1
|
Pacifico T, Stolfi C, Tomassini L, Luiz‐Ferreira A, Franzè E, Ortenzi A, Colantoni A, Sica GS, Sambucci M, Monteleone I, Monteleone G, Laudisi F. Rafoxanide negatively modulates STAT3 and NF-κB activity and inflammation-associated colon tumorigenesis. Cancer Sci 2024; 115:3596-3611. [PMID: 39239848 PMCID: PMC11531958 DOI: 10.1111/cas.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
In the colorectal cancer (CRC) niche, the transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) are hyperactivated in both malignant cells and tumor-infiltrating leukocytes (TILs) and cooperate to maintain cancer cell proliferation/survival and drive protumor inflammation. Through drug repositioning studies, the anthelmintic drug rafoxanide has recently emerged as a potent and selective antitumor molecule for different types of cancer, including CRC. Here, we investigate whether rafoxanide could negatively modulate STAT3/NF-κB and inflammation-associated CRC. The antineoplastic effect of rafoxanide was explored in a murine model of CRC resembling colitis-associated disease. Cell proliferation and/or STAT3/NF-κB activation were evaluated in colon tissues taken from mice with colitis-associated CRC, human CRC cells, and CRC patient-derived explants and organoids after treatment with rafoxanide. The STAT3/NF-κB activation and cytokine production/secretion were assessed in TILs isolated from CRC specimens and treated with rafoxanide. Finally, we investigated the effects of TIL-derived supernatants cultured with or without rafoxanide on CRC cell proliferation and STAT3/NF-κB activation. The results showed that rafoxanide restrains STAT3/NF-κB activation and inflammation-associated colon tumorigenesis in vivo without apparent effects on normal intestinal cells. Rafoxanide markedly reduces STAT3/NF-κB activation in cultured CRC cells, CRC-derived explants/organoids, and TILs. Finally, rafoxanide treatment impairs the ability of TILs to produce protumor cytokines and promote CRC cell proliferation. We report the novel observation that rafoxanide negatively affects STAT3/NF-κB oncogenic activity at multiple levels in the CRC microenvironment. Our data suggest that rafoxanide could potentially be deployed as an anticancer drug in inflammation-associated CRC.
Collapse
Affiliation(s)
- Teresa Pacifico
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Carmine Stolfi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Lorenzo Tomassini
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Anderson Luiz‐Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of BiotechnologyFederal University of Catalão (UFCAT)CatalãoBrazil
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Alfredo Colantoni
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | | | | | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
| | | | - Federica Laudisi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
2
|
Gao Z, Janakiraman H, Xiao Y, Kang SW, Dong J, Choi J, Ogretmen B, Lee HS, Camp ER. Sphingosine-1-Phosphate Inhibition Increases Endoplasmic Reticulum Stress to Enhance Oxaliplatin Sensitivity in Pancreatic Cancer. World J Oncol 2024; 15:169-180. [PMID: 38545484 PMCID: PMC10965266 DOI: 10.14740/wjon1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer resistant to current therapies, including oxaliplatin (Oxa). Growing evidence supports the ability of cancers to harness sphingolipid metabolism for survival. Sphingosine-1-phosphate (S1P) is an anti-apoptotic, pro-survival mediator that can influence cellular functions such as endoplasmic reticulum (ER) stress. We hypothesize that PDAC drives dysregulated sphingolipid metabolism and that S1P inhibition can enhance ER stress to improve therapeutic response to Oxa in PDAC. Methods RNA sequencing data of sphingolipid mediators from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) datasets were analyzed. Murine and human PDAC cell lines were treated with small interfering RNA (siRNA) against sphingosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with combinations of vehicle control or Oxa. In an orthotopic syngeneic KPC PDAC model, tumors were treated with either vehicle control, Oxa, ABC, or combination therapy. Results RNA sequencing analysis revealed multiple significantly differentially expressed sphingolipid mediators (P < 0.05). In vitro, both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation, hallmarks of ER stress. In vitro therapy also increased extracellular high mobility group box 1 (HMGB1) release (P < 0.05), necessary for immunogenic cell death (ICD). In vivo combination therapy increased apoptotic markers as well as the intensity of HMGB1 staining compared to control (P < 0.05). Conclusions Our evidence suggests that sphingolipid metabolism is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize PDAC to Oxa therapy through increasing ER stress and can potentiate ICD induction. This highlights a potential therapeutic target for chemosensitizing PDAC as well as an adjunct for future chemoimmunotherapy strategies.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yang Xiao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jasmine Choi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ernest Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|
4
|
Zhang B, Li N, Gao J, Zhao Y, Jiang J, Xie S, Zhang C, Zhang Q, Liu L, Wang Z, Ji D, Wu L, Ren R. Targeting of focal adhesion kinase enhances the immunogenic cell death of PEGylated liposome doxorubicin to optimize therapeutic responses of immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:51. [PMID: 38373953 PMCID: PMC10875809 DOI: 10.1186/s13046-024-02974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUNDS Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.
Collapse
Affiliation(s)
- Baoyuan Zhang
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Gao
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Shuang Xie
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Cuiping Zhang
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Leo Liu
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Hainan Province, Haikou, China.
| |
Collapse
|
5
|
Jin S, Guo Y, Wang X. Development of Platinum Complexes for Tumor Chemoimmunotherapy. Chemistry 2024; 30:e202302948. [PMID: 38171804 DOI: 10.1002/chem.202302948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 01/05/2024]
Abstract
Platinum complexes are potential antitumor drugs in chemotherapy. Their impact on tumor treatment could be greatly strengthened by combining with immunotherapy. Increasing evidences indicate that the antitumor activity of platinum complexes is not limited to chemical killing effects, but also extends to immunomodulatory actions. This review introduced the general concept of chemoimmunotherapy and summarized the progress of platinum complexes as chemoimmunotherapeutic agents in recent years. Platinum complexes could be developed into inducers of immunogenic cell death, blockers of immune checkpoint, regulators of immune signaling pathway, and modulators of tumor immune microenvironment, etc. The synergy between chemotherapeutic and immunomodulatory effects reinforces the antitumor activity of platinum complexes, and helps them circumvent the drug resistance and systemic toxicity. The exploration of platinum complexes for chemoimmunotherapy may create new opportunities to revive the discovery of metal anticancer drugs.
Collapse
Affiliation(s)
- Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan Guo
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Huang Y, Yan H, Zhang B, Zhu G, Yu J, Xiao X, He W, Chen Y, Gao X, She Z, Li M, Yuan J. Ascomylactam C Induces an Immunogenic Cell Death Signature via Mitochondria-Associated ER Stress in Lung Cancer and Melanoma. Mar Drugs 2023; 21:600. [PMID: 38132921 PMCID: PMC10744434 DOI: 10.3390/md21120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Ascomylactam C (AsC) is a new 13-membered-ring macrocyclic alkaloid, which was first isolated and identified in 2019 from the secondary metabolites of the mangrove endophytic fungus Didymella sp. CYSK-4 in the South China Sea. AsC has been found to have a broad-spectrum cytotoxic activity. However, the antitumor effects in vivo and mechanisms of AsC remain unclear. The aim of this study was to describe the effects of AsC on lung cancer and melanoma cells and to explore the antitumor molecular mechanism of AsC. In vitro, we used plate colony formation experiments and demonstrated the ability of AsC to inhibit low-density tumor growth. An Annexin V/PI cell apoptosis detection experiment revealed that AsC induced tumor cell apoptosis. In vivo, AsC suppressed the tumor growth of LLC and B16F10 allograft significantly in mice, and promoted the infiltration of CD4+ T and CD8+ T cells in tumor tissues. Mechanistically, by analyses of Western blotting, immunofluorescence and ELISA analysis, we found that AsC increased ROS formation, induced endoplasmic reticulum (ER) stress, activated the protein kinase RNA-like ER kinase (PERK)/eukaryotic translation initiation factor (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway, and induced immunogenic cell death (ICD) of tumor cells. Our results suggest that AsC may be a potentially promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yun Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Hongmei Yan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Bingzhi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.Z.); (X.G.)
| | - Ge Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxuan He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yan Chen
- Department of Traditional Chinese Medicine, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.Z.); (X.G.)
