1
|
Wang Q, Wang Y, Wu J, Xie X, Qin H, Huang C, Li Z, Ling Z, Li R. Association between BCL2 interacting protein 3 like (BNIP3L) genetic polymorphisms and the risk of multiple myeloma in China. Hematology 2024; 29:2367918. [PMID: 38934722 DOI: 10.1080/16078454.2024.2367918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The BCL2 interacting protein 3-like (BNIP3L) protein is involved in multiple myeloma (MM) development and progression. This study aims to explore the connection between BNIP3L single-nucleotide polymorphisms (SNPs) and MM. METHODS SNaPshot was used to examine six SNP loci of the BNIP3L gene in enrolled subjects. The relationship between these loci and MM susceptibility and prognosis was explored. Survival analysis was used to evaluate the impact of different factors on patient survival. RESULTS The rs2874670 AA genotype and A allele were associated with increased MM risk (P < 0.05). The CCACAC haplotype had a higher frequency in MM, while CCGCAC had a higher frequency in normal patients (all P < 0.05). Patients with R-ISS stage I and II had higher survival rates than those with stage III (P < 0.05). Patients, who received chemotherapy followed by autologous stem cell transplantation, had longer survival time than those who only received chemotherapy (P < 0.05). Low levels of LDH and β2-MG were associated with better survival rates (P < 0.05). Cox regression identified that LDH levels, β2-MG levels, and R-ISS staging were the risk factors for the death of MM. Mann-Whitney U test found a significant difference in survival time between MM patients with different BNIP3L rs2874670 genotypes after BD chemotherapy (P < 0.05). CONCLUSION To our knowledge, this is the first study to find that BNIP3L rs2874670 could increase MM susceptibility in China. Different BNIP3L rs2874670 genotypes may affect the prognosis of MM patients receiving BD chemotherapy.
Collapse
Affiliation(s)
- Qicai Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yu Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jing Wu
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xing Xie
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hongping Qin
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chunni Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhongqing Li
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhian Ling
- Department of Orthopedics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ruolin Li
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
2
|
Chen C, Xiang A, Lin X, Guo J, Liu J, Hu S, Rui T, Ye Q. Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer. Cell Death Discov 2024; 10:457. [PMID: 39472438 PMCID: PMC11522701 DOI: 10.1038/s41420-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Mitophagy, a form of selective autophagy that removes damaged or dysfunctional mitochondria, plays a crucial role in maintaining mitochondrial and cellular homeostasis. Recent findings suggest that defective mitophagy is closely associated with various diseases, including breast cancer. Moreover, a better understanding of the multifaceted roles of mitophagy in breast cancer progression is crucial for the treatment of this disease. Here, we will summarize the molecular mechanisms of mitophagy process. In addition, we highlight the expression patterns and roles of mitophagy-related signaling molecules in breast cancer progression and the potential implications of mitophagy for the development of breast cancer, aiming to provide better therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
3
|
Feng N, Zhang R, Wen X, Wang W, Zhang N, Zheng J, Zhang L, Liu N. RABIF promotes hepatocellular carcinoma progression through regulation of mitophagy and glycolysis. Commun Biol 2024; 7:1333. [PMID: 39414994 PMCID: PMC11484875 DOI: 10.1038/s42003-024-07028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known. Here, we demonstrate an upregulation of RABIF in patients with HCC, correlating with a poor prognosis. RABIF inhibition results in decreased HCC cell growth both in vitro and in vivo. Our study reveals that depleting RABIF attenuates the STOML2-PARL-PGAM5 axis-mediated mitophagy. Consequently, this reduction in mitophagy results in diminished mitochondrial reactive oxygen species (mitoROS) production, thereby alleviating the HIF1α-mediated downregulation of glycolytic genes HK1, HKDC1, and LDHB. Additionally, we illustrate that RABIF regulates glucose uptake by controlling RAB10 expression. Importantly, the knockout of RABIF or blockade of mitophagy sensitizes HCC cells to sorafenib. This study uncovers a previously unrecognized role of RABIF crucial for HCC growth and identifies it as a potential therapeutic target.
Collapse
Affiliation(s)
- Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nie Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pathology and Laboratory of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Sun X, Ye G, Li J, Yuan L, Bai G, Xu YJ, Zhang J. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 2024; 43:3215-3226. [PMID: 39285229 DOI: 10.1038/s41388-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Cancer cells preferentially utilize glycolysis for energy production, and GAPDH is a critical enzyme in glycolysis. Parkin is a tumor suppressor and a key protein involved in mitophagy regulation. However, the tumor suppression mechanism of Parkin has still not been elucidated. In this study, we identified mitochondrial GAPDH as a new substrate of the E3 ubiquitin ligase Parkin, which mediated GAPDH ubiquitination in human cervical cancer. The translocation of GAPDH into mitochondria was driven by the PINK1 kinase, and either PINK1 or GAPDH mutation prevented the accumulation of GAPDH in mitochondria. Parkin caused the ubiquitination of GAPDH at multiple sites (K186, K215, and K219) located within the enzyme-catalyzed binding domain of the GAPDH protein. GAPDH ubiquitination was required for mitophagy, and stimulation of mitophagy suppressed cervical cancer cell growth, indicating that mitophagy serves as a type of cell death. Mechanistically, PHB2 served as a key mediator in GAPDH ubiquitination-induced mitophagy through stabilizing PINK1 protein and GAPDH mutation resulted in the reduced distribution of PHB2 in mitophagic vacuole. In addition, ubiquitination of GAPDH decreased its phosphorylation level and enzyme activity and inhibited the glycolytic pathway in cervical cancer cells. The results of in vivo experiments also showed that the GAPDH mutation increased glycolysis in cervical cancer cells and accelerated tumorigenesis. Thus, we concluded that Parkin may exert its anticancer function by ubiquitinating GAPDH in mitochondria. Taken together, our study further clarified the molecular mechanism of tumor suppression by Parkin through the regulation of energy metabolism, which provides an experimental basis for the development of new drugs for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Clinical Laboratory, Yuhuan People's Hospital, Taizhou, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gongxun Bai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
5
|
Wu Y, Wu S, Chen Z, Yang E, Yu H, Zhang G, Lian X, Xu J. Machine learning and single-cell analysis identify the mitophagy-associated gene TOMM22 as a potential diagnostic biomarker for intervertebral disc degeneration. Heliyon 2024; 10:e37378. [PMID: 39296040 PMCID: PMC11407931 DOI: 10.1016/j.heliyon.2024.e37378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated. Methods The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR. Results This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples. Conclusions Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Haiyue Yu
- Bengbu Medical University, Anhui, 233030, PR China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - XiaoFeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - JianGuang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| |
Collapse
|
6
|
Wei X, Xiong X, Wang P, Zhang S, Peng D. SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer. Mol Med 2024; 30:147. [PMID: 39266959 PMCID: PMC11391609 DOI: 10.1186/s10020-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.
