1
|
Lien HE, Hjelmeland ME, Berg HF, Gold RM, Woie K, Akslen LA, Haldorsen IS, Krakstad C. Multiplex single-cell profiling of putative cancer stem cell markers ALDH1, SOX9, SOX2, CD44, CD133 and CD15 in endometrial cancer. Mol Oncol 2025. [PMID: 39888143 DOI: 10.1002/1878-0261.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 08/26/2024] [Accepted: 12/22/2024] [Indexed: 02/01/2025] Open
Abstract
The presence of cancer stem cells is linked to aggressive disease and higher risk of recurrence, and multiple markers have been proposed to detect cancer stem cells. However, a detailed evaluation of the expression patterns and the prognostic value of markers relevant for endometrial cancer is lacking. As organoid models are suggested to be enriched in cancer stem cells, such models may prove valuable to define tissue-specific cancer stem cells. To address this, imaging mass cytometry and multiplex single-cell analyses were performed on an endometrial cancer patient series including both tumor biopsies and corresponding patient-derived organoids. An antibody panel focused on cancer stem cell markers was used to identify cancer stem cell phenotypes. Over 70% of epithelial cells in the tumor biopsies expressed at least one putative cancer stem cell marker. We identified distinct cancer cell phenotypes with heterogeneous expression within individual patients and between patient samples. Few differences in the distribution of cancer cell phenotypes were observed between tumor biopsies and corresponding organoids. Cells expressing aldehyde dehydrogenase 1 (ALDH1) were more prevalent in high-grade tumors, while expression of CD44 was more prevalent in grade 1 tumors. Spatial analysis revealed significantly less interaction between ALDH1- and CD44-expressing cells. Gene expression data was used to further investigate selected markers. CD44 gene expression was associated with a favorable prognosis and was further validated using immunohistochemistry. High expression of CD44 was significantly associated with better survival. The general high expression of proposed stem cell markers may indicate alternative roles for these in endometrial cancer.
Collapse
Affiliation(s)
- Hilde E Lien
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Marta E Hjelmeland
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Hege F Berg
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Rose M Gold
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Woie
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S Haldorsen
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Norway
| | - Camilla Krakstad
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Vogt KC, Silberman PC, Lin Q, Han JE, Laflin A, Gellineau HA, Heller DA, Scheinberg DA. Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. SCIENCE ADVANCES 2025; 11:eads3403. [PMID: 39841845 PMCID: PMC11753401 DOI: 10.1126/sciadv.ads3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2+ normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature. These tumor microenvironment actuated T (MEAT) cells ameliorated T cell infiltration in the brain, preventing fatal neurotoxicity while maintaining antitumor efficacy. We found that conditional CAR expression improved the persistence of tumor-infiltrating lymphocytes because of enhanced metabolic fitness of MEAT cells and the infusion of a less differentiated product. This approach increases the repertoire of targetable solid tumor antigens by restricting CAR expression and subsequent killing to cancer cells only and provides a proof-of-concept model for other targets.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Mice
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/pathology
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Xenograft Model Antitumor Assays
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Kristen C. Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Qianqian Lin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- BCMB Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - James E. Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Laflin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hendryck A. Gellineau
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Chen J, Zheng Y, Wang Z, Gao Q, Hao K, Chen X, Ke N, Lv X, Weng J, Zhong Y, Huang Z, Fu M, Zhao L, Lin F, Mi H, Tang H, Yu C, Huang Y. Development a glycosylated extracellular vesicle-derived miRNA Signature for early detection of esophageal squamous cell carcinoma. BMC Med 2025; 23:39. [PMID: 39849483 PMCID: PMC11755925 DOI: 10.1186/s12916-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is often diagnosed at an advanced stage due to the lack of non-invasive early detection tools, which significantly impacts patient prognosis. Given that glycosylation alterations especially high sialylation and fucosylation, frequently occur during cellular malignant transformation, but their roles are not elucidated. We examined alterations in disease-specific glycosylated extracellular vesicles (EVs)-derived miRNAs in the serum of ESCC patients, evaluating their utility as diagnostic biomarkers. METHODS A total of 371 ESCC and 303 healthy controls (HCs) were recruited in this multi-stage, multicentre case-control study. Fucosylated (Fuc-) and sialylated (Sia-) EVs were isolated utilizing Lentil lectin (LCA) and wheat germ lectin (WGA)-coated magnetic beads, respectively. The glycosylated EVs-derived miRNAs-based signature (RiskscoreFuc-&Sia-) was established through logistic regression in a training cohort and subsequently validated in an internal and an external multicentre cohort. RESULTS The RiskscoreFuc-&Sia- effectively identified ESCC across all stages, demonstrating high AUC values in training (0.980), internal validation (0.957), and external multicentre validation (0.973) cohorts, markedly higher than carcinoembryonic antigen (CEA) (AUC = 0.769, training cohort; AUC = 0.749, internal validation cohort; AUC = 0.765, external validation cohort). Notably, this score exhibited robust accuracy in detecting CEA (-) ESCC cases (CEA < 5 ng/ml) (AUC = 0.974, training & internal cohort; AUC = 0.973, external multicentre validation cohort). Additionally, it displayed strong efficacy in differentiating early-stage ESCC patients (AUC = 0.982, training cohort; AUC = 0.977, external multicentre validation cohort). CONCLUSIONS Our study illustrates the effectiveness of glycosylated EVs capture strategy for isolating tumour-specific EVs. The unique glycosylated EVs-derived miRNAs-based signature shows the optimal potential as a biomarker for early detection of ESCC.