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
| | - Mengfeng Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Cyran AM, Kleinegger F, Nass N, Naumann M, Haybaeck J, Arens C. Inhibition of EIF2α Dephosphorylation Decreases Cell Viability and Synergizes with Standard-of-Care Chemotherapeutics in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:5350. [PMID: 38001610 PMCID: PMC10670742 DOI: 10.3390/cancers15225350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Drug resistance is a common cause of therapy failure in head and neck squamous cell carcinoma (HNSCC). One approach to tackling it is by targeting fundamental cellular processes, such as translation. The eukaryotic translation initiation factor 2α (EIF2α) is a key player in canonical translation initiation and integrates diverse stress signals; when phosphorylated, it curbs global protein synthesis. This study evaluates EIF2α expression and phosphorylation in HNSCC. A small-molecule inhibitor of EIF2α dephosphorylation, salubrinal, was tested in vitro, followed by viability assays, flow cytometry, and immunoblot analyses. Patient-derived 3D tumor spheres (PD3DS) were cultured with salubrinal and their viability assessed. Lastly, salubrinal was evaluated with standard-of-care chemotherapeutics. Our analysis of RNA and proteomics data shows elevated EIF2α expression in HNSCC. Immunohistochemical staining reveals increasing EIF2α abundance from premalignant lesions to invasive and metastatic carcinoma. In immunoblots from intraoperative samples, EIF2α expression and steady-state phosphorylation are higher in HNSCC than in neighboring normal tissue. Inhibition of EIF2α dephosphorylation decreases HNSCC cell viability and clonogenic survival and impairs the G1/S transition. Salubrinal also decreases the viability of PD3DS and acts synergistically with cisplatin, 5-fluorouracil, bleomycin, and proteasome inhibitors. Our results indicate that pharmacological inhibition of EIF2α dephosphorylation is a potential therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Anna M. Cyran
- Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Florian Kleinegger
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria (J.H.)
| | - Norbert Nass
- Institute of Pathology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany;
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany;
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria (J.H.)
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, Giessen and Marburg University Hospitals, Campus Giessen, 35392 Giessen, Germany;
| |
Collapse
|
8
|
Zhou Y, Jiao J, Yang R, Wen B, Wu Q, Xu L, Tong X, Yan H. Temozolomide-based sonodynamic therapy induces immunogenic cell death in glioma. Clin Immunol 2023; 256:109772. [PMID: 37716612 DOI: 10.1016/j.clim.2023.109772] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND In our previous study, we found for the first time that temozolomide (TMZ), the first-line chemotherapeutic agent for glioblastoma (GBM), can generate a large amount of reactive oxygen species (ROS) under ultrasound irradiation. Sonodynamic therapy (SDT) using TMZ as the sonosensitizer produced more potent antitumor effects than TMZ alone. Here, we further evaluate the effects of TMZ-based SDT on subcellular structures and investigate the immunogenic cell death (ICD)-inducing capability of TMZ-based SDT. METHODS The sonotoxic effects of TMZ were explored in LN229 and GL261 glioma cells. The morphology of endoplasmic reticulum and mitochondria was observed by transmission electron microscopy. The nuclear DNA damage was represented by γ-H2AX staining. Bone marrow-derived dendritic cells (BMDCs) were employed to assess ICD-inducing capability of TMZ-based SDT. A cyclic arginine-glycine-aspartic (c(RGDyC))-modified nanoliposome drug delivery platform was used to improve the tumor targeting of SDT. RESULTS TMZ-based SDT had a greater inhibitory effect on glioma cells than TMZ alone. Transmission electron microscopy revealed that TMZ-based SDT caused endoplasmic reticulum dilation and mitochondrial swelling. In addition, endoplasmic reticulum stress response (ERSR), nuclear DNA damage and mitochondrial permeability transition pore (mPTP) opening were promoted in TMZ-based SDT group. Most importantly, we found that TMZ-based SDT could promote the "danger signals" produced by glioma cells and induce the maturation and activation of BMDCs, which was associated with the mitochondrial DNA released into the cytoplasm in glioma cells. In vivo experiments showed that TMZ-based SDT could remodel glioma immune microenvironment and provoke durable and powerful anti-tumor immune responses. What's more, the engineered nanoliposome vector of TMZ conferred SDT tumor targeting, providing an option for safer clinical application of TMZ in combination with SDT in the future. CONCLUSIONS TMZ-based SDT was capable of triggering ICD in glioma. The discovery of TMZ as a sonosensitizer have shown great promise in the treatment of GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Rongyan Yang
- College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binli Wen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
9
|
Qi H, Zheng Z, Liu Q. Activation of BZW1 by CEBPB in macrophages promotes eIF2α phosphorylation-mediated metabolic reprogramming and endoplasmic reticulum stress in MRL/lpr lupus-prone mice. Cell Mol Biol Lett 2023; 28:79. [PMID: 37828427 PMCID: PMC10571419 DOI: 10.1186/s11658-023-00494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is associated with significant mortality and morbidity, while effective therapeutics and biomarkers are limited since the pathogenesis is complex. This study investigated the roles of the CEBPB/BZW1/eIF2α axis in metabolic reprogramming and endoplasmic reticulum stress in LN. METHOD The differentially expressed genes in LN were screened using bioinformatics tools. The expression of CEBPB in the renal tissue of patients with LN and its correlation with the levels of creatinine and urinary protein were analyzed. We used adenoviral vectors to construct LN mice with knockdown CEBPB using MRL/lpr lupus-prone mice and analyzed the physiological and autoimmune indices in mice. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and dual-luciferase reporter assays were conducted to explore the regulation of BZW1 by CEBPB, followed by glycolytic flux analysis, glucose uptake, and enzyme-linked immunosorbent assay (ELISA). Finally, the role of eIF2α phosphorylation by BZW1 in bone marrow-derived macrophages (BMDM) was explored using eIF2α phosphorylation and endoplasmic reticulum stress inhibitors. RESULTS CEBPB was significantly increased in renal tissues of patients with LN and positively correlated with creatinine and urine protein levels in patients. Downregulation of CEBPB alleviated the autoimmune response and the development of nephritis in LN mice. Transcriptional activation of BZW1 by CEBPB-mediated glucose metabolic reprogramming in macrophages, and upregulation of BZW1 reversed the mitigating effect of CEBPB knockdown on LN. Regulation of eIF2α phosphorylation levels by BZW1 promoted endoplasmic reticulum stress-amplified inflammatory responses in BMDM. CONCLUSION Transcriptional activation of BZW1 by CEBPB promoted phosphorylation of eIF2α to promote macrophage glycolysis and endoplasmic reticulum stress in the development of LN.
