1
|
Sigström R, Göteson A, Joas E, Pålsson E, Liberg B, Nordenskjöld A, Blennow K, Zetterberg H, Landén M. Blood biomarkers of neuronal injury and astrocytic reactivity in electroconvulsive therapy. Mol Psychiatry 2024:10.1038/s41380-024-02774-4. [PMID: 39363047 DOI: 10.1038/s41380-024-02774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Despite electroconvulsive therapy (ECT) being recognized as an effective treatment for major depressive episodes (MDE), its application is subject to controversy due to concerns over cognitive side effects. The pathophysiology of these side effects is not well understood. Here, we examined the effects of ECT on blood-based biomarkers of neuronal injury and astrocytic reactivity. Participants with a major depressive episode (N = 99) underwent acute ECT. Blood was sampled just before (T0) and 30 min after (T1) the first ECT session, as well as just before the sixth session (T2; 48-72 h after the fifth session). Age- and sex-matched controls (N = 99) were recruited from the general population. Serum concentrations of neurofilament light chain (NfL), total tau protein, and glial fibrillary acidic protein (GFAP) were measured with ultrasensitive single-molecule array assays. Utilizing generalized least squares regression, we compared baseline (T0) biomarker concentrations against those of our control group, and calculated the shifts in serum biomarker concentrations from baseline to immediately post-first ECT session (T1), and prior to the sixth session (T2). Baseline analysis revealed that serum levels of NfL (p < 0.001) and tau (p = 0.036) were significantly elevated in ECT recipients compared with controls, whereas GFAP levels showed no significant difference. Relative to T0, serum NfL concentration neither changed at T1 (mean change 3.1%, 95%CI -0.5% to 6.7%, p = 0.088) nor at T2 (mean change -3.2%, 95%CI -7.6% to 1.5%, p = 0.18). Similarly, no change in total tau was observed (mean change 3.7%, 95%CI -11.6% to 21.7%, p = 0.65). GFAP increased from T0 to T1 (mean change 20.3%, 95%CI 14.6 to 26.3%, p < 0.001), but not from T0 to T2 (mean change -0.7%, 95%CI -5.8% to 4.8%, p = 0.82). In conclusion, our findings suggest that ECT induces a temporary increase in serum GFAP, possibly reflecting transient astrocytic activation. Importantly, we observed no indicators of neuronal damage or long-term elevation in any assessed biomarker.
Collapse
Affiliation(s)
- Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Joas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Axel Nordenskjöld
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Dobson H, Al Maawali S, Malpas C, Santillo AF, Kang M, Todaro M, Watson R, Yassi N, Blennow K, Zetterberg H, Foster E, Neal A, Velakoulis D, O'Brien TJ, Eratne D, Kwan P. Elevated plasma neurofilament light and glial fibrillary acidic protein in epilepsy versus nonepileptic seizures and nonepileptic disorders. Epilepsia 2024; 65:2751-2763. [PMID: 39032019 DOI: 10.1111/epi.18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE Research suggests that recurrent seizures may lead to neuronal injury. Neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAP) levels increase in cerebrospinal fluid and blood in response to neuroaxonal damage, and they have been hypothesized as potential biomarkers for epilepsy. We examined plasma NfL and GFAP levels and their diagnostic utility in differentiating patients with epilepsy from those with psychogenic nonepileptic seizures (PNES) and other nonepileptic disorders. METHODS We recruited consecutive adults admitted for video-electroencephalographic monitoring and formal neuropsychiatric assessment. NfL and GFAP levels were quantified and compared between different patient groups and an age-matched reference cohort (n = 1926) and correlated with clinical variables in patients with epilepsy. RESULTS A total of 138 patients were included, of whom 104 were diagnosed with epilepsy, 22 with PNES, and 12 with other conditions. Plasma NfL and GFAP levels were elevated in patients with epilepsy compared to PNES, adjusted for age and sex (NfL p = .04, GFAP p = .04). A high proportion of patients with epilepsy (20%) had NfL levels above the 95th age-matched percentile compared to the reference cohort (5%). NfL levels above the 95th percentile of the reference cohort had a 95% positive predictive value for epilepsy. Patients with epilepsy who had NfL levels above the 95th percentile were younger than those with lower levels (37.5 vs. 43.8 years, p = .03). SIGNIFICANCE An elevated NfL or GFAP level in an individual patient may support an underlying epilepsy diagnosis, particularly in younger adults, and cautions against a diagnosis of PNES alone. Further examination of the association between NfL and GFAP levels and specific epilepsy subtypes or seizure characteristics may provide valuable insights into disease heterogeneity and contribute to the refinement of diagnosis, understanding pathophysiological mechanisms, and formulating treatment approaches.