Collapse
Affiliation(s)
- Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Zhen Wang
- Department of Clinical Laboratory, Shishi Hospital, Fujian, 362700, Shishi, China
| | - Qi Gao
- Research and development center, Beijing Youngen Technology Co. Ltd, Beijing, 102600, People's Republic of China
| | - Kun Hao
- Research and development center, Beijing Hotgen Biotech Co., Ltd, Beijing, 102600, People's Republic of China
| | - Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Scientific Research, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Nantian Ke
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xiang Lv
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jiamiao Weng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yuhong Zhong
- Department of Clinical Laboratory, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310009, China
| | - Zhixin Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou, 350108, China
| | - Miao Fu
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Zhejiang, 321000, Jinhua, China
| | - Lilan Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Fan Lin
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
- Fujian Provincial Centre for Geriatrics, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Hui Mi
- Departments of Clinical Laboratory, Changzhi People's Hospital, Shanxi, Changzhi, 046000, China
| | - Haijun Tang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
| | - Chundong Yu
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Fujian, Xiamen, 361102, China.
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- Central Laboratory, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Du X, Qi Z, Chen S, Wu J, Xu Y, Hu S, Yu Z, Hou J, Fang Y, Xia J, Cao X. Synthetic Retinoid Sulfarotene Selectively Inhibits Tumor-Repopulating Cells of Intrahepatic Cholangiocarcinoma via Disrupting Cytoskeleton by P-Selectin/PSGL1 N-Glycosylation Blockage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407519. [PMID: 39605300 PMCID: PMC11744644 DOI: 10.1002/advs.202407519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal malignancy that currently lacks effective clinical treatments. Eliminating stem cell-like cancer cells is an extremely promising but challenging strategy for treating ICC. A recently developed synthetic retinoid, sulfarotene, abrogates proliferation, and induces apoptosis of tumor-repopulating cells (TRCs) that exhibit stem cell-like properties, yet its effect and underlying mechanisms remain elusive in ICC. It is found that although 5-fluorouracil, cisplatin, pemigatinib, and gemcitabine all inhibit ICC-TRCs, sulfarotene demonstrates superior efficacy. Sulfarotene induces retinoic acid receptor alpha (RARɑ) translocation from the cytoplasm to the nucleus, suppressing P-selectin expression at the transcriptional level. Moreover, it directly interacts with fucosyltransferase 8 (FUT8), inhibiting the core fucosylation of P-selectin glycoprotein ligand 1 (PSGL1). These actions collectively inhibit ICC-TRCs via destroying PSGL1-regulated cytoskeleton. The findings provide a strategy of inhibiting P-selectin/PSGL1 interaction and altering PSGL1 glycosylation pattern to compromise the cytoskeletal integrity and eliminate ICC-TRCs.
Collapse
Affiliation(s)
- Xiaojing Du
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Endoscopy CenterShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuoran Qi
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sinuo Chen
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Jinlan Wu
- Department of PediatricsJiading District Central HospitalShanghai201800China
| | - Ye Xu
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sunkuan Hu
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Wenzhou Key Laboratory of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jiayun Hou
- Biomedical Research CenterZhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghai200032China
| | - Yuan Fang
- Department of Liver SurgeryKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghai200032China
| | - Jinglin Xia
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
5
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang D, Qiu X, Hao L, Fan Z, Wang S, Li C. P-selectin-targeted Polyguluronate sulfate-copper peroxide Nanomicelles for Chemodynamic therapy of breast Cancer. Int J Biol Macromol 2024; 283:137818. [PMID: 39566788 DOI: 10.1016/j.ijbiomac.2024.137818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The exploration of efficient and safe chemodynamic therapy (CDT)-based cancer treatment is expected but still faces challenges. Herein, a kind of multifunctional nanomicelles was constructed for CDT, combined with biocompatible polysaccharides as nanocarriers, pH responsiveness and active targeting of P-selectin overexpressed tumors. The P-selectin-targeted ligand, polyguluronate sulfate (PGS), complexed with copper peroxide to form PGS-Cu nanomicelles by electrostatic interactions. Under acidic conditions, PGS-Cu nanomicelles released copper ions with H2O2 and were able to produce •OH by Fenton-like reaction. In vitro data demonstrated PGS-Cu nanomicelles had high selectivity targeting P-selectin over-expressed cancer cells and induced cell death via CDT. In vivo evaluation showed PGS-Cu nanomicelles were enriched in tumor tissues and significantly inhibited tumor growth. This study identified that PGS-Cu nanomicelles could be a highly effective strategy for CDT cancer treatment.