Collapse
Affiliation(s)
- Huimeng Qi
- Department of General Practice, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, People's Republic of China
| | - Zhaoguo Zheng
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qiang Liu
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Tran TH, Kao M, Liu HS, Hong YR, Su Y, Huang CYF. Repurposing thioridazine for inducing immunogenic cell death in colorectal cancer via eIF2α/ATF4/CHOP and secretory autophagy pathways. Cell Commun Signal 2023; 21:184. [PMID: 37488534 PMCID: PMC10364410 DOI: 10.1186/s12964-023-01190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.
Collapse
Affiliation(s)
- Thu-Ha Tran
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ming Kao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- M. Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Ren Hong
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yeu Su
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chi-Ying F Huang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
11
|
Leibowitz BJ, Zhao G, Xia W, Wang Y, Ruan H, Zhang L, Yu J. mTOR inhibition suppresses Myc-driven polyposis by inducing immunogenic cell death. Oncogene 2023:10.1038/s41388-023-02706-6. [PMID: 37138032 DOI: 10.1038/s41388-023-02706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Myc is a key driver of colorectal cancer initiation and progression, but remains a difficult drug target. In this study, we show that mTOR inhibition potently suppresses intestinal polyp formation, regresses established polyps, and prolongs lifespan of APCMin/+ mice. Everolimus in diet strongly reduces p-4EBP1, p-S6, and Myc levels, and induces apoptosis of cells with activated β-catenin (p-S552) in the polyps on day 3. The cell death is accompanied by ER stress, activation of the extrinsic apoptotic pathway, innate immune cell recruitment, and followed by T-cell infiltration on day 14 persisting for months thereafter. These effects are absent in normal intestinal crypts with physiologic levels of Myc and a high rate of proliferation. Using normal human colonic epithelial cells, EIF4E S209A knockin and BID knockout mice, we found that local inflammation and antitumor efficacy of Everolimus requires Myc-dependent induction of ER stress and apoptosis. These findings demonstrate mTOR and deregulated Myc as a selective vulnerability of mutant APC-driven intestinal tumorigenesis, whose inhibition disrupts metabolic and immune adaptation and reactivates immune surveillance necessary for long-term tumor control.
Collapse
Affiliation(s)
- Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Guangyi Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Wenxin Xia
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Biochemistry and Molecular Pharmacology at New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yuhan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
14
|
Sen S, Karoscik K, Maier E, Arambula JF. Immunogenic cell death-inducing metal complexes: From the benchtop to the clinic. Curr Opin Chem Biol 2023; 73:102277. [PMID: 36867977 DOI: 10.1016/j.cbpa.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
The immune system presents a complex array of processes designed to maintain homeostasis in malignant cellular growth. Malignancy is the result of a breakdown in immune surveillance by cancer cells evading immune recognition. Significant efforts have been made in modulating immune checkpoint signaling cascades to bypass the resulting immune evasion and establish an anticancer effect. More recently, it was discovered that a form of regulated cell death can involve the stimulation of immune response as its downstream effect and subsequently re-establish immune surveillance. This mechanism, known as immunogenic cell death (ICD), is being exploited as a target to prevent tumor relapse and prevent cancer metastasis. It is now appreciated that metal-based compounds play a key role in ICD activation due to their unique biochemical properties and interactions within cancer cells. With fewer than 1% of known anticancer agents documented as ICD inducers, recent efforts have been made to identify novel entities capable of stimulating a more potent anticancer immune response. While the recent reviews by us or others focus primarily on either discussing the chemical library of ICD inducers or intricate detailing of biological pathways associated with ICD, this review aims to bridge these two topics as a concise summary. Furthermore, early clinical evidence and future directions of ICD are briefly summarized.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Biological Engineering, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA.
| | | | - Esther Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
15
|
Palanivelu L, Liu CH, Lin LT. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol 2023; 13:1038226. [PMID: 36755812 PMCID: PMC9899992 DOI: 10.3389/fimmu.2022.1038226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
According to the World Health Organization, cancer is one of the leading global health concerns, causing nearly 10 million deaths in 2020. While classical chemotherapeutics produce strong cytotoxicity on cancer cells, they carry limitations of drug resistance and off-target effects and sometimes fail to elicit adequate antitumor protection against tumor relapse. Additionally, most cancer cells have developed various ways to escape immune surveillance. Nevertheless, novel anticancer strategies such as oncolytic viro-immunotherapy can trigger immunogenic cell death (ICD), which can quickly grasp the attention of the host defense machinery, resulting in an ensuing antitumor immune response. Specifically, oncolytic viruses (OVs) can infect and destroy targeted cancer cells and stimulate the immune system by exposing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to promote inflammatory reactions, and concomitantly prime and induce antitumor immunity by the release of neoantigens from the damaged cancer cells. Thus, OVs can serve as a novel system to sensitize tumor cells for promising immunotherapies. This review discusses the concept of ICD in cancer, centralizing ICD-associated danger signals and their consequence in antitumor responses and ICD induced by OVs. We also shed light on the potential strategies to enhance the immunogenicity of OVs, including the use of genetically modified OVs and their combination with ICD-enhancing agents, which are helpful as forthcoming anticancer regimens.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Liang-Tzung Lin,
| |
Collapse
|
16
|
Barsheshet Y, Voloshin T, Brant B, Cohen G, Koren L, Blatt R, Cahal S, Haj Khalil T, Zemer Tov E, Paz R, Klein-Goldberg A, Tempel-Brami C, Jacobovitch S, Volodin A, Kan T, Koltun B, David C, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) Concomitant with Immune Checkpoint Inhibitors Are Therapeutically Effective in Non-Small Cell Lung Cancer (NSCLC) In Vivo Model. Int J Mol Sci 2022; 23:ijms232214073. [PMID: 36430552 PMCID: PMC9696536 DOI: 10.3390/ijms232214073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation. Here, the potential of TTFields concomitant with anti- PD-1/anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed death-ligand 1 (anti-PD-L1) immune checkpoint inhibitors (ICI) to improve therapeutic efficacy was examined in lung tumor-bearing mice. Increased circulating levels of high mobility group box 1 protein (HMGB1) and elevated intratumoral levels of phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α) were found in the TTFields-treated mice, indicative of ICD induction. The concomitant application of TTFields and ICI led to a significant decrease in tumor volume as compared to all other groups. In addition, significant increases in the number of tumor-infiltrating immune cells, specifically cytotoxic T-cells, were observed in the TTFields plus anti-PD-1/anti-CTLA-4 or anti-PD-L1 groups. Correspondingly, cytotoxic T-cells isolated from these tumors showed higher levels of IFN-γ production. Collectively, these results suggest that TTFields have an immunoactivating role that may be leveraged for concomitant treatment with ICI to achieve better tumor control by enhancing antitumor immunity.