Collapse
Affiliation(s)
- Hannah Dobson
- Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Said Al Maawali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Charles Malpas
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Matthew Kang
- Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emma Foster
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew Neal
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence John O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Aksoy HU, Yılmaz C, Orak SA, Ayça S, Polat M. Evaluation of GFAP, S100B, and UCHL-1 Levels in Children With Refractory Epilepsy. J Child Neurol 2024; 39:317-323. [PMID: 39155641 DOI: 10.1177/08830738241273339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
INTRODUCTION A number of biomarkers are used to evaluate the duration of the epileptic seizure and the interictal period following neuronal injury. Invasive diagnostic methods are increasingly being replaced by peripheral or minimally invasive biomarkers that give results faster and are more secure. PURPOSE We aimed to evaluate serum glial fibrillary acidic protein (GFAP), S100B, and ubiquitin C-terminal hydrolase (UCHL-1) levels in children with epilepsy. METHODS Our study included 3 groups: a nonrefractory epilepsy group, a refractory epilepsy group, and a control group. The GFAP, S100B, and UCHL-1 levels in serum samples collected 2-24 hours after the last seizure were analyzed using enzyme-linked immunosorbent assays. RESULTS A total of 69 children participated in the study, with 35 participants in the refractory epilepsy group, 18 in the nonrefractory epilepsy group, and 16 in the control group. The GFAP values in the refractory (25.4 ng/mL) and nonrefractory (26.1 ng/mL) epilepsy groups were found to be statistically significantly higher than those in the control group (17.9 ng/mL; P = .001). The S100B values were found to be significantly higher in the refractory epilepsy group (34.13 pg/mL) than in both the control group and the nonrefractory epilepsy group (28.05 pg/mL; P = .028). No significant differences were observed in the UCHL-1 levels between the 3 groups. CONCLUSIONS We conclude that the observed differences may be due to the increased expression of S100B and GFAP caused by increased and repetitive neuronal damage in refractory epilepsies compared with nonrefractory epilepsies.
Collapse
Affiliation(s)
- Halil Ural Aksoy
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Celil Yılmaz
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Sibgatullah Ali Orak
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Senem Ayça
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Muzaffer Polat
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
4
|
Rider F, Turchinets A, Druzhkova T, Kustov G, Guekht A, Gulyaeva N. Dissimilar Changes in Serum Cortisol after Epileptic and Psychogenic Non-Epileptic Seizures: A Promising Biomarker in the Differential Diagnosis of Paroxysmal Events? Int J Mol Sci 2024; 25:7387. [PMID: 39000494 PMCID: PMC11242564 DOI: 10.3390/ijms25137387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis is known to be involved in the pathogenesis of epilepsy and psychiatric disorders. Epileptic seizures (ESs) and psychogenic non-epileptic seizures (PNESs) are frequently differentially misdiagnosed. This study aimed to evaluate changes in serum cortisol and prolactin levels after ESs and PNESs as possible differential diagnostic biomarkers. Patients over 18 years with ESs (n = 29) and PNESs with motor manifestations (n = 45), captured on video-EEG monitoring, were included. Serum cortisol and prolactin levels as well as hemograms were assessed in blood samples taken at admission, during the first hour after the seizure, and after 6, 12, and 24 h. Cortisol and prolactine response were evident in the ES group (but not the PNES group) as an acute significant increase within the first hour after seizure. The occurrence of seizures in patients with ESs and PNESs demonstrated different circadian patterns. ROC analysis confirmed the accuracy of discrimination between paroxysmal events based on cortisol response: the AUC equals 0.865, with a prediction accuracy at the cutoff point of 376.5 nmol/L 0.811 (sensitivity 86.7%, specificity 72.4%). Thus, assessments of acute serum cortisol response to a paroxysmal event may be regarded as a simple, fast, and minimally invasive laboratory test contributing to differential diagnosis of ESs and PNESs.