Collapse
Affiliation(s)
- Dingfu Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaolei Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lihua Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zirui Fan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Glycodrugs Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Laboratory of Marine Glycodrugs Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
7
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
8
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
9
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
10
|
Melemenidis S, Knight JC, Kersemans V, Perez-Balderas F, Zarghami N, Soto MS, Cornelissen B, Muschel RJ, Sibson NR. In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. Int J Mol Sci 2024; 25:7160. [PMID: 39000268 PMCID: PMC11241628 DOI: 10.3390/ijms25137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically. Owing to the lack of proton MRI signals in the lungs, we modified the VCAM-MPIO to include zirconium-89 (89Zr, t1/2 = 78.4 h) in order to allow the in vivo detection of lung metastases by positron emission tomography (PET). Using this new agent (89Zr-DFO-VCAM-MPIO), it was possible to detect the presence of micrometastases within the lung in vivo from ca. 140 μm in diameter. Histological analysis combined with autoradiography confirmed the specific binding of the agent to the VCAM-1 expressing vasculature at the sites of pulmonary micrometastases. By retaining the original VCAM-MPIO as the basis for this new molecular contrast agent, we have created a dual-modality (PET/MRI) agent for the concurrent detection of lung and brain micrometastases.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford School of Medicine, Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - James C. Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Veerle Kersemans
- Clinical Nuclear Medicine Imaging, Siemens Healthineers, 2595 BN The Hague, The Netherlands;
| | | | - Niloufar Zarghami
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, University of Seville, 41004 Seville, Spain;
| | - Bart Cornelissen
- Department of Nuclear Medicine, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Ruth J. Muschel
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Nicola R. Sibson
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| |
Collapse
|
11
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
12
|
Asoka AS, Kolikkandy A, Nair B, Kamath AJ, Sethi G, Nath LR. Role of Culinary Indian Spices in the Regulation of TGF-β Signaling Pathway in Inflammation-Induced Liver Cancer. Mol Nutr Food Res 2024; 68:e2300793. [PMID: 38766929 DOI: 10.1002/mnfr.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Indexed: 05/22/2024]
Abstract
SCOPE Hepatocellular carcinoma (HCC) results from various etiologies, such as Hepatitis B and C, Alcoholic and Non-alcoholic fatty liver disorders, fibrosis, and cirrhosis. About 80 to 90% of HCC cases possess cirrhosis, which is brought on by persistent liver inflammation. TGF-β is a multifunctional polypeptide molecule that acts as a pro-fibrogenic marker, inflammatory cytokine, immunosuppressive agent, and pro-carcinogenic growth factor during the progression of HCC. The preclinical and clinical evidence illustrates that TGF-β can induce epithelial-to-mesenchymal transition, promoting progression and hepatocyte immune evasion. Therefore, targeting the TGF-β pathway can be a promising therapeutic option against HCC. METHODS AND RESULTS We carry out a systemic analysis of eight potentially selected culinary Indian spices: Turmeric, Black pepper, Ginger, Garlic, Fenugreek, Red pepper, Clove, Cinnamon, and their bioactives in regulation of the TGF-β pathway against liver cancer. CONCLUSION Turmeric and its active constituent, curcumin, possess the highest therapeutic potential in treating inflammation-induced HCC and they also have the maximum number of ongoing in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Ajay Sarija Asoka
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anusha Kolikkandy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Adithya J Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| |
Collapse
|
13
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Yee EJ, Vigil I, Sun Y, Torphy RJ, Schulick RD, Zhu Y. Group XIV C-type lectins: emerging targets in tumor angiogenesis. Angiogenesis 2024; 27:173-192. [PMID: 38468017 PMCID: PMC11021320 DOI: 10.1007/s10456-024-09907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.
Collapse
Affiliation(s)
- Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Isaac Vigil
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
16
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
17
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
18
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
19
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
20
|
Motta JM, Micheli KVA, Roberto-Fernandes C, Hermsdorff-Brandt M, Guedes AL, Frattani FS, Mourão PAS, Pereira MS. A low-anticoagulant heparin suppresses metastatic dissemination through the inhibition of tumor cell-platelets association. Biomed Pharmacother 2024; 171:116108. [PMID: 38218079 DOI: 10.1016/j.biopha.2023.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. Despite this relevance, there is no specific therapy targeting metastasis. The interaction of the tumor cell with platelets, forming microemboli is crucial for successful hematogenous dissemination. Heparin disrupts it by a P-selectin-mediated event. However, its clinical use for this purpose is hindered by the requirement of high doses, leading to anticoagulant-related side effects. In this study, we obtained a low-anticoagulant heparin through the fractionation of a pharmaceutical bovine heparin. This derivative was referred to as LA-hep and we investigated its efficacy in inhibiting metastases and explored its capacity of suppressing the interaction between tumor cells and platelets. Our data revealed that LA-hep is as efficient as porcine unfractionated heparin in attenuating lung metastases from melanoma and colon adenocarcinoma cells in an assay with a single intravenous administration. It also prevents platelet arrest shortly after cell injection in wild-type mice and suppresses melanoma-platelets interaction in vitro. Moreover, LA-hep blocks P-selectin's direct binding to tumor cells and platelet aggregation, providing further evidence for the role of P-selectin as a molecular target. Even in P-selectin-depleted mice which developed a reduced number of metastatic foci, both porcine heparin and LA-hep further inhibited metastasis burden. This suggests evidence of an additional mechanism of antimetastatic action. Therefore, our results indicate a dissociation between the heparin anticoagulant and antimetastatic effects. Considering the simple and highly reproducible methodology used to purify LA-hep along with the data presented here, LA-hep emerges as a promising drug for future use in preventing metastasis in cancer patients.
Collapse
Affiliation(s)
- Juliana M Motta
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Kayene V A Micheli
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Carlos Roberto-Fernandes
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Michelle Hermsdorff-Brandt
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Alessandra L Guedes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Flávia S Frattani
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Paulo A S Mourão
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Mariana S Pereira
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.
| |
Collapse
|
21
|
O'Dwyer M, Kirkham-McCarthy L, Cerreto M, Foà R, Natoni A. PSGL-1 decorated with sialyl Lewis a/x promotes high affinity binding of myeloma cells to P-selectin but is dispensable for E-selectin engagement. Sci Rep 2024; 14:1756. [PMID: 38243063 PMCID: PMC10798956 DOI: 10.1038/s41598-024-52212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Michael O'Dwyer
- Translational Research Facility, University of Galway, Galway, Ireland
| | - Lucy Kirkham-McCarthy
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
22
|
KUROKAWA T, IMAI K. Chondroitin sulfate proteoglycan 4: An attractive target for antibody-based immunotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:293-308. [PMID: 38735753 PMCID: PMC11260911 DOI: 10.2183/pjab.100.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.