Collapse
Affiliation(s)
- Xuehua Wei
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 336000, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, 518000, China
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Ren S, Pan R, Wang Z. Multi-omics and Single Cell Sequencing Analyses Reveal Associations of Mitophagy-Related Genes Predicting Clinical Prognosis and Immune Infiltration Characteristics in Osteosarcoma. Mol Biotechnol 2024:10.1007/s12033-024-01280-w. [PMID: 39264525 DOI: 10.1007/s12033-024-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Despite recent advances in clinical treatments, identifying high-risk osteosarcoma (OS) patients remains an unresolved clinical challenge. Mitophagy, a specialized form of cellular autophagy, selectively reduces the number of mitochondria or repairs their abnormal functions in response to external stress, thereby ensuring mitochondrial quality and maintaining mitochondrial function. Mitophagy plays a crucial role in cancer development, including processes such as mitochondrial repair, homeostasis maintenance, and tumor metabolism. However, its impact on OS has not yet been reported. In this study, we collected 58 mitophagy-related genes (MPRGs) from the TARGET and GEO databases and bioinformatically screened for those associated with OS prognosis. By LASSO-multivariable Cox regression algorithm, we subsequently developed a novel scoring system, the MPRG score, and validated its significance in predicting OS prognosis. Immune landscape analysis showed patients in the low MPRG group had a higher immune infiltration level than those in the high MPRG group. Drug sensitivity differences highlighted the potential need for alternative therapeutic strategies based on MPRG scoring system. The distribution characteristics of the MPRG signature in different cell subtypes of OS were explored by single-cell sequencing analyses. In vitro experiments further confirmed the abnormal expression of screened targets in OS. Our findings highlight the role of mitophagy in OS and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shengquan Ren
- Department of Hand and Foot Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Rongfang Pan
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhengdan Wang
- Department of Hand and Foot Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
8
|
Sun J, Ding J, Yue H, Xu B, Sodhi A, Xue K, Ren H, Qian J. Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming. Autophagy 2024:1-19. [PMID: 39265983 DOI: 10.1080/15548627.2024.2395142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024] Open
Abstract
Uveal melanoma (UM) is an aggressive intraocular malignancy derived from melanocytes in the uvea tract of the eye. Up to 50% of patients with UM develop distant metastases which is usually fatal within one year; preventing metastases is therefore essential. Metabolic reprogramming plays a critical role in UM progression and metastasis. However, the metabolic phenotype of UM cells in the hypoxic tumor is not well understood. Here, we report that hypoxia-induced BNIP3 reprograms tumor cell metabolism, promoting their survival and metastasis. In response to hypoxia, BNIP3-mediated mitophagy alleviates mitochondrial dysfunction and enhances mitochondrial oxidative phosphorylation (OXPHOS) while simultaneously reducing mitochondrial reactive oxygen species (mtROS) production. This, in turn, impairs HIF1A/HIF-1α protein stability and inhibits glycolysis. Inhibition of mitophagy significantly suppresses BNIP3-induced UM progression and metastasis in vitro and in vivo. Collectively, these observations demonstrate a novel mechanism whereby BNIP3 promotes UM metabolic reprogramming and malignant progression by mediating hypoxia-induced mitophagy and suggest that BNIP3 could be an important therapeutic target to prevent metastasis in patients with UM.Abbreviations: AOD: average optical density; BNIP3: BCL2/adenovirus E1B interacting protein 3; CQ: chloroquine; CoCl2: cobalt chloride; GEPIA: Gene Expression Profiling Interactive Analysis; HIF1A: hypoxia inducible factor 1, alpha subunit; IHC: immunohistochemistry; mtROS: mitochondrial reactive oxygen species; NAC: N-acetylcysteine; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; ROS: reactive oxygen species; TCGA: The Cancer Genome Atlas; UM: uveal melanoma.
Collapse
Affiliation(s)
- Jie Sun
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jie Ding
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Han Yue
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Binbin Xu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kang Xue
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hui Ren
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiang Qian
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
9
|
Wu B, Qi B, Duan L, Chen J. Lidamycin induces mitophagy in pancreatic cancer cells by regulating the expression of Mfn2. Sci Rep 2024; 14:20713. [PMID: 39237684 PMCID: PMC11377765 DOI: 10.1038/s41598-024-71377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Lidamycin (LDM) has been confirmed to have a strong anti-pancreatic cancer effect and can affect the mitochondrial function of pancreatic cancer cells. Mitofusin-2 (Mfn2) is located in the outer membrane of mitochondria, and Mfn2 is currently believed to play a role in cancer inhibition in pancreatic cancer. In order to explore whether the anti-pancreatic cancer effect of LDM is related to Mfn2-mediated mitophagy, Bioinformatics and in vitro cell experiments are used for experimental research. The experimental results demonstrated that Mfn2 is correlated with mitochondrial autophagy in pancreatic cancer. Lidamycin can increase the expression of Mfn2 in pancreatic cancer and affect the process of EMT, affect the level of reactive oxygen species and mitochondrial membrane potential, and increase the expression of mitochondrial autophagy marker proteins BNIP3L and Beclin1. These results demonstrate that Mfn2 affects mitophagy in pancreatic cancer cells by regulating the expression of Mfn2.