Collapse
Affiliation(s)
- Flora Rider
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
| | - Alexander Turchinets
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
| | - Tatyana Druzhkova
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
| | - Georgii Kustov
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
| | - Alla Guekht
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Natalia Gulyaeva
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow 107076, Russia
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| |
Collapse
|
5
|
García-Rodrigo L, Ramos-López C, Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Label-free electrochemical immunosensing of glial fibrillary acidic protein (GFAP) at synthesized rGO/MoS 2/AgNPs nanocomposite. Application to the determination in human cerebrospinal fluid. Talanta 2024; 270:125597. [PMID: 38150968 DOI: 10.1016/j.talanta.2023.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
An electrochemical bioplatform involving screen-printed carbon electrodes modified with rGO/MoS2/AgNPs nanocomposites, the covalent immobilization of the specific capture antibody, and label-free detection has been developed for the determination of Glial Fibrillary Acidic Protein (GFAP). The resulting immunosensor profits the benefits of the rGO high conductivity, the pseudo-peroxidase activity of MoS2 and the electrocatalytic effect provided by AgNPs for improving the reduction current responses of hydrogen peroxide at the electrode surface. GFAP is a biomarker of central nervous system injuries has been proposed for the detection and monitoring of neurological diseases as epilepsy, encephalitis, or multiple sclerosis. For the first time, amperometric detection of the immunosensing event was performed by measuring the electrocatalytic response of hydrogen peroxide reduction at the modified electrode. Several techniques including scanning (SEM) and transmission (TEM) electron microscopies were used for the characterization of the synthesized composite whilst electrochemical impedance spectroscopy (EIS) using the redox probe Fe(CN)63-/4- was employed to evaluate the success of the steps implied in the fabrication of the immunosensor. After optimization of the involved experimental variables, a linear calibration plot for GFAP was constructed over the 0.6-100 ng mL-1 range, and a detection limit of 0.16 ng mL-1 was achieved. The developed immunosensor was successfully applied to the determination of GFAP in human cerebrospinal fluid (CSF) of patients diagnosed with encephalitis.
Collapse
Affiliation(s)
- Lorena García-Rodrigo
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Claudia Ramos-López
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Esther Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Araceli González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| |
Collapse
|
6
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Huang C, You Z, He Y, Li J, Liu Y, Peng C, Liu Z, Liu X, Sun J. Combined transcriptomics and proteomics forecast analysis for potential biomarker in the acute phase of temporal lobe epilepsy. Front Neurosci 2023; 17:1145805. [PMID: 37065920 PMCID: PMC10097945 DOI: 10.3389/fnins.2023.1145805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundTemporal lobe epilepsy (TLE) is a common chronic episodic illness of the nervous system. However, the precise mechanisms of dysfunction and diagnostic biomarkers in the acute phase of TLE are uncertain and hard to diagnose. Thus, we intended to qualify potential biomarkers in the acute phase of TLE for clinical diagnostics and therapeutic purposes.MethodsAn intra-hippocampal injection of kainic acid was used to induce an epileptic model in mice. First, with a TMT/iTRAQ quantitative labeling proteomics approach, we screened for differentially expressed proteins (DEPs) in the acute phase of TLE. Then, differentially expressed genes (DEGs) in the acute phase of TLE were identified by linear modeling on microarray data (limma) and weighted gene co-expression network analysis (WGCNA) using the publicly available microarray dataset GSE88992. Co-expressed genes (proteins) in the acute phase of TLE were identified by overlap analysis of DEPs and DEGs. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) algorithms were used to screen Hub genes in the acute phase of TLE, and logistic regression algorithms were applied to develop a novel diagnostic model for the acute phase of TLE, and the sensitivity of the diagnostic model was validated using receiver operating characteristic (ROC) curves.ResultsWe screened a total of 10 co-expressed genes (proteins) from TLE-associated DEGs and DEPs utilizing proteomic and transcriptome analysis. LASSO and SVM-RFE algorithms for machine learning were applied to identify three Hub genes: Ctla2a, Hapln2, and Pecam1. A logistic regression algorithm was applied to establish and validate a novel diagnostic model for the acute phase of TLE based on three Hub genes in the publicly accessible datasets GSE88992, GSE49030, and GSE79129.ConclusionOur study establishes a reliable model for screening and diagnosing the acute phase of TLE that provides a theoretical basis for adding diagnostic biomarkers for TLE acute phase genes.