Collapse
Affiliation(s)
- Tomohiro KUROKAWA
- Department of Medical Epigenomics Research, Fukushima Medical University, Fukushima, Japan
- Department of Surgery, Jyoban Hospital of Tokiwa Foundation, Fukushima, Japan
| | - Kohzoh IMAI
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Abdulsalam H, Li J, Loka RS, Sletten ET, Nguyen HM. Heparan Sulfate-Mimicking Glycopolymers Bind SARS-CoV-2 Spike Protein in a Length- and Sulfation Pattern-Dependent Manner. ACS Med Chem Lett 2023; 14:1411-1418. [PMID: 37849547 PMCID: PMC10577887 DOI: 10.1021/acsmedchemlett.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
Heparan sulfate-mimicking glycopolymers, composed of glucosamine (GlcN)-glucuronic acid (GlcA) repeating units, bind to the receptor-binding subunit (S1) and spike glycoprotein (S) domains of the SARS-CoV-2 spike protein in a length- and sulfation pattern-dependent fashion. A glycopolymer composed of 12 repeating GlcNS6S-GlcA units exhibits a much higher affinity to the S1 protein (IC50 = 13 ± 1.1 nM) compared with the receptor-binding domain (RBD). This glycopolymer does not interfere in angiotensin-converting enzyme 2 binding of the RBD. Although this compound binds strongly to the S1/membrane-fusion subunit (S2) junction (KD = 29.7 ± 4.18 nM), it does not shield the S1/S2 site from cleavage by furin-a behavior contrary to natural heparin. This glycopolymer lacks iduronic acid, which accounts for 70% of heparin. Further, this compound, unlike natural heparin, is well defined in both sulfation pattern and length, which results in fewer off-target interactions with heparin-binding proteins. The results highlight the potential of using polymeric heparan sulfate (HS) mimetics for the therapeutic agent development.
Collapse
Affiliation(s)
- Hawau Abdulsalam
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S. Loka
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Hien M. Nguyen
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
24
|
Hodgson K, Orozco-Moreno M, Scott E, Garnham R, Livermore K, Thomas H, Zhou Y, He J, Bermudez A, Garcia Marques FJ, Bastian K, Hysenaj G, Archer Goode E, Heer R, Pitteri S, Wang N, Elliott DJ, Munkley J. The role of GCNT1 mediated O-glycosylation in aggressive prostate cancer. Sci Rep 2023; 13:17031. [PMID: 37813880 PMCID: PMC10562493 DOI: 10.1038/s41598-023-43019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.
Collapse
Affiliation(s)
- Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Yuhan Zhou
- Department of Oncology and Metabolism, The Mellanby Centre for Musculoskeletal Research, The University of Sheffield, Sheffield, UK
| | - Jiepei He
- Department of Oncology and Metabolism, The Mellanby Centre for Musculoskeletal Research, The University of Sheffield, Sheffield, UK
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, 94304, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, 94304, USA
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
- Department of Urology, Freeman Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, 94304, USA
| | - Ning Wang
- Department of Oncology and Metabolism, The Mellanby Centre for Musculoskeletal Research, The University of Sheffield, Sheffield, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
25
|
Starzonek S, Maar H, Mereiter S, Freytag V, Haider MT, Riecken K, Huang YL, Jacob F, Wicklein D, Schumacher U, Lange T. Identification of potential classes of glycoligands mediating dynamic endothelial adhesion of human tumor cells. Glycobiology 2023; 33:637-650. [PMID: 37486674 PMCID: PMC10560084 DOI: 10.1093/glycob/cwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays. The tumor cell lines were grouped into three subsets by their canonical E-selectin ligand status (sialyl-Lewis A and X +/+, -/+, -/-) and their adhesiveness was compared after enzymatic, pharmacologic, chemical treatment or antibody blockade of the tumor cells or endothelial cells, respectively. Tumor cells were also screened regarding their glycosyltransferase expression profile. We found that although E-selectin and terminal α2,3-sialic acid largely determined firm adhesion, adhesive events did not exclusively depend on the presence of sialyl-Lewis A and/or sialyl-Lewis X. Nevertheless, two of the three sialyl-Lewis A/X-/- tumor cells additionally or fully depended on vascular cell adhesion molecule-1 for firm adhesion. The significance of O-GalNAc- and N-glycans for adhesion varied remarkably among the tumor cells. The sialyl-Lewis A/X+/+ subset showed glycoprotein-independent adhesion, suggesting a role of glycolipids as well. All sialyl-Lewis A/X-/- tumor cells lacked FUT3 and FUT7 expression as opposed to sialyl-Lewis A/X+/+ or -/+ cell lines. In summary, the glycans on tumor cells mediating endothelial adhesion are not as much restricted to sialyl-Lewis A /X as previously assumed. The present study specifically suggests α2,3-linked sialic acid, O-GalNAc glycans, glycosphingolipids, and FUT3/FUT7 products as promising targets for future studies.
Collapse
Affiliation(s)
- Sarah Starzonek
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Anatomy I, University Hospital Jena, Teichgraben 7, 07743 Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Stefan Mereiter
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vera Freytag
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Marie-Therese Haider
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Yen-Lin Huang
- Ovarian Cancer Research, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Daniel Wicklein
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Strasse 8, 35037 Marburg, Germany
| | - Udo Schumacher
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Medical School Berlin, Leipziger Platz 10, 10117 Berlin, Germany
| | - Tobias Lange
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Anatomy I, University Hospital Jena, Teichgraben 7, 07743 Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| |
Collapse
|
26
|
Burioli EAV, Hammel M, Vignal E, Vidal-Dupiol J, Mitta G, Thomas F, Bierne N, Destoumieux-Garzón D, Charrière GM. Transcriptomics of mussel transmissible cancer MtrBTN2 suggests accumulation of multiple cancer traits and oncogenic pathways shared among bilaterians. Open Biol 2023; 13:230259. [PMID: 37816387 PMCID: PMC10564563 DOI: 10.1098/rsob.230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Transmissible cancer cell lines are rare biological entities giving rise to diseases at the crossroads of cancer and parasitic diseases. These malignant cells have acquired the amazing capacity to spread from host to host. They have been described only in dogs, Tasmanian devils and marine bivalves. The Mytilus trossulus bivalve transmissible neoplasia 2 (MtrBTN2) lineage has even acquired the capacity to spread inter-specifically between marine mussels of the Mytilus edulis complex worldwide. To identify the oncogenic processes underpinning the biology of these atypical cancers we performed transcriptomics of MtrBTN2 cells. Differential expression, enrichment, protein-protein interaction network, and targeted analyses were used. Overall, our results suggest the accumulation of multiple cancerous traits that may be linked to the long-term evolution of MtrBTN2. We also highlight that vertebrate and lophotrochozoan cancers could share a large panel of common drivers, which supports the hypothesis of an ancient origin of oncogenic processes in bilaterians.
