1
|
Dargvainiene J, Sahaf S, Franzenburg J, Matthies I, Leypoldt F, Wandinger KP, Baysal L, Markewitz R, Kuhlenbäumer G, Margraf NG. Neurofilament light (NfL) concentrations in patients with epilepsy with recurrent isolated seizures: Insights from a clinical cohort study. Seizure 2024; 121:91-94. [PMID: 39137477 DOI: 10.1016/j.seizure.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To detect possible neuronal damage due to recurrent isolated seizures in patients with epilepsy in a clinical routine setting. METHODS We measured the serum concentrations of neurofilament light chain (sNfL) in 46 outpatients with an at least monthly occurrence (self-reported) of generalized tonic-clonic seizures in the six months prior to the study and in 49 patients who had been seizure free (self-reported) for at least one year. We assigned the patients with seizure activity into groups with moderate and high seizure frequency. We measured sNfL with a highly sensitive single molecule array (Simoa). RESULTS The majority (94 %) of all patients with epilepsy had sNfL values within the age adjusted reference ranges of our laboratory. Three patients with and three patients without seizure activity (each 3 %) showed elevated sNfL concentrations. Age adjusted sNfL concentrations did not differ significantly between patients with and without seizure activity in the total sample or in the female subgroup. In contrast, NfL concentrations were significantly higher in male patients with seizure activity and highest in the subgroup of those with high seizure activity, but were only above the reference range in two patients. sNfL concentrations did not differ between focal and generalized epilepsies and between genetic and structural etiologies. CONCLUSIONS The sNfL concentrations in patients with epilepsy and healthy patients did not differ significantly. The finding of higher sNfL concentrations in males with self-reported seizure activity should be viewed with utmost caution because the difference was small and only two male patients showed sNfL concentrations above the reference range.
Collapse
Affiliation(s)
- Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Safa Sahaf
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Jeanette Franzenburg
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Inga Matthies
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Leyla Baysal
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
2
|
Roghani A, Wang CP, Henion A, Amuan M, Altalib H, LaFrance WC, Baca C, Van Cott A, Towne A, Kean J, Hinds SR, Kennedy E, Panahi S, Pugh MJ. Mortality among veterans with epilepsy: Temporal significance of traumatic brain injury exposure. Epilepsia 2024; 65:2255-2269. [PMID: 39119799 DOI: 10.1111/epi.18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Epilepsy is associated with significant mortality risk. There is limited research examining how traumatic brain injury (TBI) timing affects mortality in relation to the onset of epilepsy. We aimed to assess the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans. METHODS This retrospective cohort study included veterans who received health care in the Defense Health Agency and the Veterans Health Administration between 2000 and 2019. For those diagnosed with epilepsy, the index date was the date of first antiseizure medication or first seizure; we simulated the index date for those without epilepsy. We created the study groups by the index date and first documented TBI: (1) controls (no TBI, no epilepsy), (2) TBI only, (3) epilepsy only, (4) TBI before epilepsy, (5) TBI within 6 months after epilepsy, and (6) TBI >6 months after epilepsy. Kaplan-Meier estimates of all-cause mortality were calculated, and log-rank tests were used to compare unadjusted cumulative mortality rates among groups compared to controls. Cox proportional hazard models were used to compute hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS Among 938 890 veterans, 27 436 (2.92%) met epilepsy criteria, and 264 890 (28.22%) had a TBI diagnosis. Mortality was higher for veterans with epilepsy than controls (6.26% vs. 1.12%; p < .01). Veterans with TBI diagnosed ≤6 months after epilepsy had the highest mortality hazard (HR = 5.02, 95% CI = 4.21-5.99) compared to controls, followed by those with TBI before epilepsy (HR = 4.25, 95% CI = 3.89-4.58), epilepsy only (HR = 4.00, 95% CI = 3.67-4.36), and TBI >6 months after epilepsy (HR = 2.49, 95% CI = 2.17-2.85). These differences were significant across groups. SIGNIFICANCE TBI timing relative to epilepsy affects time to mortality; TBI within 6 months after epilepsy or before epilepsy diagnosis was associated with earlier time to death compared to those with epilepsy only or TBI >6 months after epilepsy.