Collapse
Affiliation(s)
- Cong Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng You
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yijie He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyan Peng
- Department of Orthopedics, Xinyu People’s Hospital, Xinyu, China
| | - Zhixiong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiahang Sun,
| |
Collapse
|
8
|
Chatterjee P, Doré V, Pedrini S, Krishnadas N, Thota R, Bourgeat P, Ikonomovic MD, Rainey-Smith SR, Burnham SC, Fowler C, Taddei K, Mulligan R, Ames D, Masters CL, Fripp J, Rowe CC, Martins RN, Villemagne VL. Plasma Glial Fibrillary Acidic Protein Is Associated with 18F-SMBT-1 PET: Two Putative Astrocyte Reactivity Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 92:615-628. [PMID: 36776057 PMCID: PMC10041433 DOI: 10.3233/jad-220908] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS Plasma GFAP and Aβ were measured using the Simoa ® platform in participants who underwent brain 18F-SMBT-1 and Aβ-PET imaging, comprising 54 healthy control (13 Aβ-PET+ and 41 Aβ-PET-), 11 mild cognitively impaired (3 Aβ-PET+ and 8 Aβ-PET-) and 6 probable AD (5 Aβ-PET+ and 1 Aβ-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aβ deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aβ (plasma Aβ 42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aβ (Aβ-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aβ load.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Vincent Doré
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rohith Thota
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pennsylvania, PA, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, PA, USA
| | - Stephanie R Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Samantha C Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jürgen Fripp
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, PA, USA
| | | |
Collapse
|
9
|
Serum Markers of Neuronal Damage and Astrocyte Activity in Patients with Chronic Epilepsy: Elevated Levels of Glial Fibrillary Acidic Protein. Acta Neurol Scand 2023. [DOI: 10.1155/2023/7246373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objectives. Blood-brain barrier (BBB) dysfunction is one of the key pathogenic mechanisms in the development of epilepsy. There is therefore an increasing need to identify BBB biomarkers as these will have prognostic and therapeutic implications. The purpose of this study was to assess the levels of the BBB permeability markers, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), S100B, and furin in patients with stable epilepsy compared with the levels in healthy controls. Materials and Methods. This cross-sectional study included 119 epilepsy patients and 80 healthy controls. Circulating levels of GFAP, NSE, S100B, and furin were measured and questionnaires regarding epilepsy, use of drugs, and comorbidities were completed by all participants. Results. GFAP levels were higher in epilepsy patients after adjustment for potential confounders (sex, age, and BMI) in linear regression (
). No significant differences were found in levels of S100B, NSE, or furin. None of the markers were significantly associated with epilepsy duration, seizure type or severity, or seizures in the preceding six months. The majority of the patients (79.7%) did not report seizures within the last 6 months. Conclusion. Our main finding is elevated serum levels of GFAP in epilepsy patients. The results may suggest the presence of astrocyte activation in our patient population with stable epilepsy. Future prospective studies focusing on the longitudinal relationship between epilepsy debut, seizures, and time of blood sampling for BBB markers, also within CSF, could provide valuable knowledge including regarding novel treatment options. The study registration number is 2011/1096, 2018/1437.
Collapse
|
10
|
Ozcelikay G, Mollarasouli F, Unal MA, Gucuyener K, Ozkan SA. Ultrasensitive Determination of Glial-Fibrillary-Acidic-Protein (GFAP) in Human Serum-Matrix with a Label-Free Impedimetric Immunosensor. BIOSENSORS 2022; 12:1165. [PMID: 36551133 PMCID: PMC9775015 DOI: 10.3390/bios12121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
In this work, immobilizing anti-GFAP antibodies via covalent attachment onto L-cysteine/gold nanoparticles that were modified with screen-printed carbon electrodes (Anti-GFAP/L-cys/AuNps/SPCE) resulted in the development of a sensitive label-free impedance immunosensor for the detection of Glial Fibrillary Acidic Protein (GFAP). The immunosensor's stepwise construction was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). L-cysteine was chosen as the linker between GFAP antibodies and Au NPs/SPCE because it enables the guided and stable immobilization of GFAP antibodies, thus resulting in increased immunosensor sensitivity. As a redox probe, 5 mM of [Fe(CN)6]3-/4- was used to measure the electron-transfer resistance (Ret), which was raised by the binding of antigens to the immobilized anti-GFAP on the surface of the modified electrode. A linear correlation between Rct and GFAP concentration was achieved under optimum conditions in the range of 1.0-1000.0 pg/mL, with an extraordinarily low detection limit of 51.0 fg/mL. The suggested immunosensor was successfully used to detect the presence of GFAP in human blood serum samples, yielding good findings. As a result, the proposed platform may be utilized to monitor central nervous system injuries.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| | | | | | - Kıvılcım Gucuyener
- Department of Pediatric Neurology, Gazi University, Ankara 06510, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
11
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
12
|