Collapse
Affiliation(s)
- Boya Wu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Bing Qi
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei, China
| | - Liumeng Duan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei, China.
| |
Collapse
|
10
|
Xi X, Chen S, Zhao X, Zhou Z, Zhu S, Ren X, Wang X, Wu J, Mu S, Li X, Shan E, Cui Y. TUBB4A Inhibits Glioma Development by Regulating ROS-PINK1/Parkin-Mitophagy Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04459-z. [PMID: 39230869 DOI: 10.1007/s12035-024-04459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Glioma is a refractory malignant tumor with a powerful capacity for invasiveness and a poor prognosis. This study aims to investigate the role and mechanism of tubulin beta class IVA (TUBB4A) in glioma progression. The differential expression of TUBB4A in humans was obtained from databases and analyzed. Glioma cells U251-MG and U87-MG were intervened by pcDNA3.1(+) and TUBB4A overexpression plasmid. MTT, CCK8, LDH, wound healing, transwell, and western blotting were used to explore whether TUBB4A participates in the development of glioma. Reactive oxygen species (ROS) were detected by the DCFH-DA probe. Mitochondrial membrane potential (MMP) was examined by JC-1. It was found that TUBB4A expression level correlated with tumor grade, IDH1 status, 1p/19q status, and poor survival in glioma patients. In addition, TUBB4A overexpression inhibited the proliferation, migration, and invasion of U251-MG and U87-MG, while increasing the degree of apoptosis. Notably, TUBB4A overexpression promotes ROS generation and MMP depolarization, and induces mitophagy through the PINK1/Parkin pathway. Interestingly, mitochondria-targeted ROS scavenger reversed the effect of TUBB4A overexpression on PINK1/Parkin expression and mitophagy, whereas mitophagy inhibitor did not affect ROS production. And the effect of TUBB4A overexpression on mitophagy and glioma progression was consistent with that of PINK1/Parkin agonist. In conclusion, TUBB4A is a molecular marker for predicting the prognosis of glioma patients and an effective target for inhibiting glioma progression by regulating ROS-PINK1/Parkin-mitophagy pathway.
Collapse
Affiliation(s)
- Xueru Xi
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Suqin Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zimu Zhou
- The Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shanjie Zhu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xurui Ren
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaomei Wang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shuai Mu
- Department of Oncology, Senior Department of Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Enfang Shan
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Yan Cui
- School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Li Y, Xiao P, Sun Y, Li Y, Zhao H, Sun J, Wang X, Han X, Jin N, Li X, Bao Y. Deapioplatycodin D promotes cell senescence induced by P21 through the mediation of incomplete mitophagy via BNIP3L. Biomed Pharmacother 2024; 178:117215. [PMID: 39084076 DOI: 10.1016/j.biopha.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Deapioplatycodin D (DPD) is a triterpenoid saponin extracted from the root of Platycodon grandiflorum, which is a common source of medicine and food. Platycodon grandiflorum saponins have anti-inflammatory, antioxidative, antitumor, and immunity-promoting effects. However, the effect of DPD on hepatocellular carcinoma (HCC) cells has not been reported. The purpose of this study was to explore the cytotoxic effects and molecular mechanisms of DPD on HCC cells. Our study revealed that DPD significantly inhibits the proliferation of HCC, as demonstrated by the CCK-8 assay, and then we analyzed the inhibitory effects and pathways of DPD on HCC cells by Western blot and immunofluorescence assay, and found that DPD could increase the changes of autophagy-related protein levels, but had no significant effect on the expression of apoptosis-related proteins, and induced cell senescence. Then, transcriptomics analysis revealed that differential genes were significantly enriched in cell senescence and autophagy pathways and significant expression of mitochondrial autophagy-related gene BNIP3L and senescence-related gene P21. Subsequently, autophagy and cell senescence were analyzed using gene silencing, and it was found that DPD caused mitochondrial damage and promoted reactive oxygen species production, leading to the inhibition of autophagic fluxes and mitophagy via BNIP3L, and that DPD also mediated cell senescence via P21. Here, we found that autophagy promoted cell senescence, resulting in the inhibition of HCC cell proliferation. Similar results were obtained in the tumor-bearing model in vivo. In conclusion, DPD induces incomplete mitophagy and cell senescence in HCC cells, thereby inhibiting HCC cell proliferation. DPD is a potential new strategy for treating HCC.
Collapse
Affiliation(s)
- Yiquan Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, PR China.
| | - Yu Sun
- Department of Neurology, Jilin Central Hospital, Jilin 132000, PR China
| | - Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Haifeng Zhao
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Jialing Sun
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Xiaohong Han
- Jilin Institute for Drug Control, Changchun 130000, PR China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
12
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Zdanowicz A, Grosicka-Maciąg E. The Interplay between Autophagy and Mitochondria in Cancer. Int J Mol Sci 2024; 25:9143. [PMID: 39273093 PMCID: PMC11395105 DOI: 10.3390/ijms25179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Besides producing cellular energy, mitochondria are crucial in controlling oxidative stress and modulating cellular metabolism, particularly under stressful conditions. A key aspect of this regulatory role involves the recycling process of autophagy, which helps to sustain energy homeostasis. Autophagy, a lysosome-dependent degradation pathway, plays a fundamental role in maintaining cellular homeostasis by degrading damaged organelles and misfolded proteins. In the context of tumor formation, autophagy significantly influences cancer metabolism and chemotherapy resistance, contributing to both tumor suppression and surveillance. This review focuses on the relationship between mitochondria and autophagy, specifically in the context of cancer progression. Investigating the interaction between autophagy and mitochondria reveals new possibilities for cancer treatments and may result in the development of more effective therapies targeting mitochondria, which could have significant implications for cancer treatment. Additionally, this review highlights the increasing understanding of autophagy's role in tumor development, with a focus on modulating mitochondrial function and autophagy in both pre-clinical and clinical cancer research. It also explores the potential for developing more-targeted and personalized therapies by investigating autophagy-related biomarkers.