Collapse
Affiliation(s)
- Ali Roghani
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Chen-Pin Wang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Geriatric Research, Education & Clinical Center, San Antonio, Texas, USA
| | - Amy Henion
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Megan Amuan
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Hamada Altalib
- Connecticut Veteran Healthcare System, West Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - W Curt LaFrance
- Departments of Psychiatry and Neurology, Brown University, Providence, Rhode Island, USA
- Department of Psychiatry, Providence Veterans Administration Salt Lake City Health Care System Medical Center, Providence, Rhode Island, USA
| | - Christine Baca
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anne Van Cott
- Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan Towne
- Department of Psychiatry, Providence Veterans Administration Salt Lake City Health Care System Medical Center, Providence, Rhode Island, USA
- Epilepsy Center of Excellence, Central Virginia Veterans Administration Hospital, Richmond, Virginia, USA
| | - Jacob Kean
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sidney R Hinds
- Department of Radiology/Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Eamonn Kennedy
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Samin Panahi
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Mary Jo Pugh
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Tikhonova MA, Shvaikovskaya AA, Zhanaeva SY, Moysak GI, Akopyan AA, Rzaev JA, Danilenko KV, Aftanas LI. Concordance between the In Vivo Content of Neurospecific Proteins (BDNF, NSE, VILIP-1, S100B) in the Hippocampus and Blood in Patients with Epilepsy. Int J Mol Sci 2023; 25:502. [PMID: 38203674 PMCID: PMC10779095 DOI: 10.3390/ijms25010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of reliable brain-specific biomarkers in periphery contributes to better understanding of normal neurophysiology and neuropsychiatric diseases. The neurospecific proteins BDNF, NSE, VILIP-1, and S100B play an important role in the pathogenesis of neuropsychiatric disorders, including epilepsy. This study aimed to assess the correspondence of the expression of BDNF, NSE, VILIP-1, and S100B in the blood (serum and peripheral blood mononuclear cells (PBMCs)) to the in vivo hippocampal levels of subjects with drug-resistant epilepsy who underwent neurosurgery (N = 44) using multiplex solid-phase analysis, ELISA, and immunohistochemical methods, as well as to analyze the correlations and associations of the blood and hippocampal levels of these proteins with clinical parameters. We first studied the concordance between in vivo brain and blood levels of BDNF, NSE, VILIP-1, and S100B in epileptic patients. A positive correlation for NSE between hippocampal and PBMC levels was revealed. NSE levels in PBMCs were also significantly correlated with average seizure duration. BDNF levels in PBMCs were associated with seizure frequency and hippocampal sclerosis. Thus, NSE and BDNF levels in PBMCs may have potential as clinically significant biomarkers. Significant correlations between the levels of the neurospecific proteins studied herein suggest interactions between BDNF, NSE, VILIP-1, and S100B in the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Maria A. Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Anna A. Shvaikovskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Svetlana Y. Zhanaeva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Galina I. Moysak
- FSBI “Federal Center for Neurosurgery”, 630087 Novosibirsk, Russia (J.A.R.)
| | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Jamil A. Rzaev
- FSBI “Federal Center for Neurosurgery”, 630087 Novosibirsk, Russia (J.A.R.)
| | - Konstantin V. Danilenko
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Lyubomir I. Aftanas
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| |
Collapse
|
4
|
Akel S, Banote RK, Asztely F, Zelano J. Protein profiling in plasma for biomarkers of seizure. Epilepsy Res 2023; 197:107241. [PMID: 37862918 DOI: 10.1016/j.eplepsyres.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE A biochemical way to measure seizures would greatly benefit epilepsy research and clinical follow-up. Short-term biomarkers like lactate exist, and interest in biomarkers representative of longer-term seizure burden is growing. In this exploratory study, we aimed to identify markers in blood plasma that differentiate persons with recent seizures from persons with epilepsy and long-standing seizure freedom. METHODS A proteomic analysis was performed on plasma samples of 120 persons with seizures using the Olink Neuro-exploratory panel. Participants were selected from a regional biobank study in Västra Götaland (Sweden) and categorized into two groups: recent seizure and seizure-free. The panel contained 92 proteins linked to neurological diseases and processes, and levels of these proteins were compared between the patient groups to identify potential markers of seizure activity. RESULTS We identified significant differences in protein levels between the recent seizure and seizure-free patient groups for Cadherin-15 [(CDH15; p = 0.008)], Latent transforming growth factor beta-binding protein 3 [(LTBP3; p = 0.002)], Phosphoethanolamine/phosphocholine phosphatase 1 [(PHOSPHO1; p = 0.011)], and Progestagen associated endometrial protein [(PAEP; p = 0.0005)]. CONCLUSION The findings in this study present CDH15, LTBP3, PHOSPHO1 and PAEP as candidate markers of seizure activity. Further confirmatory studies are needed.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
5
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Rastin C, Schenkel LC, Sadikovic B. Complexity in Genetic Epilepsies: A Comprehensive Review. Int J Mol Sci 2023; 24:14606. [PMID: 37834053 PMCID: PMC10572646 DOI: 10.3390/ijms241914606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.