Postnikova TY, Trofimova AM, Zakharova MV, Nosova OI, Brazhe AR, Korzhevskii DE, Semyanov AV, Zaitsev AV. Delayed Impairment of Hippocampal Synaptic Plasticity after Pentylenetetrazole-Induced Seizures in Young Rats. Int J Mol Sci 2022; 23:ijms232113461. [PMID: 36362260 PMCID: PMC9657086 DOI: 10.3390/ijms232113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Alina M. Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Maria V. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Olga I. Nosova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia
| | - Alexey R. Brazhe
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
| | | | - Alexey V. Semyanov
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
- Correspondence:
| |
Collapse
|
13
|
Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand 2022; 146:362-368. [PMID: 35411571 PMCID: PMC9790299 DOI: 10.1111/ane.13616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/04/2022] [Accepted: 03/19/2022] [Indexed: 12/30/2022]
Abstract
Robust and accessible biomarkers are greatly needed in epilepsy. Diagnostic and prognostic precision in the clinic needs to improve, and there is a need for objective quantification of seizure burden. In recent years, there have been advances in the development of accessible and cost-effective blood-based biomarkers in neurology, and these are increasingly studied in epilepsy. However, the field is in its infancy and specificity and sensitivity for most biomarkers in most clinical situations are not known. This review describes advancements regarding human blood biomarkers in epilepsy. Examples of biochemical markers that have been shown to have higher blood concentrations in study subjects with epilepsy include brain proteins like S100B or neuronal specific enolase, and neuroinflammatory proteins like interleukins, and tumor necrosis factor-alpha. Some of the blood biomarkers also seem to reflect seizure duration or frequency, and levels decrease in response to treatment with antiseizure medication. For most biomarkers, the literature contains seemingly conflicting results. This is to be expected in an emerging field and could reflect different study populations, sampling or analysis techniques, and epilepsy classification. More studies are needed with emphasis put on the classification of epilepsy and seizure types. More standardized reporting could perhaps decrease result heterogeneity and increase the potential for data sharing and subgroup analyses.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Sarah Akel
- Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Zelano
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
15
|
van der Horn HJ, Visser K, Bijzet J, Vos P, van der Naalt J, Jacobs B. Long-Term Stability of Blood Serum Biomarkers in Traumatic Brain Injury: A Feasibility Study. Front Neurol 2022; 13:877050. [PMID: 35665051 PMCID: PMC9158477 DOI: 10.3389/fneur.2022.877050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Few studies on traumatic brain injury (TBI) have investigated the stability of blood serum biomarkers after long-term storage at low temperatures. In the current feasibility study we analyzed acute phase serum samples from patients with mild TBI as well as patients with moderate and severe TBI that were collected more than 10 years ago (old samples). We were particularly interested in mild TBI, because injury effects are more subtle in this category as compared to moderate-severe TBI. Therefore, the primary objective was to find out whether several biomarkers were still detectable for these patients. Additionally, we examined whether biomarker levels varied as a function of injury severity. For comparison, we also analyzed samples from an ongoing mTBI cohort (new samples) and healthy controls. Samples were treated with care and were not being subjected to freeze-thaw cycles. We measured concentrations of interleukins (IL6 and 10) and brain specific markers (total tau, UCH-L1, GFAP, and NF-L). No significant differences in biomarker concentrations were found between old and new mild TBI samples. For IL6, IL10, and UCH-L1 higher concentrations were found in moderate and severe TBI as compared to mild TBI. In conclusion, our study shows that long-term storage does not rule out the detection of meaningful biomarker concentrations in patients with TBI, although further research by other laboratories is warranted.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Harm Jan van der Horn
| | - Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Assisting dementia diagnosis through the electrochemical immunosensing of glial fibrillary acidic protein. Talanta 2022; 246:123526. [DOI: 10.1016/j.talanta.2022.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
17
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
18
|
Glial fibrillary acidic protein (GFAP)-antibody in children with focal seizures of undetermined cause. Acta Neurol Belg 2021; 121:1275-1280. [PMID: 32333263 DOI: 10.1007/s13760-020-01361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
Anti-neuronal antibodies that are related with autoimmune encephalitis syndromes may also be found in children with new onset seizures or chronic epilepsy. To unravel the significance of autoimmune astrocytopathy in epilepsy, we investigated serum antibody to glial fibrillary acidic protein (GFAP), another autoantigen described in autoimmune encephalitis with seizures, in 38 children with focal seizures of undetermined cause. GFAP antibody was screened with cell based assay and indirect immunohistochemistry and was found in two boys with normal brain MRI and unrevealing medical history prior to seizures. The 2-year-old boy had chronic treatment-resistant frontal lobe epilepsy. The 2.5-year-old boy had a single episode of focal seizures and remained seizure free thereafter in a follow-up period of 4 years. Nevertheless, he showed severe cognitive and language impairment. These results suggest that autoimmune astrocytopathy may be present in some epilepsy patients. Whether this immune response is a bystander effect generated by seizure-induced astrocytosis or directly involved in epileptogenesis needs to be further studied.