Collapse
Affiliation(s)
- Aleksandra Zdanowicz
- Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81 Str., 02-091 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland
| |
Collapse
|
14
|
Sun R, Li Y, Feng Y, Shao X, Li R, Li H, Sun S, Wang J. PFN1 Knockdown Aggravates Mitophagy to Retard Lung Adenocarcinoma Initiation and M2 Macrophage Polarization. Mol Biotechnol 2024:10.1007/s12033-024-01228-0. [PMID: 39120820 DOI: 10.1007/s12033-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAM) are considered as crucial influencing factors of lung adenocarcinoma (LUAD) carcinogenesis and metastasis. Profilin 1 (PFN1) has been proposed as a potent driver of migration and drug resistance in LUAD. The focus of this work was to figure out the functional mechanism of PFN1 in macrophage polarization in LUAD. PFN1 expression and its significance in patients' survival were detected by ENCORI and Kaplan-Meier Plotter. RT-qPCR and western blotting examined PFN1 expression in LUAD cells. CCK-8 assay and colony formation assay detected cell proliferation. Flow cytometry detected cell apoptosis. Relevant assay kit tested caspase3 concentration. Western blotting analyzed the expression of proliferation- and apoptosis-related proteins. RT-qPCR and immunofluorescence staining measured M1 and M2 macrophages markers. Mitophagy was assessed by MitoTracker Red staining, immunofluorescence staining, and western blotting. PFN1 expression was increased in LUAD tissues and cells and correlated with the poor survival rate of LUAD patients. Deficiency of PFN1 hindered the proliferation, whereas facilitated the apoptosis of LUAD cells. Additionally, PFN1 interference impaired M2 macrophage polarization. Moreover, PFN1 knockdown exacerbated the mitophagy in LUAD cells and mitophagy inhibitor mitochondrial division inhibitor 1 (Mdivi-1) notably reversed the effects of PFN1 down-regulation on the proliferation, apoptosis as well as macrophage polarization in LUAD cells. To sum up, activation of mitophagy initiated by PFN1 depletion might obstruct the occurrence and M2 macrophage polarization in LUAD.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| | - Yang Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Yu Feng
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Xiaoyan Shao
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Rantian Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Hao Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Sanyuan Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Jiangbo Wang
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| |
Collapse
|
15
|
Cui X, Zhou Z, Tu H, Wu J, Zhou J, Yi Q, Liu O, Dai X. Mitophagy in fibrotic diseases: molecular mechanisms and therapeutic applications. Front Physiol 2024; 15:1430230. [PMID: 39183973 PMCID: PMC11341310 DOI: 10.3389/fphys.2024.1430230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Mitophagy is a highly precise process of selective autophagy, primarily aimed at eliminating excess or damaged mitochondria to maintain the stability of both mitochondrial and cellular homeostasis. In recent years, with in-depth research into the association between mitophagy and fibrotic diseases, it has been discovered that this process may interact with crucial cellular biological processes such as oxidative stress, inflammatory responses, cellular dynamics regulation, and energy metabolism, thereby influencing the occurrence and progression of fibrotic diseases. Consequently, modulating mitophagy holds promise as a therapeutic approach for fibrosis. Currently, various methods have been identified to regulate mitophagy to prevent fibrosis, categorized into three types: natural drug therapy, biological therapy, and physical therapy. This review comprehensively summarizes the current understanding of the mechanisms of mitophagy, delves into its biological roles in fibrotic diseases, and introduces mitophagy modulators effective in fibrosis, aiming to provide new targets and theoretical basis for the investigation of fibrosis-related mechanisms and disease prevention.
Collapse
Affiliation(s)
- Xinyan Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Zekun Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
17
|
Raza S. Autophagy and metabolic aging: Current understanding and future applications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119753. [PMID: 38763302 DOI: 10.1016/j.bbamcr.2024.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
"Metabolic aging" refers to the gradual decline in cellular metabolic function across various tissues due to defective hormonal signaling, impaired nutrient sensing, mitochondrial dysfunction, replicative stress, and cellular senescence. While this process usually corresponds with chronological aging, the recent increase in metabolic diseases and cancers occurring at younger ages in humans suggests the premature onset of cellular fatigue and metabolic aging. Autophagy, a cellular housekeeping process facilitated by lysosomes, plays a crucial role in maintaining tissue rejuvenation and health. However, various environmental toxins, hormones, lifestyle changes, and nutrient imbalances can disrupt autophagy in humans. In this review, we explore the connection between autophagy and cellular metabolism, its regulation by extrinsic factors and its modulation to prevent the early onset of metabolic aging.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
18
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Dong Y, Zhang X. Targeting cellular mitophagy as a strategy for human cancers. Front Cell Dev Biol 2024; 12:1431968. [PMID: 39035027 PMCID: PMC11257920 DOI: 10.3389/fcell.2024.1431968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Mitophagy is the cellular process to selectively eliminate dysfunctional mitochondria, governing the number and quality of mitochondria. Dysregulation of mitophagy may lead to the accumulation of damaged mitochondria, which plays an important role in the initiation and development of tumors. Mitophagy includes ubiquitin-dependent pathways mediated by PINK1/Parkin and non-ubiquitin dependent pathways mediated by mitochondrial autophagic receptors including NIX, BNIP3, and FUNDC1. Cellular mitophagy widely participates in multiple cellular process including metabolic reprogramming, anti-tumor immunity, ferroptosis, as well as the interaction between tumor cells and tumor-microenvironment. And cellular mitophagy also regulates tumor proliferation and metastasis, stemness, chemoresistance, resistance to targeted therapy and radiotherapy. In this review, we summarized the underlying molecular mechanisms of mitophagy and discussed the complex role of mitophagy in diverse contexts of tumors, indicating it as a promising target in the mitophagy-related anti-tumor therapy.