Collapse
|
17
|
Mandula JK, Chang S, Mohamed E, Jimenez R, Sierra-Mondragon RA, Chang DC, Obermayer AN, Moran-Segura CM, Das S, Vazquez-Martinez JA, Prieto K, Chen A, Smalley KSM, Czerniecki B, Forsyth P, Koya RC, Ruffell B, Cubillos-Ruiz JR, Munn DH, Shaw TI, Conejo-Garcia JR, Rodriguez PC. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell 2022; 40:1145-1160.e9. [PMID: 36150390 PMCID: PMC9561067 DOI: 10.1016/j.ccell.2022.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Activation of unfolded protein responses (UPRs) in cancer cells undergoing endoplasmic reticulum (ER) stress promotes survival. However, how UPR in tumor cells impacts anti-tumor immune responses remains poorly described. Here, we investigate the role of the UPR mediator pancreatic ER kinase (PKR)-like ER kinase (PERK) in cancer cells in the modulation of anti-tumor immunity. Deletion of PERK in cancer cells or pharmacological inhibition of PERK in melanoma-bearing mice incites robust activation of anti-tumor T cell immunity and attenuates tumor growth. PERK elimination in ER-stressed malignant cells triggers SEC61β-induced paraptosis, thereby promoting immunogenic cell death (ICD) and systemic anti-tumor responses. ICD induction in PERK-ablated tumors stimulates type I interferon production in dendritic cells (DCs), which primes CCR2-dependent tumor trafficking of common-monocytic precursors and their intra-tumor commitment into monocytic-lineage inflammatory Ly6C+CD103+ DCs. These findings identify how tumor cell-derived PERK promotes immune evasion and highlight the potential of PERK-targeting therapies in cancer immunotherapy.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eslam Mohamed
- California Northstate University, Elk Grove, CA 95757, USA
| | - Rachel Jimenez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Darwin C Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Satyajit Das
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Karol Prieto
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian Czerniecki
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Peter Forsyth
- Department of NeuroOncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Richard C Koya
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - David H Munn
- Department of Pediatrics, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Zhou Y, Hu F, Cui Y, Wu H, Hu S, Wei W. Bibliometric analysis of research on immunogenic cell death in cancer. Front Pharmacol 2022; 13:1029020. [PMID: 36278159 PMCID: PMC9582244 DOI: 10.3389/fphar.2022.1029020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Immunotherapy is changing the way we treat cancer. Immunogenic cell death (ICD) has received considerable attention in the treatments of various cancer types, due to the long-lasting antitumor responses elicited in human body. However, to date, no relevant bibliometric research has been reported. Methods: Publications related to ICD in cancer research were collected from the Web of Science Core Collection. Using CiteSpace, VOSviewer and an online platform, the analyses of co-author, co-citation, and co-occurrence of terms retrieved from literatures were carried out. Results: A total of 1,577 publications were included in this study. The global research literatures on ICD in cancer research have been increasing from 2005 to 2021. China, the United States and France dominated in this area and had close collaborations with many countries. Six of the top 10 most contributive institutions were from France. When it comes to author analysis, Kroemer G, Zitvogel L, Kepp O, Garg AD and Galluzzi L were in both the top 10 most productive authors and top 10 most co-cited authors lists. The co-occurring author keywords could be grouped into three clusters: “biomarkers of ICD”, “nanoparticles” and “combination therapy”. In terms of promising hotspots, keywords (author keywords and KeyWords Plus) with recent citation bursts could be summarized into two aspects: “tumor microenvironment” and “nanoparticles”. Conclusion: Increased attention has been paid to ICD in cancer treatment. However, there are still many unresolved domains in the field of ICD, such as clinical application and molecular mechanisms of this cell death process. ICD-inducing modalities combined with nanotechnology could potentiate the current immunotherapies, and will be hotspots for future research.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fen Hu
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
| | - Yang Cui
- Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shunan Hu
- Department of Neurosurgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| | - Wei Wei
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- Institute of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, China
- *Correspondence: Shunan Hu, ; Wei Wei,
| |
Collapse
|
19
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near-Infrared Afterglow Theranostic Prodrug with Self-Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022; 61:e202209793. [PMID: 35916871 DOI: 10.1002/anie.202209793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Herein, we report an activatable near-infrared (NIR) afterglow theranostic prodrug that circumvents high background noise interference caused by external light excitation. The prodrug can release hydroxycamptothecin (HCPT) in response to the high intratumoral peroxynitrite level associated with immunogenic cell death (ICD), and synchronously activate afterglow signal to monitor the drug release process and cold-to-hot tumor transformation. The prodrug itself is an ICD inducer achieved by photodynamic therapy (PDT). PDT initiates ICD and recruits first-arrived neutrophils to secrete peroxynitrite to trigger HCPT release. Intriguingly, we demonstrate that HCPT can significantly amplify PDT-mediated ICD process. The prodrug thus shows a self-sustainable ICD magnification effect by establishing an "ICD-HCPT release-amplified ICD" cycling loop. In vivo studies demonstrate that the prodrug can eradicate existing tumors and prevent further tumor recurrence through antitumor immune response.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Li Y, Jiang JX, Fan W, Fish SR, Das S, Gupta P, Mozes G, Vancza L, Sarkar S, Kunimoto K, Chen D, Park H, Clemens D, Tomilov A, Cortopassi G, Török NJ. Shc Is Implicated in Calreticulin-Mediated Sterile Inflammation in Alcoholic Hepatitis. Cell Mol Gastroenterol Hepatol 2022; 15:197-211. [PMID: 36122677 PMCID: PMC9676381 DOI: 10.1016/j.jcmgh.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Src homology and collagen (Shc) proteins are major adapters to extracellular signals, however, the regulatory role of Shc isoforms in sterile inflammatory responses in alcoholic hepatitis (AH) has not been fully investigated. We hypothesized that in an isoform-specific manner Shc modulates pre-apoptotic signals, calreticulin (CRT) membrane exposure, and recruitment of inflammatory cells. METHODS Liver biopsy samples from patients with AH vs healthy subjects were studied for Shc expression using DNA microarray data and immunohistochemistry. Shc knockdown (hypomorph) and age-matched wild-type mice were pair-fed according to the chronic-plus-binge alcohol diet. To analyze hepatocyte-specific effects, adeno-associated virus 8-thyroxine binding globulin-Cre (hepatocyte-specific Shc knockout)-mediated deletion was performed in flox/flox Shc mice. Lipid peroxidation, proinflammatory signals, redox radicals, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratio, as well as cleaved caspase 8, B-cell-receptor-associated protein 31 (BAP31), Bcl-2-associated X protein (Bax), and Bcl-2 homologous antagonist killer (Bak), were assessed in vivo. CRT translocation was studied in ethanol-exposed p46ShcẟSH2-transfected hepatocytes by membrane biotinylation in conjunction with phosphorylated-eukaryotic initiation factor 2 alpha, BAP31, caspase 8, and Bax/Bak. The effects of idebenone, a novel Shc inhibitor, was studied in alcohol/pair-fed mice. RESULTS Shc was significantly induced in patients with AH (P < .01). Alanine aminotransferase, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratios, production of redox radicals, and lipid peroxidation improved (P < .05), and interleukin 1β, monocyte chemoattractant protein 1, and C-X-C chemokine ligand 10 were reduced in Shc knockdown and hepatocyte-specific Shc knockout mice. In vivo, Shc-dependent induction, and, in hepatocytes, a p46Shc-dependent increase in pre-apoptotic proteins Bax/Bak, caspase 8, BAP31 cleavage, and membrane translocation of CRT/endoplasmic reticulum-resident protein 57 were seen. Idebenone protected against alcohol-mediated liver injury. CONCLUSIONS Alcohol induces p46Shc-dependent activation of pre-apoptotic pathways and translocation of CRT to the membrane, where it acts as a damage-associated molecular pattern, instigating immunogenicity. Shc inhibition could be a novel treatment strategy in AH.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Joy X Jiang
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sarah R Fish
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Suvarthi Das
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Parul Gupta
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Lorand Vancza
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sutapa Sarkar
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dongning Chen
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Hyesuk Park
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dahn Clemens
- Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alexey Tomilov
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Gino Cortopassi
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California.