Collapse
|
19
|
Kustov GV, Zinchuk MS, Rider FK, Pashnin EV, Voinova NI, Avedisova AS, Guekht AB. [Psychogenic non-epileptic seizures]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:112-118. [PMID: 34481446 DOI: 10.17116/jnevro2021121081112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review provides epidemiological data and discuss the associated burden of non-epileptic seizures (PNES). Data on the prevalence, socio-demographic and clinical risk factors for the development of PNES are presented. The hypotheses of the PNES origin, including the contribution of psychological trauma, are considered. We also describe contemporary methods for differential diagnosis of epileptic seizures and PNES, including biomarkers and the use of diagnostic questionnaires. Special attention is given to the issues of the psychiatric comorbidity of PNES.
Collapse
Affiliation(s)
- G V Kustov
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - M S Zinchuk
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - F K Rider
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - E V Pashnin
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - N I Voinova
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - A S Avedisova
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia.,Federal Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - A B Guekht
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
20
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
21
|
Identification of clinically relevant biomarkers of epileptogenesis - a strategic roadmap. Nat Rev Neurol 2021; 17:231-242. [PMID: 33594276 DOI: 10.1038/s41582-021-00461-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Onset of many forms of epilepsy occurs after an initial epileptogenic insult or as a result of an identified genetic defect. Given that the precipitating insult is known, these epilepsies are, in principle, amenable to secondary prevention. However, development of preventive treatments is difficult because only a subset of individuals will develop epilepsy and we cannot currently predict which individuals are at the highest risk. Biomarkers that enable identification of these individuals would facilitate clinical trials of potential anti-epileptogenic treatments, but no such prognostic biomarkers currently exist. Several putative molecular, imaging, electroencephalographic and behavioural biomarkers of epileptogenesis have been identified, but clinical translation has been hampered by fragmented and poorly coordinated efforts, issues with inter-model reproducibility, study design and statistical approaches, and difficulties with validation in patients. These challenges demand a strategic roadmap to facilitate the identification, characterization and clinical validation of biomarkers for epileptogenesis. In this Review, we summarize the state of the art with respect to biomarker research in epileptogenesis and propose a five-phase roadmap, adapted from those developed for cancer and Alzheimer disease, that provides a conceptual structure for biomarker research.
Collapse
|
22
|
Elhady M, Youness ER, AbuShady MM, Nassar MS, Elaziz AA, Masoud MM, Foudaa FK, Elhamed WAA. Circulating glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase-L1 as markers of neuronal damage in children with epileptic seizures. Childs Nerv Syst 2021; 37:879-884. [PMID: 33044615 DOI: 10.1007/s00381-020-04920-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epilepsy is a common neurological disease that has a negative impact on physical, social, and cognitive function. Seizure-induced neuronal injury is one of the suggested mechanisms of epilepsy complications. We aimed to evaluate the circulating level of glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) as markers of neuronal damage in children with epilepsy and its relation to epilepsy characteristics. STUDY DESIGN METHODS: This case control study included 30 children with epilepsy and 30 healthy children as a control group. Seizure severity was determined based on Chalfont score. Serum level of GFAP and UCH-L1were measured, and their associations with epilepsy characteristics were investigated. RESULTS Circulating levels of GFAP and UCH-L1 were significantly higher in children with epilepsy than in controls (17.440 ± 6.74 and 5.700 ± 1.64 vs 7.06 ± 3.30 and 1.81 ± 0.23, respectively) especially in those with generalized and active seizures. GFAP and UCH-L1 were significantly correlated to the severity of seizures in the previous 6 months. Elevated GFAP level was a predictor for active seizures (OR 1.841, 95%CI 1.043-3.250, P = 0.035). CONCLUSION Circulating GFAP and UCH-L1 expression is increased in children with epilepsy especially those with active seizures. SIGNIFICANCE GFAP and UCH-L 1may serve as peripheral biomarkers for neuronal damage in children with epilepsy that can be used to monitor disease progression and severity for early identification of those with drug-resistant epilepsy and those who are in need for epilepsy surgery.