Collapse
Affiliation(s)
- Yuming Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Xue Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Behera BP, Mishra SR, Mahapatra KK, Patil S, Efferth T, Bhutia SK. SIRT1-activating butein inhibits arecoline-induced mitochondrial dysfunction through PGC1α and MTP18 in oral cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155511. [PMID: 38723523 DOI: 10.1016/j.phymed.2024.155511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Mitochondrial dysfunction associated with mitochondrial DNA mutations, enzyme defects, generation of ROS, and altered oxidative homeostasis is known to induce oral carcinogenesis during exposure to arecoline. Butein, a natural small molecule from Butea monosperma, possesses anti-inflammatory, anti-diabetic, and anti-cancer effects. However, the role of butein in the mitochondrial quality control mechanism has not been illuminated clearly. PURPOSE This study aimed to explore the role of butein in preserving mitochondrial quality control during arecoline-induced mitochondrial dysfunction in oral cancer to curtail the early onset of carcinogenesis. METHODS Cell viability was evaluated by MTT assay. The relative protein expressions were determined by western blotting. Immunofluorescence and confocal imaging were used to analyze the relative fluorescence and co-localization of proteins. Respective siRNAs were used to examine the knockdown-based studies. RESULTS Butein, in the presence of arecoline, significantly caused a decrease in mitochondrial hyperpolarization and ROS levels in oral cancer cells. Mechanistically, we found an increase in COXIV, TOM20, and PGC1α expression during butein treatment, and inhibition of PGC1α blunted mitochondrial biogenesis and decreased the mitochondrial pool. Moreover, the fission protein MTP18, and its molecular partners DRP1 and MFF were dose-dependently increased during butein treatment to maintain mitochondria mass. In addition, we also found increased expression of various mitophagy proteins, including PINK1, Parkin, and LC3 during butein treatment, suggesting the clearance of damaged mitochondria to maintain a healthy mitochondrial pool. Interestingly, butein increased the activity of SIRT1 to enhance the functional mitochondrial pool, and inhibition of SIRT1 found to reduce the mitochondrial levels, as evident from the decrease in the expression of PGC1α and MTP18 in oral cancer cells. CONCLUSION Our study proved that SIRT1 maintains a functional mitochondrial pool through PGC1α and MTP18 for biogenesis and fission of mitochondria during arecoline exposure and could decrease the risk of mitochondria dysfunctionality associated with the onset of oral carcinogenesis.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India; Current affiliation: Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University, Bhubaneswar, 752054, Odisha, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, 84095, UT, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India.
| |
Collapse
|
21
|
Zhang Y, Yan H, Wei Y, Wei X. Decoding mitochondria's role in immunity and cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189107. [PMID: 38734035 DOI: 10.1016/j.bbcan.2024.189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Hong Yan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
22
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
23
|
Waqar MA, Zaman M, Khan R, Shafeeq Ur Rahman M, Majeed I. Navigating the tumor microenvironment: mesenchymal stem cell-mediated delivery of anticancer agents. J Drug Target 2024; 32:624-634. [PMID: 38652480 DOI: 10.1080/1061186x.2024.2347356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells. MSCs are mostly involved in regeneration of tissue, they have also been shown to preferentially migrate to location of several types of tumour in-vivo. Usage of MSCs ought to improve both effectiveness and safety of anti-cancer drugs by enhancing delivery efficiency of anti-cancer therapies to tumour site. Numerous researches has demonstrated that various drugs, when delivered via mesenchymal stem cell mediated delivery can elicit anti-tumour effect of cells in cancers of breast cells and thyroid cells. MSCs have minimal immunogenicity because to lack of co-stimulatory molecule expression, which means there is no requirement for immunosuppression after allogenic transplantation. This current review elaborates recent advancements of mesenchyma stem cell mediated drug delivery of anti-cancer agents along with its mechanism and previously reported studies of drugs manufactured via this drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | | | - Imtiaz Majeed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Yu S, Cao Z, Cai F, Yao Y, Chang X, Wang X, Zhuang H, Hua ZC. ADT-OH exhibits anti-metastatic activity on triple-negative breast cancer by combinatorial targeting of autophagy and mitochondrial fission. Cell Death Dis 2024; 15:463. [PMID: 38942765 PMCID: PMC11213877 DOI: 10.1038/s41419-024-06829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
High basal autophagy and enhanced mitochondrial fission in triple-negative breast cancer (TNBC) cells support cell migration and promote plasticity of cancer cell metabolism. Here, we suggest a novel combination therapy approach for the treatment of TNBC that targets Drp1-mediated mitochondrial fission and autophagy pathways. Hydrogen sulfide (H2S) mediates a myriad of biological processes, including autophagy and mitochondrial function. In this study, we demonstrated that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most widely utilized sustained-release H2S donors, effectively suppresses metastasis of TNBC cells in the absence of proliferation inhibition in vitro and in vivo. ADT-OH treatment ameliorated autophagy flux by suppressing autophagosome formation and induced mitochondrial elongation through decreasing expression of dynamin-related protein 1 (Drp1) and increasing expression of mitochondrial fusion protein (Mfn2). At the same time, ADT-OH downregulated mitophagy flux and inhibited mitochondrial function, eventually leading to the inhibition of migration and invasion in TNBC cells. In vivo, intraperitoneal administration of ADT-OH revealed a potent anti-metastatic activity in three different animal models, the MDA-MB-231 orthotopic xenograft model, the 4T1-Luci orthotopic model and the 4T1-Luci tail vein metastasis model. However, ADT-OH has an extremely low water solubility, which is a significant barrier to its effectiveness. Thus, we demonstrated that the solubility of ADT-OH in water can be improved significantly by absorption with hydroxypropyl-β-cyclodextrin (CD). Remarkably, the obtained CD-ADT-OH demonstrated superior anti-cancer effect to ADT-OH in vivo. Altogether, this study describes a novel regulator of mammalian mitochondrial fission and autophagy, with potential utility as an experimental therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P. R. China.