| |
Collapse
|
21
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near‐Infrared Afterglow Theranostic Prodrug with Self‐Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyuan Gao
- Nankai University College of Life Sciences CHINA
| | - Shaorui Jia
- Nankai University College of Life Sciences CHINA
| | - Hanlin Ou
- Nankai University College of Life Sciences CHINA
| | - Yuning Hong
- La Trobe University Department of Chemistry and Physics AUSTRALIA
| | - Ke Shan
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Xianglong Kong
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Zhiming Wang
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Guangxue Feng
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Dan Ding
- Nankai University College of Life Sciences 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
22
|
Koromilas AE. The integrated stress response in the induction of mutant KRAS lung carcinogenesis: Mechanistic insights and therapeutic implications. Bioessays 2022; 44:e2200026. [PMID: 35587163 DOI: 10.1002/bies.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
The integrated stress response (ISR) is a key determinant of tumorigenesis in response to oncogenic forms of stress like genotoxic, proteotoxic and metabolic stress. ISR relies on the phosphorylation of the translation initiation factor eIF2 to promote the translational and transcriptional reprogramming of gene expression in stressed cells. While ISR promotes tumor survival under stress, its hyperactivation above a level of tolerance can also cause tumor death. The tumorigenic function of ISR has been recently demonstrated for lung adenocarcinomas (LUAD) with KRAS mutations. ISR mediates the translational repression of the dual-specificity phosphatase DUSP6 to stimulate ERK activity and LUAD growth. The significance of this finding is highlighted by the strong anti-tumor responses of ISR inhibitors in pre-clinical LUAD models. Elucidation of the mechanisms of ISR action in LUAD progression via cell-autonomous and immune regulatory mechanisms will provide a better understanding of its tumorigenic role to fully exploit its therapeutic potential in the treatment of a deadly form of cancer.
Collapse
Affiliation(s)
- Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B, Davis-Jewish General Hospital, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Ruan H, Leibowitz BJ, Peng Y, Shen L, Chen L, Kuang C, Schoen RE, Lu X, Zhang L, Yu J. Targeting Myc-driven stress vulnerability in mutant KRAS colorectal cancer. MOLECULAR BIOMEDICINE 2022; 3:10. [PMID: 35307764 PMCID: PMC8934835 DOI: 10.1186/s43556-022-00070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mutant KRAS is a key driver in colorectal cancer (CRC) and promotes Myc translation and Myc-dependent stress adaptation and proliferation. Here, we report that the combination of two FDA-approved drugs Bortezomib and Everolimus (RAD001) (BR) is highly efficacious against mutant KRAS CRC cells. Mechanistically, the combination, not single agent, rapidly depletes Myc protein, not mRNA, and leads to GCN2- and p-eIF2α-dependent cell death through the activation of extrinsic and intrinsic apoptotic pathways. Cell death is selectively induced in mutant KRAS CRC cells with elevated basal Myc and p-eIF2α and is characterized by CHOP induction and transcriptional signatures in proteotoxicity, oxidative stress, metabolic inhibition, and immune activation. BR-induced p-GCN2/p-eIF2α elevation and cell death are strongly attenuated by MYC knockdown and enhanced by MYC overexpression. The BR combination is efficacious against mutant KRAS patient derived organoids (PDO) and xenografts (PDX) by inducing p-eIF2α/CHOP and cell death. Interestingly, an elevated four-gene (DDIT3, GADD45B, CRYBA4 and HSPA1L) stress signature is linked to shortened overall survival in CRC patients. These data support that Myc-dependent stress adaptation drives the progression of mutant KRAS CRC and serves as a therapeutic vulnerability, which can be targeted using dual translational inhibitors.
Collapse
Affiliation(s)
- Hang Ruan
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Brian J. Leibowitz
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Yingpeng Peng
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Lin Shen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 P.R. China
| | - Lujia Chen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Charlie Kuang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Robert E. Schoen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Epidemiology, University of Pittsburgh School of Public Health Pittsburgh, Pittsburgh, PA 15213 USA
| | - Xinghua Lu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Lin Zhang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jian Yu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
24
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We? Pharmaceutics 2021; 13:pharmaceutics13111788. [PMID: 34834202 PMCID: PMC8620627 DOI: 10.3390/pharmaceutics13111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Metal complexes based on transition metals have rich photochemical and photophysical properties that are derived from a variety of excited state electronic configurations triggered by visible and near-infrared light. These properties can be exploited to produce powerful energy and electron transfer processes that can lead to oxygen-(in)dependent photobiological activity. These principles are the basis of photodynamic therapy (PDT), which is a clinically approved treatment that offers a promising, effective, and noninvasive complementary treatment or even an alternative to treat several types of cancers. PDT is based on a reaction involving a photosensitizer (PS), light, and oxygen, which ultimately generates cytotoxic reactive oxygen species (ROS). However, skin photosensitivity, due to the accumulation of PSs in skin cells, has hampered, among other elements, its clinical development and application. Therefore, these is an increasing interest in the use of (metal-based) PSs that are more specific to tumor cells. This may increase efficacy and corollary decrease side-effects. To this end, metal-containing nanoparticles with photosensitizing properties have recently been developed. In addition, several studies have reported that the use of immunogenic/immunomodulatory metal-based nanoparticles increases the antitumor efficacy of immune-checkpoint inhibitor-based immunotherapy mediated by anti-PD-(L)1 or CTLA-4 antibodies. In this review, we discuss the main metal complexes used as PDT PSs. Lastly, we review the preclinical studies associated with metal-based PDT PSs and immunotherapies. This therapeutic association could stimulate PDT.
Collapse
|
26
|
Fletcher R, Tong J, Risnik D, Leibowitz BJ, Wang YJ, Concha-Benavente F, DeLiberty JM, Stolz DB, Pai RK, Ferris RL, Schoen RE, Yu J, Zhang L. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene 2021; 40:2035-2050. [PMID: 33603166 PMCID: PMC7981263 DOI: 10.1038/s41388-021-01687-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023]
Abstract
Use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with reduced risk of colorectal cancer (CRC). However, the mechanism by which NSAIDs suppress colorectal tumorigenesis remains unclear. We previously showed that NSAIDs selectively kill emerging tumor cells via death receptor (DR) signaling and a synthetic lethal interaction mediated by the proapoptotic Bcl-2 family protein BID. In this study, we found NSAIDs induce endoplasmic reticulum (ER) stress to activate DR signaling and BID in tumor suppression. Importantly, our results unveiled an ER stress- and BID-dependent immunogenic effect of NSAIDs, which may be critical for tumor suppression. NSAID treatment induced hallmarks of immunogenic cell death (ICD) in CRC cells and colonic epithelial cells upon loss of APC tumor suppressor, and elevated tumor-infiltrating lymphocytes (TILs) in the polyps of APCMin/+ mice. ER stress inhibition or BID deletion abrogated the antitumor and immunogenic effects of NSAIDs. Furthermore, increased ER stress and TILs were detected in human advanced adenomas from NSAID-treated patients. Together, our results suggest that NSAIDs induce ER stress- and BID-mediated ICD to restore immunosurveillance and suppress colorectal tumor formation.