Collapse
Affiliation(s)
- Marwa Elhady
- Pediatric Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11735, Egypt.
| | - Eman R Youness
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | | - Maysa S Nassar
- Child Health Department, National Research Centre, Cairo, Egypt
| | - Ali Abd Elaziz
- Child Health Department, National Research Centre, Cairo, Egypt
| | - Mahmoud M Masoud
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | - Fayez K Foudaa
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
23
|
Nass RD, Akgün K, Elger C, Reichmann H, Wagner M, Surges R, Ziemssen T. Serum biomarkers of cerebral cellular stress after self-limiting tonic clonic seizures: An exploratory study. Seizure 2020; 85:1-5. [PMID: 33360039 DOI: 10.1016/j.seizure.2020.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE It has been debated for decades whether single, self-limited seizures damage cerebral cells. Meanwhile, very sensitive measurements of biomarkers have become available, i.e. tau, neurofilament protein light (NFL), glial fibrillary acidic protein (GFAP) and ubiquitin carboxyterminate hydrolase L1 (UCHL-1), which we explored in this study. METHODS Adult patients of the epilepsy monitoring unit were admitted to the study after written consent. Blood samples were drawn at baseline, immediately after a TCS and after two, six and 24 h. The markers were measured from frozen samples with a single-molecule array (SIMOA). RESULTS 20 patients and 20 seizures were included. All markers showed subtle but significant postictal increases and returned to normal within the next few hours (p < 0.05). An increase of at least 100 % from baseline was noted in 30 % of patients for tau, 25 % for UCHL-1 and 15 % for GFAP, while NFL levels never increased above 100 %. Lactate was slightly correlated with the tau increase (r = 0.47, p = 0.037), leukocytes were correlated with postictal changes of GFAP (r = 0.68 p = 0.001). CONCLUSION Our data supports the assumption that significant cerebral stress occurs in some but not all self-limited TCS. The postictal inflammatory response in particular seems to play an important role.
Collapse
Affiliation(s)
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Christian Elger
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Heinz Reichmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Marcus Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| |
Collapse
|
24
|
Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-analysis. ACS Chem Neurosci 2020; 11:4048-4059. [PMID: 33147022 DOI: 10.1021/acschemneuro.0c00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, growing attention has been paid to the changes of brain biomarkers following the epilepsy. However, establishing specific epilepsy-related biomarkers has been impeded due to contradictory findings. This study systematically reviewed the evidence on brain biomarkers in epilepsy and determined reliable biomarkers in epileptic patients. A comprehensive systematic search of online databases was performed to find eligible studies up to August 2019. The quality of studies methodologically was assessed using the Newcastle-Ottawa Scale score. Among the several biomarkers, S100 calcium binding protein B (S100B) and neuron specific enolase (NSE) have been qualified for meta-analysis of the association between epilepsy and the brain biomarkers. Inverse-variance weights method was used to calculate pooled standardized mean difference (SMD) estimate with 95% CI, and random effects meta-analysis was conducted taking into account conceptual heterogeneity. Sensitivity analysis and publication bias assessment was performed using Stata. Of 29 studies that were qualified for further analysis, only 22 studies were eligible to quantify by meta-analysis. Significant increase of serum S100B levels (SMD = 0.80; 95% CI 0.18 to 1.42) but not NSE (SMD = 0.45; 95% CI -0.09 to 1.00) has been found in epileptic patients compared with healthy controls. Subgroup meta-analysis by age demonstrated that S100B could be found in pediatric (SMD = 1.15; 95% CI 0.03 to 2.27) not adult patients (SMD = 0.43; 95% CI -0.12 to 0.98). Findings of this meta-analysis indicate that serum level of S100B is significantly increased in epileptic patients, suggesting the elevation and release of the brain biomarkers from brain to blood following epileptic seizures.
