal relationship between sleep disturbances and epilepsy and available treatment options for common sleep disorders in people with epilepsy. Several illustrative cases demonstrate the practical consequences of co-morbid sleep disorders in epilepsy patients and suggest diagnostic and treatment approaches that may improve daytime functioning, alertness, quality of life, and seizure burden.
Collapse
|
39
|
Nguyen-Michel VH, Solano O, Leu-Semenescu S, Pierre-Justin A, Gales A, Navarro V, Baulac M, Adam C, Dupont S, Arnulf I. Rapid eye movement sleep behavior disorder or epileptic seizure during sleep? A video analysis of motor events. Seizure 2018; 58:1-5. [DOI: 10.1016/j.seizure.2018.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
|
40
|
|
41
|
Tchopev ZN, Yeh PH, Morgan GW, Meyer E, Wolf JM, Ollinger JM, Riedy GP, Young LC. Acquired Sleep-Related Hypermotor Epilepsy with Disrupted White Matter Tracts Assessed by Multishell Diffusion Magnetic Resonance Imaging. Front Neurol 2018; 9:6. [PMID: 29403431 PMCID: PMC5786569 DOI: 10.3389/fneur.2018.00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) (previously frontal lobe epilepsy) is a rare seizure disorder commonly misdiagnosed or unrecognized, causing negative patient sequelae. While usually reported in familial studies, it is more commonly acquired. Diagnosis is a challenge due to its low incidence in comparison with the more common sleep disorders or psychogenic etiologies in the differential diagnosis. Diagnosis is scaled on degree of certainty based on described or clinically documented semiology, with video EEG as a helpful, but not necessary, adjunct. Current treatment is similar to other focal epilepsies. We studied a 36-year-old active duty male soldier who presented with 2 years of predominantly sleep related, abrupt, short, and anamnestic hyperkinetic movements with unstructured vocalizations. Prior workup included non-contributory video electroencephalograph (EEG) and polysomnography as well as normal brain magnetic resonance imaging (MRI). Treatments for presumed psychiatric and parasomnia disturbances were not effective in establishing diagnosis or relief. Evaluation at our tertiary, multidisciplinary care institution recorded events consistent with the diagnosis of clinical SHE. He was enrolled in an advanced multishell diffusion-weighted imaging MRI research study to evaluate white matter tracts, given his history of mild, repetitive, non-penetrating traumatic brain injury, not otherwise requiring hospitalization. Multishell diffusion MRI tractography found changes not previously described in the right frontal lobe white matter tracts. These changes were consistent with neurological localization and serve as a potential nidus for this patient’s seizure disorder. Misdiagnosis of SHE can result in detrimental biopsychosocial sequelae of untreated epilepsy, unnecessary or harmful intervention, or the stigmata of a behavioral disorder. Further investigation into diagnosis and etiology of acquired SHE is needed. Assessment for white matter abnormalities can potentially provide information into pathogenesis of epilepsy disorders.
Collapse
Affiliation(s)
- Zahari N Tchopev
- School of Medicine, Uniformed Services University of the Health Science, Bethesda, MD, United States
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Greg W Morgan
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Eric Meyer
- School of Medicine, Uniformed Services University of the Health Science, Bethesda, MD, United States.,Department of Psychiatry, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Johanna M Wolf
- Inpatient Neurobehavioral Program, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - John M Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Gerard P Riedy
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Lisa C Young
- Department of Psychiatry, Walter Reed National Military Medical Center, Bethesda, MD, United States
| |
Collapse
|
42
|
Menghi V, Bisulli F, Tinuper P, Nobili L. Sleep-related hypermotor epilepsy: prevalence, impact and management strategies. Nat Sci Sleep 2018; 10:317-326. [PMID: 30349413 PMCID: PMC6186898 DOI: 10.2147/nss.s152624] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE), previously called nocturnal frontal lobe epilepsy (NFLE), is a focal epilepsy characterized by asymmetric tonic/dystonic posturing and/or complex hyperkinetic seizures occurring mostly during sleep. SHE fulfills the definition of rare disease with an estimated minimum prevalence of 1.8/100,000 individuals, and it represents about 10% of drug-resistant surgical cases. Although SHE and autosomal-dominant SHE (ADSHE) have been considered benign epileptic conditions for a long time, emerging data have shed light on the severity of this disorder and some peculiar features can impact negatively on the quality of life of SHE patients. In fact, seizure frequency can be very high, resulting in nocturnal sleep fragmentation with possible diurnal consequences such as excessive sleepiness and fatigue. Moreover, recent studies, adopting a systematic neuropsychological assessment, have shown deficits in memory, executive functions and visuo-spatial abilities in almost half of SHE patients. Intellectual disabilities and psychiatric disorders have also been reported in some genetic forms. SHE may also exert a negative effect on health-related quality of life, especially in domains pertaining to a patient's role in the family, social context and patient's illness experience. Despite a good response to pharmacological treatment, especially with carbamazepine, 30% of SHE patients suffer from drug-resistant seizures. Finally, recent studies suggest a poor prognosis in a high percentage of SHE patients with a 20.4% cumulative probability of achieving terminal remission at 10 years from onset. For selected drug-resistant SHE patients, epilepsy surgery is the only treatment offering high probability of recovery, both for seizures and for epilepsy-related sleep alterations.
Collapse
Affiliation(s)
- Veronica Menghi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lino Nobili
- "Claudio Munari" Center for Epilepsy Surgery, Niguarda Hospital, Milan, Italy, .,Department of Neuroscience (DINOGMI), IRCCS, Giannina Gaslini Institute, University of Genoa, Genoa, Italy,
| |
Collapse
|
43
|
Seizure — European Journal of Epilepsy at age 25: Where are we now and where we are going? Seizure 2017; 44:1-3. [DOI: 10.1016/j.seizure.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
|