1
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Nakao K, Nishikori M, Fujimoto M, Arima H, Haga H, Takaori-Kondo A. Concurrent development of small lymphocytic lymphoma and lung cancer: A report of two cases and a review of the literature. J Clin Exp Hematop 2023; 63:132-138. [PMID: 37245973 PMCID: PMC10410622 DOI: 10.3960/jslrt.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 05/30/2023] Open
Abstract
Small lymphocytic lymphoma (SLL) is a rare disease subtype which has the same morphological and immunophenotypic features as chronic lymphocytic leukemia (CLL) but does not demonstrate lymphocytosis and grows mainly in the lymph nodes and spleen. As with CLL, SLL patients tend to present with immune abnormalities, and are associated with an increased risk for developing second primary malignancies. We report here two cases of SLL who developed lung cancer concurrently. The biological and clinical features of these two patients were very similar to each other; they both developed SLL with trisomy 12 and lacked lymphocytosis or cytopenia. SLL cells involved nodal areas adjacent to lung adenocarcinoma which expressed PD-L1. One patient received immunochemotherapy including nivolumab and ipilimumab against lung cancer, and notably, transient deterioration of SLL occurred after the second cycle of immunochemotherapy along with the development of immune related adverse events. Immunohistochemical analysis of the SLL samples of the patient revealed that the tumor cells were positive for CTLA-4, suggesting that ipilimumab might have potentially induced the activation of SLL cells by blocking the inhibitory signal mediated by CTLA-4. These clinical findings indicate the potential biological relationship between SLL and lung cancer. According to these observations, we would like to draw attention to the possibility of deterioration of SLL when immune checkpoint inhibitors are used for the treatment of malignancies developed in SLL patients.
Collapse
|
3
|
Eyre TA, Riches JC. The Evolution of Therapies Targeting Bruton Tyrosine Kinase for the Treatment of Chronic Lymphocytic Leukaemia: Future Perspectives. Cancers (Basel) 2023; 15:2596. [PMID: 37174062 PMCID: PMC10177608 DOI: 10.3390/cancers15092596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The development of inhibitors of Bruton tyrosine kinase (BTK) and B-cell lymphoma 2 (BCL2) has resulted in a paradigm shift in the treatment of chronic lymphocytic leukaemia (CLL) over the last decade. Observations regarding the importance of B-cell receptor signalling for the survival and proliferation of CLL cells led to the development of the first-in-class BTK inhibitor (BTKi), ibrutinib, for the treatment of CLL. Despite being better tolerated than chemoimmunotherapy, ibrutinib does have side effects, some of which are due to the off-target inhibition of kinases other than BTK. As a result, more specific inhibitors of BTK were developed, such as acalabrutinib and zanubrutinib, which have demonstrated equivalent/enhanced efficacy and improved tolerability in large randomized clinical trials. Despite the increased specificity for BTK, side effects and treatment resistance remain therapeutic challenges. As these drugs all bind covalently to BTK, an alternative approach was to develop noncovalent inhibitors of BTK, including pirtobrutinib and nemtabrutinib. The alternative mechanisms of BTK-binding of these agents has the potential to overcome resistance mutations, something that has been borne out in early clinical trial data. A further step in the clinical development of BTK inhibition has been the introduction of BTK degraders, which remove BTK by ubiquitination and proteasomal degradation, in marked contrast to BTK inhibition. This article will review the evolution of BTK inhibition for CLL and offer future perspectives on the sequencing of an increasing number of different agents, and how this may be impacted on by mutations in BTK itself and other kinases.
Collapse
Affiliation(s)
- Toby A. Eyre
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Headington, Oxford OX3 7LE, UK
| | - John C. Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
4
|
Vlachonikola E, Pechlivanis N, Karakatsoulis G, Sofou E, Gkoliou G, Jeromin S, Stavroyianni N, Ranghetti P, Scarfo L, Österholm C, Mansouri L, Notopoulou S, Siorenta A, Anagnostopoulos A, Ghia P, Haferlach C, Rosenquist R, Psomopoulos F, Kouvatsi A, Baliakas P, Stamatopoulos K, Chatzidimitriou A. T cell receptor gene repertoire profiles in subgroups of patients with chronic lymphocytic leukemia bearing distinct genomic aberrations. Front Oncol 2023; 13:1097942. [PMID: 36816924 PMCID: PMC9929157 DOI: 10.3389/fonc.2023.1097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Microenvironmental interactions of the malignant clone with T cells are critical throughout the natural history of chronic lymphocytic leukemia (CLL). Indeed, clonal expansions of T cells and shared clonotypes exist between different CLL patients, strongly implying clonal selection by antigens. Moreover, immunogenic neoepitopes have been isolated from the clonotypic B cell receptor immunoglobulin sequences, offering a rationale for immunotherapeutic approaches. Here, we interrogated the T cell receptor (TR) gene repertoire of CLL patients with different genomic aberration profiles aiming to identify unique signatures that would point towards an additional source of immunogenic neoepitopes for T cells. Experimental design TR gene repertoire profiling using next generation sequencing in groups of patients with CLL carrying one of the following copy-number aberrations (CNAs): del(11q), del(17p), del(13q), trisomy 12, or gene mutations in TP53 or NOTCH1. Results Oligoclonal expansions were found in all patients with distinct recurrent genomic aberrations; these were more pronounced in cases bearing CNAs, particularly trisomy 12, rather than gene mutations. Shared clonotypes were found both within and across groups, which appeared to be CLL-biased based on extensive comparisons against TR databases from various entities. Moreover, in silico analysis identified TR clonotypes with high binding affinity to neoepitopes predicted to arise from TP53 and NOTCH1 mutations. Conclusions Distinct TR repertoire profiles were identified in groups of patients with CLL bearing different genomic aberrations, alluding to distinct selection processes. Abnormal protein expression and gene dosage effects associated with recurrent genomic aberrations likely represent a relevant source of CLL-specific selecting antigens.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Mathematics, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Glykeria Gkoliou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Niki Stavroyianni
- Hematology Department and Hematopoietic Cell Transplantation (HCT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Pamela Ranghetti
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Lydia Scarfo
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Notopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Alexandra Siorenta
- Immunology Department and National Tissue Typing Center, General Hospital of Athens “G. Gennimatas”, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department and Hematopoietic Cell Transplantation (HCT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Anastasia Chatzidimitriou,
| |
Collapse
|
5
|
B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. Hemasphere 2022; 6:e722. [PMID: 35747847 PMCID: PMC9208879 DOI: 10.1097/hs9.0000000000000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/14/2022] [Indexed: 11/01/2022] Open
Abstract
It has been unclear what role metabolism is playing in the pathophysiology of chronic lymphocytic leukemia (CLL). One reason is that the study of CLL metabolism is challenging due to the resting nature of circulating CLL cells. Also, it is not clear if any of the genomic aberrations observed in this disease have any impact on metabolism. Here, we demonstrate that CLL cells in proliferation centers exhibit upregulation of several molecules involved in glycolysis and mitochondrial metabolism. Comparison of CXCR4/CD5 intraclonal cell subpopulations showed that these changes are paralleled by increases in the metabolic activity of the CXCR4lowCD5high fraction that have recently egressed from the lymph nodes. Notably, anti-IgM stimulation of CLL cells recapitulates many of these metabolic alterations, including increased glucose uptake, increased lactate production, induction of glycolytic enzymes, and increased respiratory reserve. Treatment of CLL cells with inhibitors of B-cell receptor (BCR) signaling blocked these anti-IgM-induced changes in vitro, which was mirrored by decreases in hexokinase 2 expression in CLL cells from ibrutinib-treated patients in vivo. Interestingly, several samples from patients with 17p-deletion manifested increased spontaneous aerobic glycolysis in the unstimulated state suggestive of a BCR-independent metabolic phenotype. We conclude that the proliferative fraction of CLL cells found in lymphoid tissues or the peripheral blood of CLL patients exhibit increased metabolic activity when compared with the bulk CLL-cell population. Although this is due to microenvironmental stimulatory signals such as BCR-engagement in most cases, increases in resting metabolic activity can be observed in cases with 17p-deletion.