Collapse
Affiliation(s)
- E A V Burioli
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - M Hammel
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - E Vignal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - J Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G Mitta
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, Tahiti, Polynésie française
| | - F Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - N Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - D Destoumieux-Garzón
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G M Charrière
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
27
|
Choi AS, Moon TJ, Abuhashim W, Bhalotia A, Qian H, Paulsen KE, Lorkowski M, Ndamira C, Gopalakrishnan R, Krishnamurthy A, Schiemann WP, Karathanasis E. Can targeted nanoparticles distinguish cancer metastasis from inflammation? J Control Release 2023; 362:812-819. [PMID: 37011838 PMCID: PMC10548349 DOI: 10.1016/j.jconrel.2023.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Targeting ligands have been widely used to increase the intratumoral accumulation of nanoparticles and their uptake by cancer cells. However, these ligands aim at targets that are often also upregulated in inflamed tissues. Here, we assessed the ability of targeted nanoparticles to distinguish metastatic cancer from sites of inflammation. Using common targeting ligands and a 60-nm liposome as a representative nanoparticle, we generated three targeted nanoparticle (NP) variants that targeted either fibronectin, folate, or αvβ3 integrin, whose deposition was compared against that of standard untargeted NP. Using fluorescently labeled NPs and ex vivo fluorescence imaging of organs, we assessed the deposition of the NPs into the lungs of mice modeling 4 different biological landscapes, including healthy lungs, aggressive metastasis in lungs, dormant/latent metastasis in lungs, and lungs with general pulmonary inflammation. Among the four NP variants, fibronectin-targeting NP and untargeted NP exhibited the highest deposition in lungs harboring aggressive metastases. However, the deposition of all targeted NP variants in lungs with metastasis was similar to the deposition in lungs with inflammation. Only the untargeted NP was able to exhibit higher deposition in metastasis than inflammation. Moreover, flow-cytometry analysis showed all NP variants accumulated predominantly in immune cells rather than cancer cells. For example, the number of NP+ macrophages and dendritic cells was 16-fold greater than NP+ cancer cells in the case of fibronectin-targeting NP. Overall, targeted NPs were unable to distinguish cancer metastasis from general inflammation, which may have clinical implications to the nanoparticle-mediated delivery of cancer drugs.
Collapse
Affiliation(s)
- Andrew S Choi
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Taylor J Moon
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Walid Abuhashim
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Anubhuti Bhalotia
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Huikang Qian
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Kai E Paulsen
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Morgan Lorkowski
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Crystal Ndamira
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Ramamurthy Gopalakrishnan
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Animesha Krishnamurthy
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - William P Schiemann
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
28
|
Li S, Qu Y, Liu L, Zhang X, He Y, Wang C, Guo Y, Yuan L, Ma Z, Bai H, Wang J. Comparative proteomic profiling of plasma exosomes in lung cancer cases of liver and brain metastasis. Cell Biosci 2023; 13:180. [PMID: 37770976 PMCID: PMC10540327 DOI: 10.1186/s13578-023-01112-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Metastases within liver or the brain are the most common causes of mortality from lung cancer (LC). Predicting liver or brain metastases before having evidence from imaging of the tumors is challenging but important for early patient intervention. According to mounting evidence, exosomes circulating within blood may facilitate cancer spread by transporting certain proteins for target cells. METHODS Using liquid chromatography-MS/MS, we investigated the plasma exosomes' proteomic profiles derived from 42 metastatic LC patients [16 solitary liver metastasis (LM), together with 26 solitary brain metastasis (BM)] and 25 local advanced (LA) lung cancer cases without metastasis, together with five healthy controls (HC), assessing the LM and BM pathogenesis and find potential novel organ-designated proteomic biomarkers. Using ELISA assay, we verified the expression levels of three plasma exosomal protein biomarkers in 110 LC patients, including 40 solitary LM, 32 solitary BM and 38 LA, and 25 HC. RESULTS In total, 143 and 120 differentially expressed exosome-based proteins (DEEPs) were found to be dysregulated in LM and BM of lung cancer (LM-DEEPs, BM-DEEPs), compared for LA lung cancer samples, respectively. The bioinformatics analyses indicated the heterogeneity and homogeneity in LM-DEEPs and BM-DEEPs. They were primarily engaged within proteomic triggering cascade, ECM-receptor interaction, and the collagen-containing extracellular matrix. Regarding heterogeneity, LM-DEEPs primarily consisted of proteoglycans, lipoprotein, integrin, and heat shock protein, whereas the BM-DEEPs consisted of calcium-dependent/S100 proteins. Furthermore, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC)-plasma-stemming exosome proteomics showed heterogeneity, which helped to explain some of the differences between SCLC and NSCLC's metastatic features. We also found that SELL and MUC5B could be used as diagnostic markers of BM, while APOH, CD81, and CCT5 could help diagnose LM in LC patients. Additionally, we demonstrated in a validation cohort that MUC5B and SELL could serve as biomarkers for diagnosing BM, and APOH could be a novel potential diagnostic biomarker of LM. CONCLUSION We presented the comprehensive and comparative plasma-stemming exosomes' proteomic profiles from cases of LC who had isolated liver and brain metastases for the first time. We also suggested several possible biomarkers and pathogenic pathways that might be a great starting point for future research on LC metastasis.