Collapse
Affiliation(s)
- Cassandra Rastin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Laila C. Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Geis T, Gutzeit S, Fouzas S, Ambrosch A, Benkert P, Kuhle J, Wellmann S. Serum Neurofilament light chain (NfL) levels in children with and without neurologic diseases. Eur J Paediatr Neurol 2023; 45:9-13. [PMID: 37236127 DOI: 10.1016/j.ejpn.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/10/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND/OBJECTIVE Serum neurofilament light chain (sNfL) is a specific biomarker of neuronal damage. Elevated sNfL levels have been reported in numerous neurologic diseases in adults, whereas data on sNfL in the pediatric population are incomplete. The aim of this study was to investigate sNfL levels in children with various acute and chronic neurologic disorders and describe the age dependence of sNfL from infancy to adolescence. METHODS The total study cohort of this prospective cross-sectional study consisted of 222 children aged from 0 to 17 years. Patients' clinical data were reviewed and patients were assigned to the following groups: 101 (45.5%) controls, 34 (15.3%) febrile controls, 23 (10.4%) acute neurologic conditions (meningitis, facial nerve palsy, traumatic brain injury, or shunt dysfunction in hydrocephalus), 37 (16.7%) febrile seizures, 6 (2.7%) epileptic seizures, 18 (8.1%) chronic neurologic conditions (autism, cerebral palsy, inborn mitochondrial disorder, intracranial hypertension, spina bifida, or chromosomal abnormalities), and 3 (1.4%) severe systemic disease. sNfL levels were measured using a sensitive single-molecule array assay. RESULTS There were no significant differences in sNfL levels between controls, febrile controls, febrile seizures, epileptic seizures, acute neurologic conditions, and chronic neurologic conditions. In children with severe systemic disorders, by far the highest NfL levels were found with an sNfL of 429 pg/ml in a patient with neuroblastoma, 126 pg/ml in a patient with cranial nerve palsy and pharyngeal Burkitt's lymphoma, and 42 pg/ml in a child with renal transplant rejection. The relationship between sNfL and age could be described by a second order polynomial with an R2 of 0.153 with a decrease of sNfL by 3.2% per year from birth to age 12 years and thereafter an increase by 2.7% per year until age 18 years. CONCLUSIONS In this study cohort, sNfL levels were not elevated in children with febrile or epileptic seizures, or various other neurologic diseases. Strikingly high sNfL levels were detected in children with oncologic disease or transplant rejection. A biphasic sNfL age-dependency was documented, with highest levels in infancy and late adolescence and the lowest levels in middle school age.
Collapse
Affiliation(s)
- Tobias Geis
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.