Collapse
|
6
|
Burley TA, Kennedy E, Broad G, Boyd M, Li D, Woo T, West C, Ladikou EE, Ashworth I, Fegan C, Johnston R, Mitchell S, Mackay SP, Pepper AGS, Pepper C. Targeting the Non-Canonical NF-κB Pathway in Chronic Lymphocytic Leukemia and Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14061489. [PMID: 35326640 PMCID: PMC8946537 DOI: 10.3390/cancers14061489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we evaluated an NF-κB inducing kinase (NIK) inhibitor, CW15337, in primary chronic lymphocytic leukemia (CLL) cells, CLL and multiple myeloma (MM) cell lines and normal B- and T-lymphocytes. Basal NF-κB subunit activity was characterized using an enzyme linked immunosorbent assay (ELISA), and the effects of NIK inhibition were then assessed in terms of cytotoxicity and the expression of nuclear NF-κB subunits following monoculture and co-culture with CD40L-expressing fibroblasts, as a model of the lymphoid niche. CW15337 induced a dose-dependent increase in apoptosis, and nuclear expression of the non-canonical NF-κB subunit, p52, was correlated with sensitivity to CW15337 (p = 0.01; r2 = 0.39). Co-culture on CD40L-expressing cells induced both canonical and non-canonical subunit expression in nuclear extracts, which promoted in vitro resistance against fludarabine and ABT-199 (venetoclax) but not CW15337. Furthermore, the combination of CW15337 with fludarabine or ABT-199 showed cytotoxic synergy. Mechanistically, CW15337 caused the selective inhibition of non-canonical NF-κB subunits and the transcriptional repression of BCL2L1, BCL2A1 and MCL1 gene transcription. Taken together, these data suggest that the NIK inhibitor, CW15337, exerts its effects via suppression of the non-canonical NF-κB signaling pathway, which reverses BCL2 family-mediated resistance in the context of CD40L stimulation.
Collapse
Affiliation(s)
- Thomas A. Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Georgia Broad
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Melanie Boyd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - David Li
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Timothy Woo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Christopher West
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.W.); (S.P.M.)
- Drug Discovery Unit, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Iona Ashworth
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Christopher Fegan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.W.); (S.P.M.)
| | - Andrea G. S. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Correspondence: ; Tel.: +44-012-7367-8644
| |
Collapse
|
7
|
Minton AR, Smith LD, Bryant DJ, Strefford JC, Forconi F, Stevenson FK, Tumbarello DA, James E, Løset GÅ, Munthe LA, Steele AJ, Packham G. B-cell receptor dependent phagocytosis and presentation of particulate antigen by chronic lymphocytic leukemia cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:37-49. [PMID: 35309250 PMCID: PMC7612515 DOI: 10.37349/etat.2022.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aim T-helper cells could play an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), a common B-cell neoplasm. Although CLL cells can present soluble antigens targeted from the B-cell receptor to T-helper cells via major histocompatibility complex (MHC) class II, antigens recognized by some CLL cells may be encountered in a particulate form. Here the ability of CLL cells to internalize and present anti-immunoglobulin M (IgM) beads as a model for the interaction of CLL cells with particulate antigens was investigated. Methods The effect of anti-IgM beads on antigen presentation pathways was analyzed using RNA-seq and internalization of anti-IgM beads by primary CLL cells was investigated using confocal microscopy and flow cytometry. Antigen presentation was investigated by analyzing activation of a T-cell line expressing a T-cell receptor specific for a peptide derived from mouse κ light chains after incubating CLL cells with a mouse κ light chain-containing anti-IgM monoclonal antibody. Kinase inhibitors were used to characterize the pathways mediating internalization and antigen presentation. Results Stimulation of surface IgM of CLL cells increased expression of the antigen presentation machinery and CLL cells were able to phagocytose anti-IgM beads. Internalization of anti-IgM beads was associated with MHC class II-restricted activation of cognate T-helper cells. Antigen presentation by CLL cells was dependent on activity of spleen tyrosine kinase (SYK) and phosphatidylinositol 3-kinase delta (PI3Kδ) but was unaffected by inhibitors of Bruton's tyrosine kinase (BTK). Conclusions CLL cells can internalize and present antigen from anti-IgM beads. This capacity of CLL cells may be particularly important for recruitment of T-cell help in vivo in response to particulate antigens.
Collapse
Affiliation(s)
- Annabel R. Minton
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Lindsay D. Smith
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Current address: Ploughshare Innovations Limited, Porton Science Park, Porton Down, SP4 0BF Wiltshire, UK
| | - Dean J. Bryant
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C. Strefford
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Freda K. Stevenson
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David A. Tumbarello
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Edd James
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | | | - Ludvig A. Munthe
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Andrew J. Steele
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Current address: Janssen R&D, 1400 McKean Road, Spring House, Ambler, PA 19477, USA
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
8
|
Rosén A, Bergh AC, Gogok P, Evaldsson C, Myhrinder AL, Hellqvist E, Rasul A, Björkholm M, Jansson M, Mansouri L, Liu A, Teh BT, Rosenquist R, Klein E. Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncoimmunology 2021; 1:18-27. [PMID: 22720208 PMCID: PMC3376971 DOI: 10.4161/onci.1.1.18400] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the receptor for Epstein-Barr virus (EBV) and can be infected in vitro. Infected cells do not express the growth-promoting set of EBV-encoded genes and therefore they do not yield LCLs, in most experiments. With exceptional clones, lines were obtained however. We describe a new line, HG3, established by in vitro EBV-infection from an IGHV1–2 unmutated CLL patient clone. All cells expressed EBNA-2 and LMP-1, the EBV-encoded genes pivotal for transformation. The karyotype, FISH cytogenetics and SNP-array profile of the line and the patient's ex vivo clone showed biallelic 13q14 deletions with genomic loss of DLEU7, miR15a/miR16–1, the two micro-RNAs that are deleted in 50% of CLL cases. Further features of CLL cells were: expression of CD5/CD20/CD27/CD43 and release of IgM natural antibodies reacting with oxLDL-like epitopes on apoptotic cells (cf. stereotyped subset-1). Comparison with two LCLs established from normal B cells showed 32 genes expressed at higher levels (> 2-fold). Among these were LHX2 and LILRA. These genes may play a role in the development of the disease. LHX2 expression was shown in self-renewing multipotent hematopoietic stem cells, and LILRA4 codes for a receptor for bone marrow stromal cell antigen-2 that contributes to B cell development. Twenty-four genes were expressed at lower levels, among these PARD3 that is essential for asymmetric cell division. These genes may contribute to establish precursors of CLL clones by regulation of cellular phenotype in the hematopoietic compartment. Expression of CD5/CD20/CD27/CD43 and spontaneous production of natural antibodies may identify the CLL cell as a self-renewing B1 lymphocyte.