Collapse
Affiliation(s)
- Sini Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- CAMS Key Laboratory of Translational Research On Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yufeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research On Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- CAMS Key Laboratory of Translational Research On Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLe x and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model 2023; 63:5604-5618. [PMID: 37486087 DOI: 10.1021/acs.jcim.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Selectins and their ability to interact with specific ligands are a cornerstone in cell communication. Over the last three decades, a considerable wealth of experimental and molecular modeling insights into their structure and modus operandi were gathered. Nonetheless, explaining the role of individual selectin residues on a quantitative level remained elusive, despite its importance in understanding the structure-function relationship in these molecules and designing their inhibitors. This work explores essential interactions of selectin-ligand binding, employing a multiscale approach that combines molecular dynamics, quantum-chemical calculations, and residue interaction network models. Such an approach successfully reproduces most of the experimental findings. It proves to be helpful, with the potential for becoming an established tool for quantitative predictions of residue contribution to the binding of biomolecular complexes. The results empower us to quantify the importance of particular residues and functional groups in the protein-ligand interface and to pinpoint differences in molecular recognition by the three selectins. We show that mutations in the E-, L-, and P-selectins, e.g., different residues in positions 46, 85, 97, and 107, present a crucial difference in how the ligand is engaged. We assess the role of sulfation of tyrosine residues in PSGL-1 and suggest that TyrSO3- in position 51 interacting with Arg85 in P-selectin is a significant factor in the increased affinity of P-selectin to PSGL-1 compared to E- and L-selectins. We propose an original pharmacophore targeting five essential PSGL-binding sites based on the analysis of the selectin···PSGL-1 interactions.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Igor Tvaroška
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| |
Collapse
|
30
|
Wang L, Zhang K, Feng J, Wang D, Liu J. The Progress of Platelets in Breast Cancer. Cancer Manag Res 2023; 15:811-821. [PMID: 37589033 PMCID: PMC10426457 DOI: 10.2147/cmar.s418574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Breast cancer is the most common female cancer and the sixth leading cause of death, seriously affecting the quality of life of women. Platelets, one of the fragments derived from megakaryocytes, are being increasingly investigated by tumor researchers because of their anticoagulant function. According to relevant studies, platelets, as the key source of circulating angiogenesis-related factors, can regulate tumor angiogenesis and vascular integrity, and they can also affect the tumor microenvironment, thereby facilitating the proliferation and differentiation of tumor cells. By covering or transferring normal MHC I molecules to tumor cells, platelets can protect tumor cells from being killed by the immune system and facilitate tumor cell metastasis. However, details on the mechanisms involved have remained elusive. This paper reviews and analyzes studies of the role of platelets in tumorigenesis, tumor cell proliferation, tumor metastasis, and cancer treatment to provide readers with a better understanding of the relevant studies.
Collapse
Affiliation(s)
- Luchang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Laboratory, Chengdu Second People’s Hospital, Chengdu, 610017, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
31
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Serini S, Trombino S, Curcio F, Sole R, Cassano R, Calviello G. Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy. Pharmaceutics 2023; 15:1751. [PMID: 37376199 DOI: 10.3390/pharmaceutics15061751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. In recent years, the development of hyaluronic acid-based systems for specific drug delivery to cancer cells has represented a pursued therapeutic strategy. This is related to the fact that this natural polysaccharide binds to the CD44 receptor that is overexpressed in most solid cancers, thus allowing its efficient internalization in tumor cells. Moreover, it is characterized by high biodegradability, biocompatibility, and low toxicity. Here, we will focus on and critically analyze the results obtained in recent studies regarding the use of hyaluronic acid for the targeted delivery of bioactive phenolic compounds to cancer cells of different origins, alone or in combination with drugs.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
33
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
34
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
35
|
Arend LB, Verli H. Revisiting the structural basis for biological activity of GMI-1070, a sialyl Lewis x mimetic. Carbohydr Res 2023; 529:108829. [PMID: 37182470 DOI: 10.1016/j.carres.2023.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
When it comes to the treatment of pathologies in which aberrant cell adhesion and extravasation from the bloodstream have been implicated, the selectins represent a central therapeutic target. In this context, the present work investigates the conformational landscape of two prototypes for the design of new antineoplasic and anti-inflammatory agents: the natural selectin ligand sialyl Lewisx and its mimetic GMI-1070. Accordingly, a series of unbiased molecular dynamics simulations at the microsecond scale using GROMOS 53A6 (GLYC), CHARMM36m and GLYCAM06 force fields were employed, together with ConfID, an analytical method for the characterization of conformational populations of small molecules. Our results for sialyl Lewisx are in agreement with and expand upon prior work. As for the mimetic, our results indicate that, in spite of its conformational restriction, GMI-1070's behavior in solution deviates from what had been proposed, highlighting thus some features that could be optimized, as the development of sialyl Lewisx mimetics continues, and new candidates emerge.
Collapse
Affiliation(s)
- Laís B Arend
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil.
| |
Collapse
|
36
|
Natoni A, Cerreto M, De Propris MS, Petrucci MT, Fazio F, Intoppa S, Milani ML, Kirkham-McCarthy L, Henderson R, Swan D, Guarini A, O'Dwyer M, Foà R. Sialofucosylation Enables Platelet Binding to Myeloma Cells via P-Selectin and Suppresses NK Cell-Mediated Cytotoxicity. Cancers (Basel) 2023; 15:cancers15072154. [PMID: 37046814 PMCID: PMC10093642 DOI: 10.3390/cancers15072154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell disorder that develops in the bone marrow (BM) and is characterized by uncontrolled proliferation and the ability to disseminate to different sites of the skeleton. Sialofucosylated structures, particularly Sialyl Lewis a/x (SLea/x), facilitate the homing of MM cells into the BM, leading to resistance to bortezomib in vivo. Platelets have been shown to play an important role in tumor metastasis. Platelets can bind to the surface of cancer cells, forming a "cloak" that protects them from the shear stress of the bloodstream and natural killer (NK) cell-mediated cytotoxicity. In this study, we showed that the presence of SLea/x induced a strong binding of MM cells to P-selectin, leading to specific and direct interactions with platelets, which could be inhibited by a P-selectin-blocking antibody. Importantly, platelets surrounded SLea/x-enriched MM cells, protecting them from NK cell-mediated cytotoxicity. The interactions between the platelets and MM cells were also detected in BM samples obtained from MM patients. Platelet binding to SLea/x-enriched MM cells was increased in patients with symptomatic disease and at relapse. These data suggest an important role of SLea/x and platelets in MM disease progression and resistance to therapy.