Collapse
Affiliation(s)
- Rochelle Fletcher
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi-Jun Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fernando Concha-Benavente
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Otolaryngology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M DeLiberty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna B Stolz
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Reet K Pai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Otolaryngology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Medicine and Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Kim D, Lee S, Na K. Immune Stimulating Antibody-Photosensitizer Conjugates via Fc-Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for KRAS-Mutated Pancreatic Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006650. [PMID: 33590726 DOI: 10.1002/smll.202006650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Although cetuximab (CTX) is a chimeric epidermal growth factor receptor (EGFR) antibody, the antitumor efficacy of CTX has a negligible effect in patients with Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutated pancreatic adenocarcinoma. Given that all extant treatments are ineffective due to the undruggable characteristics of KRAS-mutated cancer, alternative strategies have been investigated. In this work, CTX-conjugated maleimide-polyethylene glycol-chlorin e6 (CMPC) is designed to strengthen its antitumor efficacy. With strong affinity for EGFR overexpressing Aspc-1 cells, CMPC with laser exerts the greatest cytotoxicity (90%) and induction of immunogenic cell death. Through a combination of fragment crystallizable region-mediated antigen uptake by CTX and danger-associated molecular patterns released by photodynamic therapy (PDT), phagocytosis and maturation of dendritic cells treated with CMPC plus laser show dramatic increases. In vivo biodistribution and antitumor effect also demonstrate that CMPC has significant tumor selectivity and tumor ablation efficacy upon laser irradiation. Furthermore, a large number of CD4+ , CD8+ T cells and mature DCs and natural killer cells are infiltrated in CMPC with laser-treated tumor tissues and tumor-draining lymph nodes, revealing both innate and adaptive cellular immune stimulation. This synergistic effect with CMPC and laser treatment provides an effective approach for pancreatic cancer immunotherapy attributed to both CTX and PDT.
Collapse
Affiliation(s)
- Dahye Kim
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| |
Collapse
|
28
|
The bovine dialysable leukocyte extract IMMUNEPOTENT CRP induces immunogenic cell death in breast cancer cells leading to long-term antitumour memory. Br J Cancer 2021; 124:1398-1410. [PMID: 33531687 PMCID: PMC8039030 DOI: 10.1038/s41416-020-01256-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cancer recurrence is a serious problem in breast cancer (BC) patients, and immunogenic cell death (ICD) has been proposed as a strategy to overcome this recurrence. IMMUNEPOTENT CRP (ICRP) acts as an immunomodulator and can be cytotoxic to cancer cells. Thus, we evaluated if ICRP induces ICD in BC cells. Methods Immunogenicity of ICRP-induced cell death was evaluated in vitro, analysing the principal biochemical characteristics of ICD in MCF-7, MDA-MB-231 and 4T1 cells. Ex vivo, we assessed the ability of killed cancer cells (KCC) obtained from ICRP-treated 4T1 cells (ICRP-KCC) to induce DC maturation, T-cell priming and T-cell-mediated cancer cytotoxicity. In vivo, we evaluated tumour establishment and antitumour immune memory after prophylactic ICRP-KCC vaccination in BALB/c mice. Results ICRP induced caspase-independent, ROS-dependent cell death, autophagosome formation, P-eIF2α, chaperone protein exposure, CD47 loss, ATP and HMBG1 release in BC cells. Additionally, ICRP-KCC promoted DC maturation, which triggered T-cell priming and cancer cytotoxicity. Prophylactic vaccination with ICRP-KCC prevented tumour establishment and induced long-term antitumour memory in BALB/c mice, involving DC maturation in lymph nodes, CD8+ T-cell augmentation in lymph nodes, peripheral blood and tumour site and ex vivo tumour-specific cytotoxicity by splenocytes. Conclusions ICRP induces ICD in BC cells, leading to long-term antitumour memory.
Collapse
|
29
|
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses 2021; 13:v13020200. [PMID: 33525628 PMCID: PMC7910986 DOI: 10.3390/v13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.
Collapse
|
30
|
Tian AL, Wu Q, Liu P, Zhao L, Martins I, Kepp O, Leduc M, Kroemer G. Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis 2021; 12:6. [PMID: 33414432 PMCID: PMC7790317 DOI: 10.1038/s41419-020-03324-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
The integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.
Collapse
Affiliation(s)
- Ai-Ling Tian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Qi Wu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
| | - Marion Leduc
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER‐Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non‐Small‐Cell Lung Cancer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
32
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER-Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non-Small-Cell Lung Cancer. Angew Chem Int Ed Engl 2021; 60:4657-4665. [PMID: 33217194 DOI: 10.1002/anie.202013987] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 01/01/2023]
Abstract
Immunogenic cell death (ICD) is a vital component of therapeutically induced anti-tumor immunity. An iridium(III) complex (Ir1), containing an N,N-bis(2-chloroethyl)-azane derivate, as an endoplasmic reticulum-localized ICD inducer for non-small cell lung cancer (NSCLC) is reported. The characteristic discharge of damage-associated molecular patterns (DAMPs), that is, cell surface exposure of calreticulin (CRT), extracellular exclusion of high mobility group box 1 (HMGB1), and ATP, were generated by Ir1 in A549 lung cancer cells, accompanied by an increase in endoplasmic reticulum stress and reactive oxygen species (ROS). The vaccination of immunocompetent mice with Ir1-treated dying cells elicited an antitumor CD8+ T cell response and Foxp3+ T cell depletion, which eventually resulted in long-acting anti-tumor immunity by the activation of ICD in lung cancer cells. Ir1 is the first Ir-based complex that is capable of developing an immunomodulatory response by immunogenic cell death.
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
33
|
Abstract
Mitotic catastrophe is a modality of cell death (or occasionally senescence) that occurs after cells enter, and fail to resolve, abnormal mitosis, for instance after DNA damage or perturbations of the cell cycle. Mitotic catastrophe can avoid the generation of neoplastic cells from premalignant precursors, yet may also occur in cancer cells as a result of radiotherapy or chemotherapy. Of note, vinca alkaloids and taxanes, which are both known for affecting the stability of microtubules, can trigger mitotic catastrophe. Such agents can also cause cancer cells to undergo immunogenic cell death (ICD), which allows therapeutic responses to last beyond treatment discontinuation due to the induction of an antitumor immune response. ICD is commonly characterized by the exposure of the endoplasmic reticulum protein calreticulin on the cell surface. Here we describe an immunofluorescence-based cytofluorometric technique to detect calreticulin exposure on tumor cells exposed to drugs that induce mitotic catastrophe.
Collapse
|
34
|
Wu Q, Tian AL, Durand S, Aprahamian F, Nirmalathasan N, Xie W, Liu P, Zhao L, Zhang S, Pan H, Carmona-Gutierrez D, Madeo F, Tu Y, Kepp O, Kroemer G. Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy. Cell Death Dis 2020; 11:1015. [PMID: 33243998 PMCID: PMC7690654 DOI: 10.1038/s41419-020-03226-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
A number of natural plant products have a long-standing history in both traditional and modern medical applications. Some secondary metabolites induce autophagy and mediate autophagy-dependent healthspan- and lifespan-extending effects in suitable mouse models. Here, we identified isobacachalcone (ISO) as a non-toxic inducer of autophagic flux that acts on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, ISO inhibits AKT as well as, downstream of AKT, the mechanistic target of rapamycin complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant failed to activate autophagy. ISO also stimulated the AKT-repressible activation of all three arms of the unfolded stress response (UPR), including the PERK-dependent phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 blunted the UPR, while knockout of PERK or replacement of eIF2α by a non-phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by ISO. This points to crosstalk between the UPR and autophagy. Of note, the administration of ISO to mice improved the efficacy of immunogenic anticancer chemotherapy. This effect relied on an improved T lymphocyte-dependent anticancer immune response and was lost upon constitutive AKT activation in, or deletion of the essential autophagy gene Atg5 from, the malignant cells. In conclusion, ISO is a bioavailable autophagy inducer that warrants further preclinical characterization.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Ai-Ling Tian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Wei Xie
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Shuai Zhang
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Wang Y, Xie W, Humeau J, Chen G, Liu P, Pol J, Zhang Z, Kepp O, Kroemer G. Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy. J Immunother Cancer 2020; 8:jitc-2019-000462. [PMID: 32221018 PMCID: PMC7206967 DOI: 10.1136/jitc-2019-000462] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) is a peculiar modality of cellular demise that elicits adaptive immune responses and triggers T cell-dependent immunity. METHODS Fluorescent biosensors were employed for an unbiased drug screen approach aiming at the identification of ICD enhancers. RESULTS Here, we discovered thiostrepton as an enhancer of ICD able to boost chemotherapy-induced ATP release, calreticulin exposure and high-mobility group box 1 exodus. Moreover, thiostrepton enhanced anticancer immune responses of oxaliplatin (OXA) in vivo in immunocompetent mice, yet failed to do so in immunodeficient animals. Consistently, thiostrepton combined with OXA altered the ratio of cytotoxic T lymphocytes to regulatory T cells, thus overcoming immunosuppression and reinstating anticancer immunosurveillance. CONCLUSION Altogether, these results indicate that thiostrepton can be advantageously combined with chemotherapy to enhance anticancer immunogenicity.