Collapse
Affiliation(s)
- Anders Rosén
- Department of Clinical and Experimental Medicine; Division of Cell Biology; Linköping University; Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Shahrabi S, Ghanavat M, Behzad MM, Purrahman D, Saki N. CD markers polymorphisms as prognostic biomarkers in hematological malignancies. Oncol Rev 2020; 14:466. [PMID: 32782727 PMCID: PMC7385526 DOI: 10.4081/oncol.2020.466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
The clusters of differentiation (CD) are surface molecules used for immunophenotyping of cells. The expression of CD markers is widely used to classify hematological malignancies, including leukemia and lymphoma. Single nucleotide polymorphisms (SNPs) are crucial genetic changes that can be associated with abnormal expression and function of CD markers. In this paper, we assess the prognostic effect of CD markers’ SNPs in hematological malignancies. Materials and methods and relevant literature was identified by a PubMed search (2001-2019) of English language papers using the following terms: ‘polymorphism’, ‘CD marker’, ‘leukemia’, ‘lymphoma’, ‘prognosis’, ‘CD marker’, and ‘polymorphism’. Many studies have demonstrated the effects of CD markers’ polymorphisms on risk of hematological malignancies. Also, SNPs of CD markers can be related with clinicopathological features, invasiveness, and response to therapy of these disorders. Considering the importance of SNPs in the expressions of CD markers, these genetic changes could be used as potential prognostic biomarkers in hematological malignancies. It is hoped that the evaluation of SNPs in CD markers will enable early diagnosis, prognosis, and detection of response to treatment. However, better understanding of SNPs in CD markers that are involved in hematological malignancies requires further studies on different populations of the worldwide.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan
| | - Masumeh Maleki Behzad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Hamadan.,Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Bosseboeuf A, Seillier C, Mennesson N, Allain-Maillet S, Fourny M, Tallet A, Piver E, Lehours P, Mégraud F, Berthelot L, Harb J, Bigot-Corbel E, Hermouet S. Analysis of the Targets and Glycosylation of Monoclonal IgAs From MGUS and Myeloma Patients. Front Immunol 2020; 11:854. [PMID: 32536913 PMCID: PMC7266999 DOI: 10.3389/fimmu.2020.00854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies showed that monoclonal immunoglobulins G (IgGs) of “monoclonal gammopathy of undetermined significance” (MGUS) and myeloma were hyposialylated, thus presumably pro-inflammatory, and for about half of patients, the target of the monoclonal IgG was either a virus—Epstein–Barr virus (EBV), other herpes viruses, hepatitis C virus (HCV)—or a glucolipid, lysoglucosylceramide (LGL1), suggesting antigen-driven disease in these patients. In the present study, we show that monoclonal IgAs share these characteristics. We collected 35 sera of patients with a monoclonal IgA (6 MGUS, 29 myeloma), and we were able to purify 25 of the 35 monoclonal IgAs (6 MGUS, 19 myeloma). Monoclonal IgAs from MGUS and myeloma patients were significantly less sialylated than IgAs from healthy volunteers. When purified monoclonal IgAs were tested against infectious pathogens and LGL1, five myeloma patients had a monoclonal IgA that specifically recognized viral proteins: the core protein of HCV in one case, EBV nuclear antigen 1 (EBNA-1) in four cases (21.1% of IgA myeloma). Monoclonal IgAs from three myeloma patients reacted against LGL1. In summary, monoclonal IgAs are hyposialylated and as described for IgG myeloma, significant subsets (8/19, or 42%) of patients with IgA myeloma may have viral or self (LGL1) antigen-driven disease.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Célia Seillier
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Mennesson
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | | | - Maeva Fourny
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Anne Tallet
- Laboratoire de Biochimie, CHU de Tours, Tours, France
| | - Eric Piver
- Laboratoire de Biochimie, CHU de Tours, Tours, France.,Inserm UMR966, Tours, France
| | - Philippe Lehours
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France
| | - Jean Harb
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Edith Bigot-Corbel
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Sylvie Hermouet
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire d'Hématologie, CHU de Nantes, Nantes, France
| |
Collapse
|
12
|
Celebrating 20 Years of IGHV Mutation Analysis in CLL. Hemasphere 2020; 4:e334. [PMID: 32382709 PMCID: PMC7000474 DOI: 10.1097/hs9.0000000000000334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
The division of CLL into 2 broad subsets with highly significant differences in clinical behavior was reported in 2 landmark papers in Blood in 1999.1,2 The simple analysis of the mutational status of the IGV regions provided both a prognostic indicator and an insight into the cellular origins. Derivation from B cells with very low or no IGV mutations generally leads to a more aggressive disease course than derivation from B cells with higher levels. This finding focused attention on surface Ig (sIg), the major B-cell receptor, and revealed dynamic antigen engagement in vivo as a tumor driver. It has also led to new drugs aimed at components of the intracellular activation cascades. After 20 years, the 2 senior authors of those papers have looked at the history of the observations and at the increasing understanding of the role of sIg in CLL that have emanated from them. As in the past, studies of CLL have provided a link between biology and the clinic, enabling more precise targeting which attacks critical pathways but minimizes side effects.
Collapse
|
13
|
Paul A, Edwards J, Pepper C, Mackay S. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Cells 2018; 7:E176. [PMID: 30347849 PMCID: PMC6210445 DOI: 10.3390/cells7100176] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular kinases inhibitory-κB kinase (IKK) α and Nuclear Factor-κB (NF-κB)-inducing kinase (NIK) are well recognised as key central regulators and drivers of the non-canonical NF-κB cascade and as such dictate the initiation and development of defined transcriptional responses associated with the liberation of p52-RelB and p52-p52 NF-κB dimer complexes. Whilst these kinases and downstream NF-κB complexes transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes, they also play a key role in the pathogenesis of a number of inflammatory-based conditions and diverse cancer types, which for the latter may be a result of background mutational status. IKKα and NIK, therefore, represent attractive targets for pharmacological intervention. Here, specifically in the cancer setting, we reflect on the potential pathophysiological role(s) of each of these kinases, their associated downstream signalling outcomes and the stimulatory and mutational mechanisms leading to their increased activation. We also consider the downstream coordination of transcriptional events and phenotypic outcomes illustrative of key cancer 'Hallmarks' that are now increasingly perceived to be due to the coordinated recruitment of both NF-κB-dependent as well as NF-κB⁻independent signalling. Furthermore, as these kinases regulate the transition from hormone-dependent to hormone-independent growth in defined tumour subsets, potential tumour reactivation and major cytokine and chemokine species that may have significant bearing upon tumour-stromal communication and tumour microenvironment it reiterates their potential to be drug targets. Therefore, with the emergence of small molecule kinase inhibitors targeting each of these kinases, we consider medicinal chemistry efforts to date and those evolving that may contribute to the development of viable pharmacological intervention strategies to target a variety of tumour types.
Collapse
Affiliation(s)
- Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK.
| | - Christopher Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK.
| | - Simon Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
14
|
Autore F, Strati P, Laurenti L, Ferrajoli A. Morphological, immunophenotypic, and genetic features of chronic lymphocytic leukemia with trisomy 12: a comprehensive review. Haematologica 2018; 103:931-938. [PMID: 29748447 PMCID: PMC6058775 DOI: 10.3324/haematol.2017.186684] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia is an extremely heterogeneous disease and prognostic factors such as chromosomal abnormalities are important predictors of time to first treatment and survival. Trisomy 12 is the second most frequent aberration detected by fluorescence in situ hybridization at the time of diagnosis (10-25%), and it confers an intermediate prognostic risk, with a median time to first treatment of 33 months and a median overall survival of 114 months. Here, we review the unique morphological, immunophenotypic, and genetic characteristics of patients with chronic lymphocytic leukemia and trisomy 12. These patients carry a significantly higher expression of CD19, CD22, CD20, CD79b, CD24, CD27, CD38, CD49d, sIgM, sIgk, and sIgλ and lower expression of CD43 compared with patients with normal karyotype. Circulating cells show increased expression of the integrins CD11b, CD18, CD29, and ITGB7, and of the adhesion molecule CD323. Patients with chronic lymphocytic leukemia and trisomy 12 frequently have unmutated IGHV, ZAP-70 positivity, and closely homologous stereotyped B-cell receptors. They rarely show TP53 mutations but frequently have NOTCH1 mutations, which can be identified in up to 40% of those with a rapidly progressive clinical course.