Collapse
Affiliation(s)
- Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Maria Stefania De Propris
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Stefania Intoppa
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Maria Laura Milani
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| | - Lucy Kirkham-McCarthy
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Robert Henderson
- Department of Haematology, Galway University Hospital, H71 YR71 Galway, Ireland
| | - Dawn Swan
- Department of Haematology, Galway University Hospital, H71 YR71 Galway, Ireland
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Michael O'Dwyer
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
37
|
Investigation of the clinical utility of adhesion molecules in the management of thyroid nodules. Sci Rep 2023; 13:4069. [PMID: 36906717 PMCID: PMC10008644 DOI: 10.1038/s41598-023-31302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
To better understand the relationship among cell adhesion molecules (CAM) and investigate the clinical diagnostic and prognostic application of ICAM-1 (ICAM1), LFA-1 (ITGAL), and L-selectin (SELL) proteins and mRNA corresponding expression in thyroid cancer. Gene expression was evaluated by RT-qPCR, and protein expression was evaluated by immunohistochemistry. We evaluated 275 patients (218 women, 57 men, 48.4 ± 14.5 years old), including 102 benign and 173 malignant nodules. The 143 papillary thyroid carcinoma (PTC) and 30 follicular thyroid carcinoma (FTC) patients were managed according to current guidelines and followed-up for 78.7 ± 54.2 months. Malignant and benign nodules differed concerning mRNA (p = 0.0027) and protein (p = 0.0020 for nuclear) expression of L-selectin and ICAM-1 (mRNA: p = 0.0001 and protein: p = 0.0014) and protein expression of LFA-1 (p = 0.0168), but not mRNA expression of LFA-1 (p = 0.2131). SELL expression was more intense in malignant tumors (p = 0.0027). ICAM1 (p = 0.0064) and ITGAL (p = 0.0244) mRNA expression was higher in tumors with lymphocyte infiltrate. ICAM-1 expression correlated with younger age at diagnosis (p = 0.0312) and smaller tumor size (p = 0.0443). Also, LFA-1 expression correlated with higher age at diagnosis (p = 0.0376) and was more intense at stage III and IV (p = 0.0077). In general, the protein expression of the 3 CAM decreased as the process of cellular dedifferentiation occurred. We suggest that the SELL and ICAM1 genes and L-selectin and LFA-1 protein expression may help confirm malignancy and assist in the histological characterization of follicular patterned lesions, but we were unable to correlate these CAMs with patient outcomes.
Collapse
|
38
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D’Agostino E, Pugliese G, Cerri S, Vitale MG, Madeo B, Dominici M, Sabbatini R. Bone Metastases and Health in Prostate Cancer: From Pathophysiology to Clinical Implications. Cancers (Basel) 2023; 15:1518. [PMID: 36900309 PMCID: PMC10000416 DOI: 10.3390/cancers15051518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Clinically relevant bone metastases are a major cause of morbidity and mortality for prostate cancer patients. Distinct phenotypes are described: osteoblastic, the more common osteolytic and mixed. A molecular classification has been also proposed. Bone metastases start with the tropism of cancer cells to the bone through different multi-step tumor-host interactions, as described by the "metastatic cascade" model. Understanding these mechanisms, although far from being fully elucidated, could offer several potential targets for prevention and therapy. Moreover, the prognosis of patients is markedly influenced by skeletal-related events. They can be correlated not only with bone metastases, but also with "bad" bone health. There is a close correlation between osteoporosis-a skeletal disorder with decreased bone mass and qualitative alterations-and prostate cancer, in particular when treated with androgen deprivation therapy, a milestone in its treatment. Systemic treatments for prostate cancer, especially with the newest options, have improved the survival and quality of life of patients with respect to skeletal-related events; however, all patients should be evaluated for "bone health" and osteoporotic risk, both in the presence and in the absence of bone metastases. Treatment with bone-targeted therapies should be evaluated even in the absence of bone metastases, as described in special guidelines and according to a multidisciplinary evaluation.