| |
Collapse
|
25
|
Wu Z, Zhang J, Jia Z, Yang Z, Liu S, Wang H, Zhao C, Zhao J, Tang Q, Xiong Y, Yang Y, Zhang Y, Zhou Z, Yue J, Xiao F, Sun Q, Gong A, Yao W, Li H, Song X, Ye Y, Zhu Y, Dong P, Ma F, Wu X, Gong W. TRIM21-mediated ubiquitylation of TAT suppresses liver metastasis in gallbladder cancer. Cancer Lett 2024; 592:216923. [PMID: 38697462 DOI: 10.1016/j.canlet.2024.216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyao Jia
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Huakai Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Qiuyi Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yichen Xiong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yue Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhe Zhou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xiao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Albie Gong
- Biochemistry, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Wenyan Yao
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Gao DL, Lin MR, Ge N, Guo JT, Yang F, Sun SY. From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders. World J Gastroenterol 2024; 30:2934-2946. [PMID: 38946875 PMCID: PMC11212700 DOI: 10.3748/wjg.v30.i23.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
In this editorial, we comment on an article titled “Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases”, which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that “autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells”. With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.
Collapse
Affiliation(s)
- Duo-Lun Gao
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Meng-Ran Lin
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Nan Ge
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Fan Yang
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
27
|
Zou X, Wen S, Xu L, Gao L, Wang X, Hu X, Han J, Han S. Signal-sustained imaging of mitophagy with an Enzyme-Activatable Metabolic Lipid-Labeling Probe. Autophagy 2024. [PMID: 38873937 DOI: 10.1080/15548627.2024.2367192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Imaging of mitophagy is of significance as aberrant mitophagy is engaged in multiple diseases. Mitophagy has been imaged with synthetic or biotic pH sensors by reporting pH acidification en route delivery into lysosomes. To circumvent uncertainty of acidity-dependent signals, we herein report an enzyme-activatable probe covalently attached on mitochondrial inner membrane (ECAM) for signal-persist mitophagy imaging. ECAM is operated via ΔΨm-driven accumulation of Mito-proGreen in mitochondria and covalent linking of the trapped probe with azidophospholipids metabolically incorporated into the mitochondrial inner membrane. Upon mitophagy, ECAM is delivered into lysosomes and hydrolyzed by LNPEP/leucyl aminopeptidase, yielding turn-on green fluorescence that is immune to lysosomal acidity changes and stably retained in fixed cells. With ECAM, phorbol-12-myristate-13-acetate (PMA) was identified as a highly potent inducer of mitophagy. Overcoming signal susceptibility of pH probes and liability of ΔΨm probes to dissipation from stressed mitochondria, ECAM offers an attractive tool to study mitophagy and mitophagy-inducing therapeutic agents.
Collapse
Affiliation(s)
- Xiaoxue Zou
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Shixiong Wen
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lichun Xu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lei Gao
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xunxiang Wang
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao Hu
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shoufa Han
- The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Academician Workstation of Immune Cell Signal Transduction, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Li Y, He P, Chen Y, Hu J, Deng B, Liu C, Yu B, Dong W. Microbial metabolite sodium butyrate enhances the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating PINK1/Parkin signaling and intestinal flora. Sci Rep 2024; 14:13063. [PMID: 38844824 PMCID: PMC11156851 DOI: 10.1038/s41598-024-63993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
29
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2024:10.1007/s11010-024-05042-9. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
30
|
Wu Z, Yu J, Han T, Tu Y, Su F, Li S, Huang Y. System analysis based on Anoikis-related genes identifies MAPK1 as a novel therapy target for osteosarcoma with neoadjuvant chemotherapy. BMC Musculoskelet Disord 2024; 25:437. [PMID: 38835052 PMCID: PMC11149263 DOI: 10.1186/s12891-024-07547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone malignant tumor in children, and its prognosis is often poor. Anoikis is a unique mode of cell death.However, the effects of Anoikis in OS remain unexplored. METHOD Differential analysis of Anoikis-related genes was performed based on the metastatic and non-metastatic groups. Then LASSO logistic regression and SVM-RFE algorithms were applied to screen out the characteristic genes. Later, Univariate and multivariate Cox regression was conducted to identify prognostic genes and further develop the Anoikis-based risk score. In addition, correlation analysis was performed to analyze the relationship between tumor microenvironment, drug sensitivity, and prognostic models. RESULTS We established novel Anoikis-related subgroups and developed a prognostic model based on three Anoikis-related genes (MAPK1, MYC, and EDIL3). The survival and ROC analysis results showed that the prognostic model was reliable. Besides, the results of single-cell sequencing analysis suggested that the three prognostic genes were closely related to immune cell infiltration. Subsequently, aberrant expression of two prognostic genes was identified in osteosarcoma cells. Nilotinib can promote the apoptosis of osteosarcoma cells and down-regulate the expression of MAPK1. CONCLUSIONS We developed a novel Anoikis-related risk score model, which can assist clinicians in evaluating the prognosis of osteosarcoma patients in clinical practice. Analysis of the tumor immune microenvironment and chemotherapeutic drug sensitivity can provide necessary insights into subsequent mechanisms. MAPK1 may be a valuable therapeutic target for neoadjuvant chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Jiapei Yu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Tao Han
- Department of Orthopedics, the Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Yiting Tu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Fang Su
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shi Li
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, 325027, Zhejiang Province, China.