Collapse
MESH Headings
- Biomarkers
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 12
- Combined Modality Therapy
- Genetic Association Studies
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunophenotyping/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Pancytopenia/pathology
- Phenotype
- Prognosis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Treatment Outcome
- Trisomy
Collapse
Affiliation(s)
- Francesco Autore
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Strati
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Laurenti
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Wennerås C, Goldblatt D, Zancolli M, Mattsson M, Wass L, Hörkkö S, Rosén A. Natural IgM antibodies in the immune defence against neoehrlichiosis. Infect Dis (Lond) 2017; 49:809-816. [PMID: 28682152 DOI: 10.1080/23744235.2017.1347815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neoehrlichiosis is an infectious disease caused by the tick-borne bacterium "Candidatus Neoehrlichia mikurensis". Splenectomy and rituximab therapies are risk factors for severe neoehrlichiosis. Our aim was to examine if neoehrlichiosis patients had low levels of natural IgM antibodies and/or were hypogammaglobulinemic, and if such deficiencies were associated with asplenia and vascular complications. METHODS Neoehrlichiosis patients (n = 9) and control subjects (n = 10) were investigated for serum levels of IgG, IgA, and IgM, and for levels of natural IgM antibodies to pneumococcal polysaccharides (6B, 14), and to the malondialdehyde acetaldehyde epitope of oxidized LDL. The multivariate method Projection to Latent Structures was used to analyze the data. RESULTS The levels of natural IgM antibodies of various specificities were decreased or not measurable in half of the studied patients with neoehrlichiosis. Only one patient and one control subject were hypogammaglobulinemic. An inverse relationship was noted between the levels of natural IgM antibodies and the development of deep vein thrombosis. Unexpectedly, no association was seen between having or not having a spleen and the levels of natural IgM antibody levels in the circulation. CONCLUSIONS Neither hypogammaglobulinemia nor lack of natural IgM antibodies alone predisposes for severe neoehrlichiosis. The importance of the spleen in the immune defence against Ca. N. mikurensis probably lies in its capacity to generate or maintain specific antibodies.
Collapse
Affiliation(s)
- Christine Wennerås
- a Department of Infectious Diseases and Hematology , Sahlgrenska Academy, University of Gothenburg , Göteborg , Sweden
| | - David Goldblatt
- b Immunobiology Section , Great Ormond Street Institute of Child Health, University College London , London , UK
| | - Marta Zancolli
- b Immunobiology Section , Great Ormond Street Institute of Child Health, University College London , London , UK
| | - Mattias Mattsson
- c Department of Hematology , Uppsala University Hospital , Uppsala , Sweden
| | - Linda Wass
- a Department of Infectious Diseases and Hematology , Sahlgrenska Academy, University of Gothenburg , Göteborg , Sweden
| | - Sohvi Hörkkö
- d Department of Medical Microbiology and Immunology , Medical Research Center University of Oulu, and Nordlab Oulu, Oulu University Hospital , Oulu , Finland
| | - Anders Rosén
- e Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| |
Collapse
|
16
|
NF-κB in Hematological Malignancies. Biomedicines 2017; 5:biomedicines5020027. [PMID: 28561798 PMCID: PMC5489813 DOI: 10.3390/biomedicines5020027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations.
Collapse
|
17
|
Mansouri L, Papakonstantinou N, Ntoufa S, Stamatopoulos K, Rosenquist R. NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Semin Cancer Biol 2016; 39:40-8. [PMID: 27491692 DOI: 10.1016/j.semcancer.2016.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 02/08/2023]
Abstract
The nuclear factor-κB (NF-κB) pathway is constitutively activated in chronic lymphocytic leukemia (CLL) patients, and hence plays a major role in disease development and evolution. In contrast to many other mature B-cell lymphomas, only a few recurrently mutated genes involved in canonical or non-canonical NF-κB activation have been identified in CLL (i.e. BIRC3, MYD88 and NFKBIE mutations) and often at a low frequency. On the other hand, CLL B cells seem 'addicted' to the tumor microenvironment for their survival and proliferation, which is primarily mediated by interaction through a number of cell surface receptors, e.g. the B-cell receptor (BcR), Toll-like receptors and CD40, that in turn activate downstream NF-κB. The importance of cell-extrinsic triggering for CLL pathophysiology was recently also highlighted by the clinical efficacy of novel drugs targeting microenvironmental interactions through the inhibition of BcR signaling. In other words, CLL can be considered a prototype disease for studying the intricate interplay between external triggers and intrinsic aberrations and their combined impact on disease evolution. In this review, we will discuss the current understanding of mechanisms underlying NF-κB deregulation in CLL, including micro-environmental, genetic and epigenetic events, and summarize data generated in murine models resembling human CLL. Finally, we will also discuss different strategies undertaken to intervene with the NF-κB pathway and its upstream mediators.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nikos Papakonstantinou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Stavroula Ntoufa
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Emole JN, Locke FL, Pinilla-Ibarz J. An update on current and prospective immunotherapies for chronic lymphocytic leukemia. Immunotherapy 2016; 7:455-66. [PMID: 25917633 DOI: 10.2217/imt.15.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia. Combined agent chemotherapy is the current standard front-line treatment for physically fit patients with CLL. Use of chemotherapy can be complicated by significant toxicity, especially in patients with advanced age or comorbid conditions. Moreover, patients may relapse and become refractory to further chemotherapy. Immunotherapy targets the aberrant immunological processes in CLL without the toxicity of chemotherapy. Immunotherapeutic strategies can also be combined with chemotherapy to improve response rates in this incurable disease. In this review, we evaluate current and future immune-based options in the treatment of CLL.
Collapse
Affiliation(s)
- Josephine N Emole
- Department of Malignant Hematology, H Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
19
|
Fraietta JA, Schwab RD, Maus MV. Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells. Semin Oncol 2016; 43:291-9. [PMID: 27040708 DOI: 10.1053/j.seminoncol.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Robert D Schwab
- Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
20
|
Xia Y, Fan L, Wang L, Gale RP, Wang M, Tian T, Wu W, Yu L, Chen YY, Xu W, Li JY. Frequencies of SF3B1, NOTCH1, MYD88, BIRC3 and IGHV mutations and TP53 disruptions in Chinese with chronic lymphocytic leukemia: disparities with Europeans. Oncotarget 2016; 6:5426-34. [PMID: 25605254 PMCID: PMC4467158 DOI: 10.18632/oncotarget.3101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022] Open
Abstract
We studied 307 consecutive Chinese with chronic lymphocytic leukemia (CLL) in diverse disease-stages before and after diverse therapies for mutations in several CLL-related genes. Mutation frequencies were SF3B1, 5%, NOTCH1, 8%, MYD88, 8%, BIRC3, 2%, TP53, 15% and IGHV, 60%. Several of these frequencies differ from those reported in persons of predominately European descent with CLL. Biological and clinical associations were detected including SF3B1 and NOTCH1 mutations with un-mutated IGHV, MYD88 mutations with mutated IGHV, SF3B1 mutations with fludarabine-resistant CLL and NOTCH1 mutation with advanced Binet disease stage and with +12. The NOTCH1 correlation with briefer survival was confirmed in multivariate analyses but the SF3B1 correlation was confounded by concurrent mutations in TP53 and germline IGHV. We show differences in incidence and prognostic impact of mutations in Chinese and CLL compared with persons of predominately European descent with CLL. These data may give insights into the etiology and biology of CLL and suggests different risk stratification models may be needed for different CLL populations.