Collapse
Affiliation(s)
- Yan Wang
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xie
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Juliette Humeau
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Guo Chen
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- College of Life Sciences, Nankai University, Tianjin, China
| | - Peng Liu
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Pôle de Biologie, Paris, France, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Li Z, Deng J, Sun J, Ma Y. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front Immunol 2020; 11:595207. [PMID: 33240283 PMCID: PMC7680736 DOI: 10.3389/fimmu.2020.595207] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have ushered in a new era of cancer therapy; however, ICIs are only effective in selective patients. The efficacy of ICIs is closely related to the tumor microenvironment. Fever for a long time was thought to directly regulate the immune response, and artificial “fever” from hyperthermia modulates the tumor immune microenvironment by providing danger signals with heat shock proteins (HSPs) as well as subsequent activation of immune systems. Encouraging results have been achieved in preclinical studies focused on potential synergetic effects by combining hyperthermia with ICIs. In this review, we summarized a cluster of immune-related factors that not only make hyperthermia a treatment capable of defending against cancer but also make hyperthermia a reliable treatment that creates a type I-like tumor microenvironment (overexpression of PD-L1 and enrichment of tumor infiltrating lymphocytes) in complementary for the enhancement of the ICIs. Then we reviewed recent preclinical data of the combination regimens involving hyperthermia and ICIs that demonstrated the combined efficacy and illustrated possible approaches to further boost the effectiveness of this combination.
Collapse
Affiliation(s)
- Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jianhai Sun
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yanling Ma
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
37
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
38
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020; 59:19070-19078. [DOI: 10.1002/anie.202008604] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
39
|
Li Y, Zhang H, Li Q, Zou P, Huang X, Wu C, Tan L. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer. Cancer Lett 2020; 495:12-21. [PMID: 32941949 DOI: 10.1016/j.canlet.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/12/2023]
Abstract
Immunogenic cell death (ICD) improves the T cell response against different tumors, indicating that ICD can enhance the antitumor immunity elicited by the anti-checkpoint antibody anti-programmed death 1 (anti-PD-1). In the present study, we reported a synergistic and durable immune-mediated antitumor response elicited by the combined treatment of SR-4835, a CDK12/13 specific inhibitor, with PD-1 blockade in a syngeneic mouse model. The developed combination therapy elicited antitumor activity in immunocompetent mouse tumor models. Furthermore, the SR-4835-treated tumor cells exhibited characteristics of ICD, including the release of high mobility group box 1 (HMGB1) and ATP and calreticulin (CRT) translocation. This activity led to a significant T-cell-dependent tumor suppression. The enhanced dendritic cell (DC) and infiltration of T cells activation in the tumors treated with both SR-4835 and anti-PD-1 indicate that this combination treatment promotes an improved immune response. Therefore, the results of the present study demonstrate the potential of CDK12/13 inhibition combined with checkpoint inhibition in breast cancer treatment.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qin Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pingjin Zou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Tan
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
40
|
Martínez-Torres AC, Reyes-Ruiz A, Calvillo-Rodriguez KM, Alvarez-Valadez KM, Uscanga-Palomeque AC, Tamez-Guerra RS, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells. BMC Cancer 2020; 20:647. [PMID: 32660440 PMCID: PMC7359018 DOI: 10.1186/s12885-020-07124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells. Methods Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells. Results ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism. Conclusions ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs’ release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.
| | - Alejandra Reyes-Ruiz
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Kenny Misael Calvillo-Rodriguez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Karla Maria Alvarez-Valadez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Ashanti C Uscanga-Palomeque
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Reyes S Tamez-Guerra
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.,Longeveden, SA de CV, Monterrey, Mexico
| |
Collapse
|
41
|
Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12051314. [PMID: 32455811 PMCID: PMC7281008 DOI: 10.3390/cancers12051314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death in the world. Emerging evidence suggests that the clinical success of conventional chemotherapy does not merely rely on cell toxicity, but also results from the restoration of tumor immune surveillance. Anti-tumor immune response can be primed by immunogenic cell death (ICD), a form of apoptosis associated with endoplasmic reticulum stress (ERS) induction and the expression/release of specific damage-associated molecular patterns (DAMPs). Unfortunately, a limited number of ICD inducers have been identified so far. The anti-helmintic drug rafoxanide has recently showed anti-tumor activity in different cancer types, including CRC. As such latter effects relied on ERS activation, we here investigated whether rafoxanide could promote ICD of CRC cells. The potential of rafoxanide to induce ICD-related DAMPs in both human and mouse CRC cells was assessed by flow-cytometry, chemiluminescent assay and ELISA. In addition, the immunogenic potential of rafoxanide was assessed in vivo using a vaccination assay. Rafoxanide induced all the main DAMPs (ecto-calreticulin exposure, adenosine triphosphate (ATP)/high mobility group box 1 (HMGB1) release) required for ICD. We observed a marked increase of tumor-free survival among immunocompetent mice immunized with rafoxanide-treated dying tumor cells as compared with sham. Altogether, our data indicate rafoxanide as a bona fide ICD inducer.
Collapse
|
42
|
Ruan H, Leibowitz BJ, Zhang L, Yu J. Immunogenic cell death in colon cancer prevention and therapy. Mol Carcinog 2020; 59:783-793. [PMID: 32215970 DOI: 10.1002/mc.23183] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The colonic mucosa constitutes a critical barrier and a major site of immune regulation. The immune system plays important roles in cancer development and treatment, and immune activation caused by chronic infection or inflammation is well-known to increase cancer risk. During tumor development, neoplastic cells continuously interact with and shape the tumor microenvironment (TME), which becomes progressively immunosuppressive. The clinical success of immune checkpoint blockade therapies is limited to a small set of CRCs with high tumor mutational load and tumor-infiltrating T cells. Induction of immunogenic cell death (ICD), a type of cell death eliciting an immune response, can therefore help break the immunosuppressive TME, engage the innate components, and prime T cell-mediated adaptive immunity for long-term tumor control. In this review, we discuss the current understanding of ICD induced by antineoplastic agents, the influence of driver mutations, and recent developments to harness ICD in colon cancer. Mechanism-guided combinations of ICD-inducing agents with immunotherapy and actionable biomarkers will likely offer more tailored and durable benefits to patients with colon cancer.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Endoplasmic Reticulum Stress Signaling in Cancer Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:934-946. [PMID: 32112719 DOI: 10.1016/j.ajpath.2020.01.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
To survive, cancer cells must resist numerous internal and environmental insults associated with neoplasia that jeopardize proteostasis within the endoplasmic reticulum (ER). Solid and hematopoietic tumors often experience genomic instability, oncogene activation, increased protein secretion demands, and somatic mutations in proteins handled by the secretory pathway that impede their folding. Invasion or metastasis into foreign environments can expose tumor cells to hypoxia, oxidative stress, lack of growth signals, inadequate amino acid supplies, glucose deprivation, and lactic acidosis, all of which pose challenges for protein processing in the ER. Together, these conditions can promote the buildup of misfolded proteins in the ER to cause ER stress, which then activates the unfolded protein response (UPR). An intracellular signaling network largely initiated by three ER transmembrane proteins, the UPR constantly surveils protein folding conditions within the ER lumen and when necessary initiates counteractive measures to maintain ER homeostasis. Under mild or moderate levels of ER stress, the homeostatic UPR sets in motion transcriptional and translational changes that promote cell adaption and survival. However, if these processes are unsuccessful at resolving ER stress, a terminal UPR program dominates and actively signals cell suicide. This article summarizes the mounting evidence that cancer cells are predisposed to ER stress and vulnerable to targeted interventions against ongoing UPR signaling.