Collapse
Affiliation(s)
- Leila Simani
- Skull base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3A 1A1, Canada
| | - Mohsen Dehghani
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
25
|
Simani L, Roozbeh M, Rostami M, Pakdaman H, Ramezani M, Asadollahi M. Attention and inhibitory control deficits in patients with genetic generalized epilepsy and psychogenic nonepileptic seizure. Epilepsy Behav 2020; 102:106672. [PMID: 31739099 DOI: 10.1016/j.yebeh.2019.106672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the attention and inhibitory control functions in patients with genetic generalized epilepsy (GGE) and psychogenic nonepileptic seizure (PNES) and compare the results with the healthy control subjects. A total of 30 patients with GGE, 30 patients with PNES, and 32 healthy control subjects were included in the study. The severity of attention and inhibitory control deficit, general intelligence status, and psychopathology screening in all subjects were respectively investigated with the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), the Wechsler Adult Intelligence Scale (WAIS), and the Symptoms Checklist 90-revised (SCL-90-R). Patients with PNES had severe impairments in all performed tasks compared with the control group and the group with GGE (p < 0.01), whereas patients with GGE had significantly lower attention quotient versus healthy subjects (p < 0.01). The full-scale attention quotient (FSAQ) and full-scale response control quotient (FSRCQ) in patients with PNES were significantly lower in comparison with GGE (47.83 ± 32.68, 60.18 ± 35.35, p < 0.01), respectively. Multiple regression analysis did not demonstrate any significant effect of seizure frequency or epilepsy duration on attention and inhibitory control deficits, but patient's intelligence quotient (IQ) showed a significant effect on FSAQ and FSRCQ (β: 0.997, p < 0.001; β: 0.933, p < 0.001, respectively). Attention and inhibitory control are significantly impaired in patients with GGE and PNES. The cognitive deficits in patients with GGE and PNES have potentially important clinical implications in planning their neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Leila Simani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roozbeh
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami
- Institute for Brain and Cognitive Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Ramezani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marjan Asadollahi
- Department of Epilepsy, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Chmielewska N, Maciejak P, Turzyńska D, Sobolewska A, Wisłowska-Stanek A, Kołosowska K, Płaźnik A, Szyndler J. The role of UCH-L1, MMP-9, and GFAP as peripheral markers of different susceptibility to seizure development in a preclinical model of epilepsy. J Neuroimmunol 2019; 332:57-63. [PMID: 30952062 DOI: 10.1016/j.jneuroim.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
In our study, we assessed the potency of the brain-derived proteins ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), matrix metalloproteinase 9 (MMP-9), glial fibrillary acidic protein (GFAP) and the immune activation indicators interleukin 1β (IL-1β) and interleukin 6 (IL-6) as peripheral biomarkers of different susceptibilities to kindling in a preclinical model. We observed increased plasma UCH-L1 levels in kindled vs. control animals. Furthermore, MMP-9 and IL-1β concentrations were the lowest in rats resistant to kindling. In summary, UCH-L1 is an indicator of neuronal loss and BBB disruption after seizure. MMP-9 and IL-1β may indicate resistance to kindling. UCH-L1, MMP-9 and IL-1β may have utility as peripheral biomarkers with translational potency in the clinic.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Asadollahi M, Simani L. The diagnostic value of serum UCHL-1 and S100-B levels in differentiate epileptic seizures from psychogenic attacks. Brain Res 2018; 1704:11-15. [PMID: 30253122 DOI: 10.1016/j.brainres.2018.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the value of postictal serum Ubiquitin C-terminal hydrolase (UCHL-1), a neuronal biomarker, and S100-B, a glial biomarker, levels, in differentiate epileptic seizures (ES) form psychogenic attacks. METHODS In this analytical cross-sectional study, serum UCHL-1 and S100-B levels were measured within six hours of occurring seizure, in 43 patients with ES, 20 patients with psychogenic non-epileptic seizures (PNES) and 19 healthy individuals by electrochemiluminescence immunoassay. RESULTS Both serum UCHL-1 and S100-B levels were significantly higher in patients with ES than PNES (P < 0.05) and controls (P < 0.01). PNES patients had significantly higher serum S100-B levels compared to controls (P < 0.01). There was a significant correlation between the serum UCHL-1 and S100-B levels in patients with ES (r = 0.46, P = 0.002). CONCLUSIONS Our study showed that serum UCHL-1 level could be potentially used in differentiate ES from PNES (sensitivity 72%, specificity 59%). Serum S100-B level had lower value compared to UCHL-1 (AUC 0.68 for UCHL-1 v/s 0.59 for S100B). Post-seizure serum UCHL-1 and S100-B levels could be used in future studies to better understand the underlying mechanism of seizures and may offer as an adjunctive diagnostic test in differentiate ES from PNES.
Collapse
Affiliation(s)
- Marjan Asadollahi
- Department of Epilepsy, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Simani
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Mapping Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|