Collapse
Affiliation(s)
- Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Man Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Tian Tian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Liang Yu
- Department of Hematology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Yao-Yu Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
21
|
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48:253-64. [PMID: 26780610 DOI: 10.1038/ng.3488] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Collapse
|
22
|
Cui X, Zhang L, Magli AR, Catera R, Yan XJ, Griffin DO, Rothstein TL, Barrientos J, Kolitz JE, Allen SL, Rai KR, Chiorazzi N, Chu CC. Cytoplasmic myosin-exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability. Leukemia 2016; 30:74-85. [PMID: 26220042 PMCID: PMC4703467 DOI: 10.1038/leu.2015.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/18/2022]
Abstract
The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin-exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy-chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease.
Collapse
Affiliation(s)
- Xiaoxuan Cui
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lu Zhang
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Amanda R. Magli
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Rosa Catera
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Daniel O. Griffin
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Thomas L. Rothstein
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Jonathan E. Kolitz
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Steven L. Allen
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Kanti R. Rai
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| | - Charles C. Chu
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital and Long Island Jewish Medical Center, North Shore-LIJ Health System, Manhasset, NY 11030 and New Hyde Park, NY 11040
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, 11549
| |
Collapse
|
23
|
Klein E, Nagy N, Rasul E. Modification of cell differentiation, one of the mechanisms in the surveillance of malignancy. Cancer Immunol Res 2015; 3:97-102. [PMID: 25660552 DOI: 10.1158/2326-6066.cir-14-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most humans carry the potentially life-endangering Epstein-Barr virus (EBV). The immediate danger after infection is imposed by proliferation of the B cells that carry the viral genome. Although a number of different cell types can be infected with EBV, B lymphocytes are exceptionally sensitive; they express a set of virus-encoded proteins, which collaborate with host proteins to induce proliferation. This phenomenon can be demonstrated in vitro with experimentally infected B cells. These viral genes are expressed only in B lymphocytes and are restricted to a defined differentiation stage. This limitation is of high importance for the maintenance of the controlled EBV-carrier state of humans. The emergence of EBV-induced B-cell malignancies is counteracted by highly efficient immunologic mechanisms. Recognition of EBV-transformed immunoblasts in an MHC class I-restricted manner by cytotoxic CD8 T cells and, to a lesser extent, by CD4 T cells, is thought to play the major role. The in vitro experimental results are in accordance with the emergence of EBV(+) B-cell malignancies in immunosuppressive conditions. In this Masters primer, we emphasize that in addition to eliminating B cells that carry the virus genome, the regulatory circuit of the immune response also operates in surveillance, particularly in the early phase of infection. This mechanism involves T-cell-mediated regulation of B-cell differentiation. Because of the strict dependence of the viral growth program on the expression of host cell factors, altering the differentiation state can curb the proliferation of B cells that harbor the viral genome.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clin Transl Oncol 2015. [DOI: 10.1007/s12094-015-1357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood 2015; 126:1902-10. [PMID: 26194765 DOI: 10.1182/blood-2015-04-640805] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
The vast majority of cases of follicular lymphoma (FL), but not normal B cells, acquire N-glycosylation sites in the immunoglobulin variable regions during somatic hypermutation. Glycans added to sites are unusual in terminating at high mannoses. We showed previously that the C-type lectins, dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose receptor, bound to FL surface immunoglobulin (sIg), generating an intracellular Ca(2+) flux. We have now mapped further intracellular pathways activated by DC-SIGN in a range of primary FL cells with detection of phosphorylated ERK1/2, AKT, and PLCγ2. The SYK inhibitor (tamatinib) or the BTK inhibitor (ibrutinib) each blocked phosphorylation. Activation by DC-SIGN occurred in both IgM(+) and IgG(+) cases and led to upregulation of MYC expression, with detection in vivo observed in lymph nodes. Unlike cells of chronic lymphocytic leukemia, FL cells expressed relatively high levels of sIg, unchanged by long-term incubation in vitro, indicating no antigen-mediated downregulation in vivo. In contrast, expression of CXCR4 increased in vitro. Engagement of sIg in FL cells or normal B cells by anti-Ig led to endocytosis in vitro as expected, but DC-SIGN, even when cross-linked, did not lead to significant endocytosis of sIg. These findings indicate that lectin binding generates signals via sIg but does not mediate endocytosis, potentially maintaining a supportive antigen-independent signal in vivo. Location of DC-SIGN in FL tissue revealed high levels in sinusoidlike structures and in some colocalized mononuclear cells, suggesting a role for lectin-expressing cells at this site.
Collapse
|
26
|
Antosz H, Wojciechowska K, Sajewicz J, Choroszyńska D, Marzec-Kotarska B, Osiak M, Pająk N, Tomczak W, Jargiełło-Baszak M, Baszak J. IL-6, IL-10, c-Jun and STAT3 expression in B-CLL. Blood Cells Mol Dis 2015; 54:258-65. [DOI: 10.1016/j.bcmd.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/09/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
27
|
Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, Saki N. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol (Dordr) 2015; 38:93-109. [PMID: 25563586 DOI: 10.1007/s13402-014-0215-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by a clonal accumulation of mature apoptosis-resistant neoplastic cells. It is also a heterogeneous disease with a variable clinical outcome. Here, we present a review of currently known (epi)genetic alterations that are related to the etiology, progression and chemo-refractoriness of CLL. Relevant literature was identified through a PubMed search (1994-2014) of English-language papers using the terms CLL, signaling pathway, cytogenetic abnormality, somatic mutation, epigenetic alteration and micro-RNA. RESULTS CLL is characterized by the presence of gross chromosomal abnormalities, epigenetic alterations, micro-RNA expression alterations, immunoglobulin heavy chain gene mutations and other genetic lesions. The expression of unmutated immunoglobulin heavy chain variable region (IGHV) genes, ZAP-70 and CD38 proteins, the occurrence of chromosomal abnormalities such as 17p and 11q deletions and mutations of the NOTCH1, SF3B1 and BIRC3 genes have been associated with a poor prognosis. In addition, mutations in tumor suppressor genes, such as TP53 and ATM, have been associated with refractoriness to conventional chemotherapeutic agents. Micro-RNA expression alterations and aberrant methylation patterns in genes that are specifically deregulated in CLL, including the BCL-2, TCL1 and ZAP-70 genes, have also been encountered and linked to distinct clinical parameters. CONCLUSIONS Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
28
|
Bergh AC, Evaldsson C, Pedersen LB, Geisler C, Stamatopoulos K, Rosenquist R, Rosén A. Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia. Haematologica 2014; 99:1722-30. [PMID: 25085355 PMCID: PMC4222481 DOI: 10.3324/haematol.2014.106054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia B cells express auto/xeno antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation-induced malonedialdehyde that is present on low-density lipoprotein, apoptotic blebs, and on certain microbes. The poor-prognostic stereotyped subset #1 (Clan I IGHV genes-IGKV1(D)-39) express IgM B-cell receptors that bind oxidized low-density lipoprotein. In this study, we have used for the first time this authentic cognate antigen for analysis of downstream B-cell receptor-signal transduction events, since it is more faithful to B-cell physiology than anti-IgM. Multivalent oxidized low-density lipoprotein showed specific binding to subset #1 IgM/IgD B-cell receptors, whereas native low-density lipoprotein did not. The antigen binding induced prompt receptor clustering followed by internalization. However, the receptor-signal transduction was silenced, revealing no Ca(2+) mobilization or cell-cycle entry, while phosphorylated extracellular-regulated kinase 1/2 basal levels were high and could not be elevated further by oxidized low-density lipoprotein. Interestingly, B-cell receptor responsiveness was recovered after 48-h culture in the absence of antigen in half of the cases. Toll-like receptor 9-ligand was found to breach the B-cell receptor-signaling incompetence in 5 of 12 cases pointing to intra-subset heterogeneity. Altogether, this study supports B-cell receptor unresponsiveness to cognate self-antigen on its own in poor-prognostic subset #1 chronic lymphocytic leukemia, indicating that these cells proliferate by other mechanisms that may override B-cell receptor silencing brought about in a context of self-tolerance/anergy. These novel findings have implications for the understanding of chronic lymphocytic leukemia pathobiology and therapy.