| | - Svena Gutzeit
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Sotiris Fouzas
- Department of Pediatrics, University Hospital of Patras, Patras, Greece
| | - Andreas Ambrosch
- Institute of Laboratory Medicine, Microbiology and Hygiene, Hospital of the Order of St. John, Regensburg, Germany
| | - Pascal Benkert
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- Research and Development Campus Regensburg (WECARE), at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany; Department of Neonatology, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
9
|
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, Ovsepian SV. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023; 20:767-778. [PMID: 36884195 PMCID: PMC10275849 DOI: 10.1007/s13311-023-01355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Collapse
Affiliation(s)
- Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Simon Granak
- National Institute of Mental Health, Topolova 748, Klecany, 25067, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
10
|
Heiskanen M, Jääskeläinen O, Manninen E, Das Gupta S, Andrade P, Ciszek R, Gröhn O, Herukka SK, Puhakka N, Pitkänen A. Plasma Neurofilament Light Chain (NF-L) Is a Prognostic Biomarker for Cortical Damage Evolution but Not for Cognitive Impairment or Epileptogenesis Following Experimental TBI. Int J Mol Sci 2022; 23:ijms232315208. [PMID: 36499527 PMCID: PMC9736117 DOI: 10.3390/ijms232315208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
Plasma neurofilament light chain (NF-L) levels were assessed as a diagnostic biomarker for traumatic brain injury (TBI) and as a prognostic biomarker for somatomotor recovery, cognitive decline, and epileptogenesis. Rats with severe TBI induced by lateral fluid-percussion injury (n = 26, 13 with and 13 without epilepsy) or sham-operation (n = 8) were studied. During a 6-month follow-up, rats underwent magnetic resonance imaging (MRI) (day (D) 2, D7, and D21), composite neuroscore (D2, D6, and D14), Morris-water maze (D35−D39), and a 1-month-long video-electroencephalogram to detect unprovoked seizures during the 6th month. Plasma NF-L levels were assessed using a single-molecule assay at baseline (i.e., naïve animals) and on D2, D9, and D178 after TBI or a sham operation. Plasma NF-L levels were 483-fold higher on D2 (5072.0 ± 2007.0 pg/mL), 89-fold higher on D9 (930.3 ± 306.4 pg/mL), and 3-fold higher on D176 32.2 ± 8.9 pg/mL after TBI compared with baseline (10.5 ± 2.6 pg/mL; all p < 0.001). Plasma NF-L levels distinguished TBI rats from naïve animals at all time-points examined (area under the curve [AUC] 1.0, p < 0.001), and from sham-operated controls on D2 (AUC 1.0, p < 0.001). Plasma NF-L increases on D2 were associated with somatomotor impairment severity (ρ = −0.480, p < 0.05) and the cortical lesion extent in MRI (ρ = 0.401, p < 0.05). Plasma NF-L increases on D2 or D9 were associated with the cortical lesion extent in histologic sections at 6 months post-injury (ρ = 0.437 for D2; ρ = 0.393 for D9, p < 0.05). Plasma NF-L levels, however, did not predict somatomotor recovery, cognitive decline, or epileptogenesis (p > 0.05). Plasma NF-L levels represent a promising noninvasive translational diagnostic biomarker for acute TBI and a prognostic biomarker for post-injury somatomotor impairment and long-term structural brain damage.
Collapse
Affiliation(s)
- Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, P.O. Box 1777, 70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
11
|
Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand 2022; 146:362-368. [PMID: 35411571 PMCID: PMC9790299 DOI: 10.1111/ane.13616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/04/2022] [Accepted: 03/19/2022] [Indexed: 12/30/2022]
Abstract
Robust and accessible biomarkers are greatly needed in epilepsy. Diagnostic and prognostic precision in the clinic needs to improve, and there is a need for objective quantification of seizure burden. In recent years, there have been advances in the development of accessible and cost-effective blood-based biomarkers in neurology, and these are increasingly studied in epilepsy. However, the field is in its infancy and specificity and sensitivity for most biomarkers in most clinical situations are not known. This review describes advancements regarding human blood biomarkers in epilepsy. Examples of biochemical markers that have been shown to have higher blood concentrations in study subjects with epilepsy include brain proteins like S100B or neuronal specific enolase, and neuroinflammatory proteins like interleukins, and tumor necrosis factor-alpha. Some of the blood biomarkers also seem to reflect seizure duration or frequency, and levels decrease in response to treatment with antiseizure medication. For most biomarkers, the literature contains seemingly conflicting results. This is to be expected in an emerging field and could reflect different study populations, sampling or analysis techniques, and epilepsy classification. More studies are needed with emphasis put on the classification of epilepsy and seizure types. More standardized reporting could perhaps decrease result heterogeneity and increase the potential for data sharing and subgroup analyses.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Sarah Akel
- Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Zelano
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|