Collapse
|
44
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
45
|
Rébé C, Demontoux L, Pilot T, Ghiringhelli F. Platinum Derivatives Effects on Anticancer Immune Response. Biomolecules 2019; 10:E13. [PMID: 31861811 PMCID: PMC7022223 DOI: 10.3390/biom10010013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Along with surgery and radiotherapy, chemotherapeutic agents belong to the therapeutic arsenal in cancer treatment. In addition to their direct cytotoxic effects, these agents also impact the host immune system, which might enhance or counteract their antitumor activity. The platinum derivative compounds family, mainly composed of carboplatin, cisplatin and oxaliplatin, belongs to the chemotherapeutical arsenal used in numerous cancer types. Here, we will focus on the effects of these molecules on antitumor immune response. These compounds can induce or not immunogenic cell death (ICD), and some strategies have been found to induce or further enhance it. They also regulate immune cells' fate. Platinum derivatives can lead to their activation. Additionally, they can also dampen immune cells by selective killing or inhibiting their activity, particularly by modulating immune checkpoints' expression.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Lucie Demontoux
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Thomas Pilot
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| |
Collapse
|
46
|
Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied by Immunogenic Cell Death in Murine Models of Lymphoma and Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11122034. [PMID: 31861079 PMCID: PMC6966635 DOI: 10.3390/cancers11122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of caspase-3/7 was increased fourteen-fold as compared with four-fold in EL-4 cells. Moreover, while nsPEF treatments induced the release of the ICD hallmark HMGB1 in both cell lines, extracellular ATP was detected only in CT-26. Finally, in vaccination assays, CT-26 cells treated with nsPEF or doxorubicin equally impaired the growth of tumors at challenge sites eliciting a protective anticancer immune response in 78% and 80% of the animals, respectively. As compared to CT-26, both nsPEF- and mitoxantrone-treated EL-4 cells had a less pronounced effect and protected 50% and 20% of the animals, respectively. These results support our conclusion that nsPEF induce ER stress, accompanied by bona fide ICD.
Collapse
|
47
|
Shalapour S, Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity 2019; 51:15-26. [PMID: 31315033 DOI: 10.1016/j.immuni.2019.06.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
In many settings, tumor-associated inflammation, supported mainly by innate immune cells, contributes to tumor growth. Initial innate activation triggers secretion of inflammatory, regenerative, and anti-inflammatory cytokines, which in turn shape the adaptive immune response to the tumor. Here, we review the current understanding of the intricate dialog between cancer-associated inflammation and anti-tumor immunity. We discuss the changing nature of these interactions during tumor progression and the impact of the tissue environment on the anti-tumor immune response. In this context, we outline important gaps in current understanding by considering basic research and findings in the clinic. The future of cancer immunotherapy and its utility depend on improved understanding of these interactions and the ability to manipulate them in a predictable and beneficial manner.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Abstract
LC3-associated phagocytosis, a distinct form of autophagy, plays a key role in antigen presentation. Autophagy itself plays a central role in the regulation of cellular metabolism. Proteins that regulate autophagy include the AMPK which senses high levels of AMP, and mTOR, which integrates amino acid and fatty acid metabolism with autophagy. More recently, autophagy has been demonstrated to regulate tumor cell immunogenicity via the degradation of histone deacetylase proteins. Individual drugs and drug combinations that activate the ATM-AMPK pathway and inactivate mTOR, cause autophagosome formation. The maturation of autophagosomes into autolysosomes causes the autophagic degradation of histone deacetylase proteins who regulate the transcription of PD-L1, Class I MHCA, ODC and IDO1. Indeed, drug combinations that do not contain an HDAC inhibitor can nevertheless act as de facto HDAC inhibitors, via autophagic degradation of HDAC proteins. Such drug combinations simultaneously kill tumor cells via immunogenic autophagy and in parallel opsonize tumor cells to checkpoint inhibitor immunotherapies via reduced expression of PD-L1, ODC and IDO1, and increased expression of Class I MHCA.
Collapse
|
49
|
Demontoux L, Derangère V, Pilot T, Thinselin C, Chevriaux A, Chalmin F, Bouyer F, Ghiringhelli F, Rébé C. Hypotonic stress enhances colon cancer cell death induced by platinum derivatives and immunologically improves antitumor efficacy of intraperitoneal chemotherapy. Int J Cancer 2019; 145:3101-3111. [PMID: 31344262 DOI: 10.1002/ijc.32590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is a highly metastatic disease that could invade various distal organs and also the peritoneal cavity leading to peritoneal carcinomatosis. This is a terminal condition with poor prognosis and only palliative treatments such as cytoreductive surgery and intraperitoneal chemotherapy are proposed to some patients. However, clinicians use different parameters of treatments without any consensus. Here we decided to evaluate the effect of osmolarity in the efficacy of this procedure to kill colon cancer cells. We first show that a short exposure of platinum derivatives in hypotonic conditions is more efficient to decrease cell viability of human and murine colon cancer cells in vitro as compared to isotonic conditions. This is related to more important incorporation of platinum and the capacity of hypotonic stress to induce the copper transporter CTR1 oligomerization. Oxaliplatin in hypotonic conditions induces caspase-dependent cell death of colon cancer cells. Moreover, hypotonic conditions also modulate the capacity of oxaliplatin and cisplatin (but not carboplatin) to induce immunogenic cell death (ICD). In vivo, oxaliplatin in hypotonic conditions increases CD8+ T cell tumor infiltration and activation. Finally, in a murine peritoneal carcinomatosis model, oxaliplatin in hypotonic conditions is the only tested protocol which is able to slow down the appearance of tumor nodules and increase mice survival, while showing no effect in CD8+ T cells depleted mice or in immunodeficient mice. Altogether, our study provides new information both in vitro and in a preclinical model of peritoneal carcinomatosis, which highlights the importance of hypoosmolarity in intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Lucie Demontoux
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | - Valentin Derangère
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Thomas Pilot
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | | | - Angélique Chevriaux
- INSERM LNC-UMR1231, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Fanny Chalmin
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | | | - François Ghiringhelli
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Cédric Rébé
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
50
|
BET bromodomain inhibitor JQ1 promotes immunogenic cell death in tongue squamous cell carcinoma. Int Immunopharmacol 2019; 76:105921. [DOI: 10.1016/j.intimp.2019.105921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023]
|