Collapse
MESH Headings
- Autoantigens/immunology
- B7-2 Antigen/metabolism
- Calcium/metabolism
- Cell Cycle
- Gene Silencing
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin J-Chains/genetics
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/immunology
- Immunoglobulin Variable Region/genetics
- Interleukin-10/biosynthesis
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-6/biosynthesis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Ligands
- Lipoproteins, LDL/metabolism
- Protein Binding
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Ann-Charlotte Bergh
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Chamilly Evaldsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | - Kostas Stamatopoulos
- Department of Hematology and HCT Unit G. Papanicolaou Hospital, Thessaloniki, Greece Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Rasul E, Salamon D, Nagy N, Leveau B, Banati F, Szenthe K, Koroknai A, Minarovits J, Klein G, Klein E. The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia. PLoS One 2014; 9:e106008. [PMID: 25162594 PMCID: PMC4146575 DOI: 10.1371/journal.pone.0106008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clonal Evolution/immunology
- Clone Cells/immunology
- Clone Cells/pathology
- Clone Cells/virology
- Disease Progression
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Herpesvirus 4, Human/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Prolymphocytic/immunology
- Leukemia, Prolymphocytic/pathology
- Leukemia, Prolymphocytic/virology
- Lymphocyte Count
- Time Factors
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Daniel Salamon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Benjamin Leveau
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Ferenc Banati
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Anita Koroknai
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| |
Collapse
|
30
|
Stevenson FK, Forconi F, Packham G. The Meaning and Relevance of B-Cell Receptor Structure and Function in Chronic Lymphocytic Leukemia. Semin Hematol 2014; 51:158-67. [DOI: 10.1053/j.seminhematol.2014.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Zhong Y, Byrd JC, Dubovsky JA. The B-cell receptor pathway: a critical component of healthy and malignant immune biology. Semin Hematol 2014; 51:206-18. [PMID: 25048784 DOI: 10.1053/j.seminhematol.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathogenesis and progression of normal B-cell development to malignant transformation of chronic lymphocytic leukemia (CLL) is still poorly understood and has hampered attempts to develop targeted therapeutics for this disease. The dependence of CLL cells on B-cell receptor signaling has fostered a new area of basic and therapeutic research interest. In particular, identification of the dependence of CLL cells on both phosphatidylinositol 3-kinase delta and Bruton's tyrosine kinase signaling for survival and proliferation has come forth through well-performed preclinical studies and subsequent trials demonstrating dramatic efficacy. This review outlines essential components of B-cell receptor signaling and briefly addresses therapeutics that are emerging to target these in patients with CLL and related lymphoid malignancies.
Collapse
Affiliation(s)
- Yiming Zhong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Jason A Dubovsky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
32
|
Variable induction of PRDM1 and differentiation in chronic lymphocytic leukemia is associated with anergy. Blood 2014; 123:3277-85. [PMID: 24637363 DOI: 10.1182/blood-2013-11-539049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite antigen engagement and intact B-cell-receptor (BCR) signaling, chronic lymphocytic leukemia (CLL) cells fail to undergo terminal differentiation. We hypothesized that such failure may be due to anergy, as CLL cells exhibit variable levels of nonresponsiveness to surface IgM stimulation that is reversible in vitro. Moreover, anergy is associated with reduced differentiation capacity in normal B cells. We investigated responses of CLL cells to two potent differentiation-promoting agents, IL-21 and cytosine guanine dinucleotide-enriched oligo-deoxynucleotides. The induction of PR domain-containing protein 1 (PRDM1; also known as Blimp-1), a critical regulator of plasmacytic differentiation, by these agents was closely correlated but varied between individual cases, despite functionally intact IL-21 receptor- and Toll-like receptor 9-mediated signal transducer and activator of transcription 3, and nuclear factor-κB pathways. PRDM1 induction was inversely correlated with the extent of anergy as measured by the ability to mobilize intracellular Ca(2+) following BCR crosslinking. PRDM1 responsiveness was associated with other markers of differentiation and proliferation but not with differences in apoptosis. The ability to induce PRDM1 did correlate with differential transcriptional and epigenetic regulation of the PRDM1 gene. These studies extend our understanding of CLL pathobiology, demonstrating that reduced differentiation capacity may be a consequence of anergy. Epigenetic drugs may offer possibilities to reactivate PRDM1 expression as part of novel differentiation therapy approaches.
Collapse
|
33
|
Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol 2014; 24:43-8. [DOI: 10.1016/j.semcancer.2013.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
|
34
|
Sevov M, Rosenquist R, Mansouri L. RNA-based markers as prognostic factors in chronic lymphocytic leukemia. Expert Rev Hematol 2014; 5:69-79. [DOI: 10.1586/ehm.11.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Del Giudice I, Chiaretti S, Santangelo S, Tavolaro S, Peragine N, Marinelli M, Ilari C, Raponi S, Messina M, Nanni M, Mauro FR, Piciocchi A, Bontempi K, Rossi D, Gaidano G, Guarini A, Foà R. Stereotyped subset #1 chronic lymphocytic leukemia: a direct link between B-cell receptor structure, function, and patients' prognosis. Am J Hematol 2014; 89:74-82. [PMID: 24030933 DOI: 10.1002/ajh.23591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 01/10/2023]
Abstract
Chronic lymphocytic leukemia (CLL) with stereotyped B-cell receptor (BCR) belonging to subset #1 (IGHV1-5-7/ IGKV1-39) display a poor outcome. To characterize their genetic and genomic features and BCR function, we selected 20 subset #1 CLL from a series of 579 cases. Subset #1 CLL, all showing unmutated IGHV, were associated with the presence of del(11q) (50%) in comparison with unmutated CLL, unmutated stereotyped CLL other than subset #1 and with cases using the same IGHV genes but a heterogeneous VH CDR3 (non-subset #1 CLL). There were no distinctive features regarding CD38, ZAP-70, and TP53 disruption. NOTCH1, SF3B1, and BIRC3 were mutated in 15%, 0%, and 5% of cases, respectively, while BIRC3 was deleted in 22% of cases. Microarray unsupervised analysis on 80 unmutated/mutated/stereotyped/non-stereotyped CLL showed a tight clustering of subset #1 cases. Their genomic signature exhibited several differentially expressed transcripts involved in BCR signal transduction, apoptosis regulation, cell proliferation, and oxidative processes, regardless of del(11q). Accordingly, BCR ligation with anti-IgM revealed a significant higher proliferation of subset #1 versus unmutated non-subset #1 CLL, both at baseline and after 24–48 hr stimulation. Subset #1 CLL represent a paradigmatic example of the direct link between BCR structure, function, and patients prognosis.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Simona Santangelo
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Simona Tavolaro
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Nadia Peragine
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Marilisa Marinelli
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Caterina Ilari
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Sara Raponi
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Monica Messina
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Mauro Nanni
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Francesca Romana Mauro
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | | | | | - Davide Rossi
- Division of Hematology; Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Gianluca Gaidano
- Division of Hematology; Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Anna Guarini
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| |
Collapse
|
36
|
Coelho V, Krysov S, Steele A, Sanchez Hidalgo M, Johnson PW, Chana PS, Packham G, Stevenson FK, Forconi F. Identification in CLL of circulating intraclonal subgroups with varying B-cell receptor expression and function. Blood 2013; 122:2664-72. [PMID: 23954894 DOI: 10.1182/blood-2013-02-485425] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a tumor of circulating B cells, variably stimulated and anergized following exposure to antigen in lymphoid tissues. Down-modulation of surface IgM (sIgM) occurs, but expression and signal capacity can recover in vitro and apparently in vivo during recirculation. We have now dissected individual circulating clones of CLL cases according to sIgM expression level by differential binding to bead-bound anti-IgM. Four clear subgroups (SG1-4) with increasing sIgM were identified in 37/37 cases. Engagement of sIgM induced phosphorylation of PLCγ2 and ERK1/2 at levels ranging from very low in SG1 to high in SG4. Phosphorylation was suppressed by the BTK inhibitor ibrutinib. Expression of CXCR4 also increased from SG1 to SG4, but markers of previous activation and proliferation were dominant in SG1. Incubation of whole CLL populations in vitro led to striking increases in CXCR4 expression as well as recovery of sIgM. Clonal analysis reveals dynamic SGs following presumed antigen stimulation in tissues. SG4 represents a fully recovered, potentially dangerous population equipped to migrate to tissue and receive a proliferative stimulus. SG1 likely represents a postmitotic unresponsive "resting" population. The effect of ibrutinib on the small SG4 population may be the critical factor in therapeutic success.