| | - Yixing Huang
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
31
|
Praharaj PP, Patra S, Singh A, Panigrahi DP, Lee HY, Kabir MF, Hossain MK, Patra SK, Patro BS, Patil S, Klionsky DJ, Chae HJ, Bhutia SK. CLU (clusterin) and PPARGC1A/PGC1α coordinately control mitophagy and mitochondrial biogenesis for oral cancer cell survival. Autophagy 2024; 20:1359-1382. [PMID: 38447939 PMCID: PMC11210931 DOI: 10.1080/15548627.2024.2309904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024] Open
Abstract
Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P. Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Hwa Y. Lee
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Mohammad F. Kabir
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Muhammad K. Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Samir K. Patra
- Laboratory of epigenetics, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Birija S. Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Han J. Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
32
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
33
|
Ji M, Sun L, Zhang M, Liu Y, Zhang Z, Wang P. RN0D, a galactoglucan from Panax notoginseng flower induces cancer cell death via PINK1/Parkin mitophagy. Carbohydr Polym 2024; 332:121889. [PMID: 38431406 DOI: 10.1016/j.carbpol.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of β-1,4-galactan and β-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.
Collapse
Affiliation(s)
- Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
34
|
Zhang H, Wang H, Hu Y, Gao Y, Chen J, Meng Y, Qiu Y, Hu R, Liao P, Li M, He Y, Liang Z, Xie X, Li Y. Targeting PARP14 with lomitapide suppresses drug resistance through the activation of DRP1-induced mitophagy in multiple myeloma. Cancer Lett 2024; 588:216802. [PMID: 38467180 DOI: 10.1016/j.canlet.2024.216802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yabo Meng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
35
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
36
|
Zhu WD, Rao J, Zhang LH, Xue KM, Li L, Li JJ, Chen QZ, Fu R. OMA1 competitively binds to HSPA9 to promote mitophagy and activate the cGAS-STING pathway to mediate GBM immune escape. J Immunother Cancer 2024; 12:e008718. [PMID: 38604814 PMCID: PMC11015223 DOI: 10.1136/jitc-2023-008718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Immunotherapy with checkpoint inhibitors, especially those targeting programmed death receptor 1 (PD-1)/PD-1 ligand (PD-L1), is increasingly recognized as a highly promising therapeutic modality for malignancies. Nevertheless, the efficiency of immune checkpoint blockade therapy in treating glioblastoma (GBM) is constrained. Hence, it is imperative to expand our comprehension of the molecular mechanisms behind GBM immune escape (IE). METHODS Protein chip analysis was performed to screen aberrantly expressed OMA1 protein in PD-1 inhibitor sensitive or resistant GBM. Herein, public databases and bioinformatics analysis were employed to investigate the OMA1 and PD-L1 relation. Then, this predicted relation was verified in primary GBM cell lines through distinct experimental methods. To investigate the molecular mechanism behind OMA1 in immunosuppression, a series of experimental methods were employed, including Western blotting, co-immunoprecipitation (Co-IP), mass spectrometry (MS), immunofluorescence, immunohistochemistry, and qRT-PCR. RESULTS Our findings revealed that OMA1 competitively binds to HSPA9 to induce mitophagy and mediates the IE of GBM. Data from TCGA indicated a significant correlation between OMA1 and immunosuppression. OMA1 promoted PD-L1 levels in primary cells from patients with GBM. Next, the results of Co-IP and MS conducted on GBM primary cells revealed that OMA1 interacts with HSPA9 and induces mitophagy. OMA1 promoted not only cGAS-STING activity by increasing mitochondrial DNA release but also PD-L1 transcription by activating cGAS-STING. Eventually, OMA1 has been found to induce immune evasion in GBM through its regulation of PD-1 binding and PD-L1 mediated T cell cytotoxicity. CONCLUSIONS The OMA1/HSPA9/cGAS/PD-L1 axis is elucidated in our study as a newly identified immune therapeutic target in GBM.
Collapse
Affiliation(s)
- Wen de Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Hua Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ka Ming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Jun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zhi Chen
- Department of Breast and Thyroid Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Yang Y, Chen W, Lin Z, Wu Y, Li Y, Xia X. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther 2024; 24:144. [PMID: 38575939 PMCID: PMC10993618 DOI: 10.1186/s12906-024-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.
Collapse
Affiliation(s)
- Yingying Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenya Chen
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhenmei Lin
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuqing Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xing Xia
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
38
|
Liu Y, Li G, Ning J, Zhao Y. Unveiling the experimental proof of the anticancer potential of ginsenoside Rg3 (Review). Oncol Lett 2024; 27:182. [PMID: 38476209 PMCID: PMC10928969 DOI: 10.3892/ol.2024.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Ginsenoside Rg3 (GS-Rg3), a sterol molecule isolated from ginseng, has demonstrated various immunological properties, including inhibition of cancer cell proliferation and metastasis, reversal of drug resistance and enhancement of chemotherapy sensitivity. The recent surge in attention towards GS-Rg3 can be attributed to its potential as an antitumor angiogenesis agent and as a therapeutic candidate for immunotherapy. The development of GS-Rg3 as an agent for these purposes has accelerated research on its mechanisms of action. The present review summarizes recent studies investigating the antitumor activity of GS-Rg3 and its underlying mechanisms, as well as providing essential information for future studies on GS-Rg3.