Collapse
Affiliation(s)
- Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Stefania Pipitone
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Eleonora Molinaro
- Oncology, AUSL of Modena Area Sud, Sassuolo-Vignola-Pavullo, 41121 Modena, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Martina Fanelli
- Department of Oncology, Azienda Ospedaliero Universitaria S. M. della Misericordia, 33100 Udine, Italy
| | - Cecilia Nasso
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
- Medical Oncology, Ospedale Santa Corona, 17027 Pietra Ligure, Italy
| | - Marco Oltrecolli
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Marta Pirola
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Elisa D’Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Giuseppe Pugliese
- Department of Oncology and Hematology, Univerity of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Cerri
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Bruno Madeo
- Unit of Endocrinology, Department of Medical Specialities, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
39
|
Sun H, Wang XK, Li JR, Tang M, Li H, Lei L, Li HY, Jiang J, Li JY, Dong B, Jiang JD, Peng ZG. Establishment and application of a high-throughput screening model for cell adhesion inhibitors. Front Pharmacol 2023; 14:1140163. [PMID: 36909195 PMCID: PMC9995855 DOI: 10.3389/fphar.2023.1140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The cell adhesion between leukocytes and endothelial cells plays an important balanced role in the pathophysiological function, while excessive adhesion caused by etiological agents is associated with the occurrence and development of many acute and chronic diseases. Cell adhesion inhibitors have been shown to have a potential therapeutic effect on these diseases, therefore, efficient and specific inhibitors against cell adhesion are highly desirable. Here, using lipopolysaccharide-induced human umbilical vein endothelial cells (HUVECs) and calcein-AM-labeled human monocytic cell THP-1, we established a high-throughput screening model for cell adhesion inhibitors with excellent model evaluation parameters. Using the drug repurposing strategy, we screened out lifitegrast, a potent cell adhesion inhibitor, which inhibited cell adhesion between HUVEC and THP-1 cells by directly interrupting the adhesion interaction between HUVEC and THP-1 cells and showed a strong therapeutic effect on the mouse acute liver injury induced by poly (I:C)/D-GalN. Therefore, the screening model is suitable for screening and validating cell adhesion inhibitors, which will promote the research and development of inhibitors for the treatment of diseases caused by excessive cell adhesion.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
41
|
Cannito S, Dianzani U, Parola M, Albano E, Sutti S. Inflammatory processes involved in NASH-related hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20221271. [PMID: 36691794 PMCID: PMC9874450 DOI: 10.1042/bsr20221271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the recent years nonalcoholic fatty liver disease (NAFLD) is becoming a growing cause of HCCs and the incidence of NAFLD-related HCCs is expected to further dramatically increase by the next decade. Chronic inflammation is regarded as the driving force of NAFLD progression and a key factor in hepatic carcinogenesis. Hepatic inflammation in NAFLD results from the persistent stimulation of innate immunity in response to hepatocellular injury and gut dysbiosis as well as by the activation of adaptive immunity. However, the relative roles of innate and adaptive immunity in the processes leading to HCC are still incompletely characterized. This is due to the complex interplay between different liver cell populations, which is also strongly influenced by gut-derived bacterial products, metabolic/nutritional signals. Furthermore, carcinogenic mechanisms in NAFLD/NASH appear to involve the activation of signals mediated by hypoxia inducible factors. This review discusses recent data regarding the contribution of different inflammatory cells to NAFLD-related HCC and their possible impact on patient response to current treatments.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
42
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
43
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
44
|
Luís C, Soares R, Fernandes R, Botelho M. Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer. Curr Mol Med 2023; 23:147-160. [PMID: 34365950 DOI: 10.2174/1566524021666210806155231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major health problem worldwide and the second leading cause of death following cardiovascular diseases. Breast cancer is the leading cause of mortality and morbidity among women and one of the most common malignant neoplasms prompt to metastatic disease. In the present review, the mechanisms of the major cell adhesion molecules involved in tumor invasion are discussed, focusing on the case of breast cancer. A non-systematic updated revision of the literature was performed in order to assemble information regarding the expression of the adhesion cell molecules associated with metastasis.
Collapse
Affiliation(s)
- Carla Luís
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
| | - Rúben Fernandes
- Departament of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portu
| | - Mónica Botelho
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
- National Health Institute Ricardo Jorge, Porto, Portugal; Polytechnic Institute of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portugal
| |
Collapse
|
45
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
46
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
47
|
Mitochondrial Protein Cox7b Is a Metabolic Sensor Driving Brain-Specific Metastasis of Human Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14184371. [PMID: 36139533 PMCID: PMC9497206 DOI: 10.3390/cancers14184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Distant metastases are detrimental for cancer patients, but the increasingly early detection of tumors offers a chance for metastasis prevention. Importantly, cancers do not metastasize randomly: depending on the type of cancer, metastatic progenitor cells have a predilection for well-defined organs. This has been theorized by Stephen Paget, who proposed the “seed-and-soil hypothesis”, according to which metastatic colonization occurs only when the needs of a given metastatic progenitor cell (the seed) match with the resources provided by a given organ (the soil). Here, we propose to explore the seed-and-soil hypothesis in the context of cancer metabolism, thus hypothesizing that metastatic progenitor cells must be capable of detecting the availability of metabolic resources in order to home in a secondary organ. If true, it would imply the existence of metabolic sensors. Using human triple-negative MDA-MB-231 breast cancer cells and two independent brain-seeking variants as models, we report that cyclooxygenase 7b (Cox7b), a structural component of Complex IV of the mitochondrial electron transport chain, belongs to a probably larger family of proteins responsible for breast cancer brain tropism in mice. For metastasis prevention therapy, this proof-of-principle study opens a quest for the identification of therapeutically targetable metabolic sensors that drive cancer organotropism.
Collapse
|
48
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
49
|
Ho CH, Chen ML, Huang HL, Lai CJ, Liu CH, Chuu CP, Lin YH. Active Targeting of P-Selectin by Fucoidan Modulates the Molecular Profiling of Metastasis in Docetaxel-Resistant Prostate Cancer. Mar Drugs 2022; 20:md20090542. [PMID: 36135731 PMCID: PMC9500773 DOI: 10.3390/md20090542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/17/2022] Open
Abstract
The standard of care for prostate cancer (PCa) is androgen deprivation therapy (ADT). Although hormone-sensitive PCa is curable by ADT, most conditions progress to castration-resistant prostate cancer (CRPCa) and metastatic CRPCa (mCRPCa). Front-line docetaxel has been administered to patients with CRPCa and mCRPCa. Nevertheless, docetaxel resistance after half a year of therapy has emerged as an urgent clinical concern in patients with CRPCa and mCRPCa. We verified the mechanism by which docetaxel-resistant PCa cells (DU/DX50) exhibited significant cell migration and expression of malignant tumor-related proteins. Our study shows that the biological activity of fucoidan has an important application for docetaxel-resistant PCa cells, inhibiting IL-1R by binding to P-selectin and reducing the expression levels of NF-κB p50 and Cox2 in this metastasis-inhibiting signaling pathway. Furthermore, the combined treatment of fucoidan and docetaxel showed significant anticancer and synergistic effects on the viability of DU/DX50 cells, which is relevant for overcoming the current limitations and improving treatment outcomes. Overall, fucoidan-based combination chemotherapy may exert beneficial effects and facilitate the treatment of docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Chang-Hsun Ho
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
| | - Mei-Lin Chen
- Department of Pharmacy, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Jen Lai
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Hsin Liu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-28267000 (ext. 7932)
| |
Collapse
|
50
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|