Collapse
MESH Headings
- Antibodies, Immobilized
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Clone Cells/metabolism
- Clone Cells/pathology
- Flow Cytometry
- Humans
- Immunoglobulin M/metabolism
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Signaling System/physiology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, CXCR4/metabolism
- Receptors, Cell Surface/metabolism
Collapse
|
37
|
Abstract
Lymphomas are a very heterogeneous group of tumors of mature lymphoid cells with quite different morphology, genetics and clinical characteristics, which is also reflected in the numerous entities and sub-entities defined in the most recent WHO classification. Today, it is well-established that lymphomas can evolve due to both 'cell-intrinsic' factors (e.g. acquired genomic aberrations) and 'cell-extrinsic' factors (e.g. microenvironmental stimuli), although for most lymphoma subtypes the precise implicated mechanisms remain to be elucidated. In this thematic issue, a series of reviews have been collected focusing on key evidence for (i) direct or indirect links between antigens and lymphoma development; and, (ii) activated signaling pathways that play an essential role in tumor evolution and progression. Finally, strategies for the management of lymphomas developing due to viral and bacterial infection as well as novel promising therapies designed to hit specific cellular pathways (e.g. B-cell receptor inhibitors) will be summarized and discussed. Altogether, this issue will give the reader important insights into the current knowledge of the diverse mechanisms that come into play during lymphoma development as well as clues to future directions within this broad and intense research field.
Collapse
|
38
|
Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, Malcikova J, Mayer J, Tichy B, Pospisilova S. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2013; 99:329-38. [PMID: 24038023 DOI: 10.3324/haematol.2013.087593] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia.
Collapse
|
39
|
Falisi E, Novella E, Visco C, Guercini N, Maura F, Giaretta I, Pomponi F, Nichele I, Finotto S, Montaldi A, Neri A, Rodeghiero F. B-cell receptor configuration and mutational analysis of patients with chronic lymphocytic leukaemia and trisomy 12 reveal recurrent molecular abnormalities. Hematol Oncol 2013; 32:22-30. [PMID: 23861036 DOI: 10.1002/hon.2086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023]
Abstract
Trisomy 12 (+12) is the third most frequent cytogenetic aberration in chronic lymphocytic leukaemia (CLL) retrievable both as the sole chromosomal abnormality or in association with additional alterations. NOTCH1 mutations are known to be more prevalent among +12 patients, whereas mutations of FBXW7, a gene involved in NOTCH1 degradation, that lead to the constitutional activation of NOTCH1 have not been investigated in this setting. We analyzed a unicentric cohort of 44 +12 patients with CLL for mutations of TP53, NOTCH1 and FBXW7 genes, and we correlated them with B-cell receptor (BCR) configurations. FBXW7, TP53 and NOTCH1 mutations were identified in 4.5%, 6.8% and 18.2% of patients, respectively. FBXW7 and NOTCH1 mutations appeared in a mutually exclusive fashion, suggesting that both aberrations might affect the same biological pathway. We found that 44.1% of +12 CLL patients had stereotyped B-cell receptors, which is significantly higher than that observed in patients with CLL and no +12 (27%, p = 0.01). Subsets #1, #8, #10, #28 and #59 were the most represented stereotyped patterns, and IGHV4-39*01 was the gene configuration most commonly used. There was a significantly higher risk for Richter's syndrome (RS) transformation in patients with NOTCH1 or FBXW7 mutations, with four of the seven (57%) patients developing RS and characterized at least by one of the two abnormalities. These observations suggest that, similarly to the aberrations of NOTCH1, FBXW7 gene mutations may also result in cell proliferation and evasion from apoptosis in patients with +12 CLL. Together with the extremely high frequency of stereotyped BCRs and RS transformation, these abnormalities appear to cluster in these CLL patients with additional chromosome 12, suggesting a connection with the prognosis of the disease.
Collapse
Affiliation(s)
- Erika Falisi
- Department of Hematology and Cell Therapy, S. Bortolo Hospital, Vicenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R. Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 2013; 54:2351-64. [PMID: 23480493 DOI: 10.3109/10428194.2013.783913] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease where the majority of patients have an indolent disease course, while others may experience a far more aggressive disease, treatment failure and poor overall survival. During the last two decades, there has been an intense search to find novel biomarkers that can predict prognosis as well as guide treatment decisions. Two of the most reliable molecular prognostic markers, both of which are offered in routine diagnostics, are the immunoglobulin heavy chain variable (IGHV) gene mutational status and fluorescence in situ hybridization (FISH) detection of prognostically relevant genomic aberrations (e.g. 11q-, 13q-, +12 and 17p-). In addition to these markers, a myriad of additional biomarkers have been postulated as potential prognosticators in CLL, on the protein (e.g. CD38, ZAP70, TCL1), the RNA (e.g. LPL, CLLU1, micro-RNAs) and the genomic (e.g. TP53, NOTCH1, SF3B1 and BIRC3 mutations) level. Efforts are now being made to test these novel markers in larger patient cohorts as well as in prospective trials, with the ultimate goal to combine the "best" markers in a "CLL prognostic index" applicable for the individual patient. Although it is clear that these studies have significantly improved our knowledge regarding both prognostication and the biology of the disease, there is still an immediate need for recognizing biomarkers that can predict therapy response, and efforts should now focus on addressing this pertinent issue. In the present article, we review the extensive literature in the field of prognostic markers in CLL, focus on the most clinically relevant markers and discuss future directions regarding biomarkers in CLL.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
41
|
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; 27:2311-21. [PMID: 23619564 PMCID: PMC4126654 DOI: 10.1038/leu.2013.131] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, the B-cell receptor (BCR) and NF-κB pathways are activated in the lymph node microenvironment. Thus, model systems mimicking tumor-host interactions are important tools to study CLL biology and pathogenesis. We investigated whether the recently established NOD/scid/γcnull (NSG) mouse xenograft model can recapitulate the effects of the human microenvironment. We assessed, therefore, tumor characteristics previously defined in lymph node-resident CLL cells, including proliferation, and activation of the BCR and NF-κB pathways. We found that the murine spleen microenvironment supported CLL cell proliferation and activation to a similar degree than the human lymph node, including induction of BCR and NF-κB signaling in the xenografted cells. Next, we used this model to study ibrutinib, a Bruton's tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis, and reduced the tumor burden in vivo. Thus, our data demonstrate that the spleen of xenografted NSG mice can, in part, recapitulate the role of the human lymph node for CLL cells. In addition, we show that ibrutinib effectively disrupts tumor-host interactions essential for CLL cell proliferation and survival in vivo.
Collapse
|
42
|
Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013; 27:2196-9. [PMID: 23558524 DOI: 10.1038/leu.2013.98] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/29/2013] [Indexed: 01/20/2023]
Abstract
Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.
Collapse
|
43
|
Pede V, Rombout A, Vermeire J, Naessens E, Mestdagh P, Robberecht N, Vanderstraeten H, Van Roy N, Vandesompele J, Speleman F, Philippé J, Verhasselt B. CLL cells respond to B-Cell receptor stimulation with a microRNA/mRNA signature associated with MYC activation and cell cycle progression. PLoS One 2013; 8:e60275. [PMID: 23560086 PMCID: PMC3613353 DOI: 10.1371/journal.pone.0060275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/24/2013] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Cycle/drug effects
- Cell Cycle/immunology
- Cells, Cultured
- Gene Expression Regulation, Leukemic/drug effects
- Genome-Wide Association Study
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- MicroRNAs/genetics
- MicroRNAs/immunology
- Multigene Family
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Antigen, B-Cell/agonists
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Valerie Pede
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ans Rombout
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nore Robberecht
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
44
|
Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1. Blood 2013; 121:3855-66, S1-16. [PMID: 23502221 DOI: 10.1182/blood-2012-08-446732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a prevalent B-cell neoplasia that is often preceded by a more benign monoclonal CD5(+) B-cell lymphocytosis. We previously generated transgenic mice expressing catalytically inactive RAG1 (dominant-negative recombination activating gene 1 [dnRAG1] mice) that develop an early-onset indolent CD5(+) B-cell lymphocytosis attributed to a defect in secondary V(D)J rearrangements initiated to edit autoreactive B-cell receptor (BCR) specificity. Hypothesizing that CD5(+) B cells in these animals represent potential CLL precursors, we crossed dnRAG1 mice with CLL-prone Eμ-TCL1 mice to determine whether dnRAG1 expression in Eμ-TCL1 mice accelerates CLL onset. Consistent with this hypothesis, CD5(+) B-cell expansion and CLL progression occurred more rapidly in double-transgenic mice compared with Eμ-TCL1 mice. Nevertheless, CD5(+) B cells in the 2 mouse strains exhibited close similarities in phenotype, immunoglobulin gene usage, and mutation status, and expression of genes associated with immune tolerance and BCR signaling. Gene expression profiling further revealed a potential role for prolactin signaling in regulating BCR editing. These results suggest a model in which benign accumulation of CD5(+) B cells can be initiated through a failure to successfully edit autoreactive BCR specificity and may, in turn, progress to CLL upon introduction of additional genetic mutations.
Collapse
|
45
|
Lanemo Myhrinder A, Hellqvist E, Bergh AC, Jansson M, Nilsson K, Hultman P, Jonasson J, Buhl AM, Bredo Pedersen L, Jurlander J, Klein E, Weit N, Herling M, Rosenquist R, Rosén A. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54:1769-79. [PMID: 23297799 DOI: 10.3109/10428194.2013.764418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface membrane receptors determines whether the cells will be proliferating, anergic or apoptotic. To better understand the role of antigen in leukemogenesis, CLL cell lines producing monoclonal antibodies (mAbs) will facilitate structural analysis of antigens and supply DNA for genetic studies. We present here a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA/short tandem repeat (STR) fingerprinting. Innate B-cell features, i.e. natural Ab production and CD5 receptors, were present in most CLL cell lines, but in none of the normal LCLs. This panel of immortalized CLL-derived cell lines is a valuable reference representing a renewable source of authentic Abs and DNA.
Collapse
Affiliation(s)
- Anna Lanemo Myhrinder
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Antosz H, Sajewicz J, Marzec-Kotarska B, Dmoszyńska A, Baszak J, Jargiełło-Baszak M. Aberrant TIRAP and MyD88 expression in B-cell chronic lymphocytic leukemia. Blood Cells Mol Dis 2013; 51:48-55. [PMID: 23419703 DOI: 10.1016/j.bcmd.2013.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
TIRAP and Myd88 are adaptor proteins for Toll-like receptors-2 and -4 (TLR2/4) which are engaged in transducing the signal to downstream molecules. Several studies have shown the increased role of infection factors in pathogenesis of B cell chronic lymphocytic leukemia (B-CLL). This prompted us to test whether there is a correlation between MyD88-TIRAP dynamics before and after inflammatory stimuli. We determined the mRNA and protein expression of TIRAP and MyD88 in CD5(+)CD19(+) B-CLL cells and in a subpopulation of normal B CD19(+) lymphocytes. Additionally we determined the influence of lipopolysaccharide Escherichia coli - TLR4-ligand (LPS) and Staphylococcus aureus strain Cowan I - TLR2-ligand (SAC) on TIR-domain-containing adaptor protein, also called MyD88 adaptor-like (TIRAP) and myeloid differentiation primary response protein 88 (MyD88) expression. We have found that the mRNA and protein expression of TIRAP and MyD88 in B-CLL lymphocytes is lower compared with that in normal B lymphocytes. LPS and SAC stimulation in normal lymphocytes significantly altered neither TIRAP nor MyD88 mRNA expression, whereas TIRAP protein level substantially decreased after TLR agonist treatment. We did not observe any changes in MyD88 protein level after B lymphocyte stimulation. There was a significant increase in TIRAP mRNA expression after LPS and SAC stimulation of B-CLL cells. MyD88 mRNA expression levels in B-CLL lymphocytes slightly decreased upon treatment with either stimulator. Stimulation with TLR agonists did not cause changes in TIRAP and MyD88 expression at the protein level in B-CLL lymphocytes. The results of our study suggest that there may exist a, yet unknown, defect of TIRAP and MyD88 proteins in B-CLL lymphocytes.
Collapse
Affiliation(s)
- Halina Antosz
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
47
|
Wiestner A. Targeting B-Cell Receptor Signaling for Anticancer Therapy: The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Induces Impressive Responses in B-Cell Malignancies. J Clin Oncol 2013; 31:128-30. [DOI: 10.1200/jco.2012.44.4281] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Adrian Wiestner
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2012; 121:1612-21. [PMID: 23247726 DOI: 10.1182/blood-2012-09-457531] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell exhaustion, originally described in chronic viral infections, was recently reported in solid and hematologic cancers. It is not defined whether exhaustion contributes to T-cell dysfunction observed in chronic lymphocytic leukemia (CLL). We investigated the phenotype and function of T cells from CLL patients and age-matched controls. CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD244, CD160, and PD1, with expansion of a PD1+BLIMP1HI subset. These molecules were most highly expressed in the expanded population of effector T cells in CLL. CLL CD8+ T cells showed functional defects in proliferation and cytotoxicity, with the cytolytic defect caused by impaired granzyme packaging into vesicles and nonpolarized degranulation. In contrast to virally induced exhaustion, CLL T cells showed increased production of interferon-γ and TNFα and increased expression of TBET, and normal IL2 production. These defects were not restricted to expanded populations of cytomegalovirus (CMV)–specific cells, although CMV seropositivity modulated the distribution of lymphocyte subsets, the functional defects were present irrespective of CMV serostatus. Therefore, although CLL CD8+ T cells exhibit features of T-cell exhaustion, they retain the ability to produce cytokines. These findings also exclude CMV as the sole cause of T-cell defects in CLL.
Collapse
|
49
|
Ruchlemer R, Polliack A. Geography, ethnicity and “roots” in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 54:1142-50. [DOI: 10.3109/10428194.2012.740670] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Abramenko IV, Bilous NI, Pleskach GV, Chumak AA, Kryachok IA, Martina ZV, Dyagil IS. CD38 gene polymorphism and risk of chronic lymphocytic leukemia. Leuk Res 2012; 36:1237-40. [DOI: 10.1016/j.leukres.2012.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 12/15/2022]
|