Collapse
Affiliation(s)
- Yongmin Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Guanchu Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jinyue Ning
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
39
|
Ying L, Kong L, Qiu X, Cheng A, Wang Q, Xiu L, Shi J, Tao Y, Chai Z. A novel mitochondria-related core gene signature to predict the prognosis and evaluate tumour microenvironment in CESC single-cell validation. J Cell Mol Med 2024; 28:e18265. [PMID: 38534098 DOI: 10.1111/jcmm.18265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria and their related genes (MTRGs) are pivotal in the tumour microenvironment (TME) of cervical cancer, influencing prognosis and treatment response. This study developed a prognostic model using MTRGs to predict overall survival (OS) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), aiming for personalized therapy. Analysing 14 MTRGs like ISCU and NDUFA11 through techniques such as univariate Cox regression, we found that a low mitochondrial (MT) score is associated with better survival, while a high MT score predicts poorer outcomes. The TME score, particularly influenced by CD8 T cells, also correlates with prognosis, with a high score indicating favourable outcomes. The interplay between MT and TME subtypes revealed that the best prognosis is seen in patients with a low MT and high TME score. Our findings highlight the role of MTRGs as potential biomarkers and therapeutic targets in cervical cancer, offering a novel approach to improving patient outcomes through a more nuanced understanding of mitochondrial function and immune interactions within the TME. This model presents a promising avenue for enhancing the precision of prognostic assessments in CESC.
Collapse
Affiliation(s)
- Lingxiao Ying
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Lin Kong
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Xiaoxiao Qiu
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Aihua Cheng
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Qijun Wang
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Limeng Xiu
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Jinmei Shi
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Yanfei Tao
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| | - Zhihong Chai
- Department of Gynecology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, China
| |
Collapse
|
40
|
Luan Y, Zhang H, Liu Y, Xue J, Wang K, Ma B, Ma K, Lu H, Chen X, Liu Y, Zhang Z. UTX inhibition suppresses proliferation and promotes apoptosis in patient-derived glioblastoma stem cells by modulating periostin expression. J Cell Physiol 2024; 239:e31178. [PMID: 38214211 DOI: 10.1002/jcp.31178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| |
Collapse
|
41
|
Chen T, Wang Y, Chen X, Zheng W, Guo W, Liang Q, Wang J, Chen Z, Zhou Y, Xiao L. The MQRG score: a novel prognostic tool for adrenocortical carcinoma patients based on mitochondrial quality. Front Endocrinol (Lausanne) 2024; 15:1222281. [PMID: 38505747 PMCID: PMC10948487 DOI: 10.3389/fendo.2024.1222281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Objectives Adrenal tumors are common, but adrenocortical carcinomas (ACCs) are a rare and challenging form of cancer to diagnose and manage.This study aimed to explore the critical role of mitochondrial quality in maintaining cellular function and the implications of the abnormal expression of mitochondrial metabolism-related proteins observed in ACC patients. We focused on identifying the connection between mitochondrial quality and the development of ACC at molecular and genomic levels. Methods We compared mitochondrial quality-related genes (MQRGs) across ACC subtypes using overall survival (OS) and disease-free survival (DFS) as evaluation indicators. Furthermore, a novel MQRG score was developed to predict clinical prognosis and guide immunotherapy responses accurately. Results The majority of MQRGs were upregulated in the ACC samples, correlating to poor prognosis. The MQRG score was confirmed as an independent prognostic factor for ACC, with the high-risk MQRG score group showing a significantly shorter overall survival period. Conclusions Multilayer alterations in MQRGs are associated with patient prognosis and immune cell infiltration characteristics. This comprehensive analysis of MQRGs can contribute to a deeper understanding of potential differences in ACC patients' tumor microenvironment. This can influence clinical decision-making and advanced prognosis prediction, thereby offering new insights into personalized treatments in ACC.
Collapse
Affiliation(s)
- Tao Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Yifan Wang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xue Chen
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wenbin Zheng
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Weiquan Guo
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qi Liang
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhongbiao Chen
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yiwen Zhou
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lijia Xiao
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Sun L, Li Y, Zhao R, Fan Q, Liu F, Zhu Y, Han J, Liu Y, Jin N, Li X, Li Y. Platycodin D2 enhances P21/CyclinA2-mediated senescence of HCC cells by regulating NIX-induced mitophagy. Cancer Cell Int 2024; 24:79. [PMID: 38374035 PMCID: PMC10875888 DOI: 10.1186/s12935-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cells usually show strong resistance to chemotherapy, which not only reduces the efficacy of chemotherapy but also increases the side effects. Regulation of autophagy plays an important role in tumor treatment. Cell senescence is also an important anti-cancer mechanism, which has become an important target for tumor treatment. Therefore, it is of great clinical significance to find anti-HCC drugs that act through this new mechanism. Platycodin D2 (PD2) is a new saponin compound extracted from the traditional Chinese medicine Platycodon grandiflorum. PURPOSE Our study aimed to explore the effects of PD2 on HCC and identify the underlying mechanisms. METHODS First, the CCK8 assay was used to detect the inhibitory effect of PD2 on HCC cells. Then, different pathways of programmed cell death and cell cycle regulators were measured. In addition, we assessed the effects of PD2 on the autophagy and senescence of HCC cells by flow cytometry, immunofluorescence staining, and Western blotting. Finally, we studied the in vivo effect of PD2 on HCC cells by using a mouse tumor-bearing model. RESULTS Studies have shown that PD2 has a good anti-tumor effect, but the specific molecular mechanism has not been clarified. In this study, we found that PD2 has no obvious toxic effect on normal hepatocytes, but it can significantly inhibit the proliferation of HCC cells, induce mitochondrial dysfunction, enhance autophagy and cell senescence, upregulate NIX and P21, and downregulate CyclinA2. Gene silencing and overexpression indicated that PD2 induced mitophagy in HCC cells through NIX, thereby activating the P21/CyclinA2 pathway and promoting cell senescence. CONCLUSIONS These results indicate that PD2 induces HCC cell death through autophagy and aging. Our findings provide a new strategy for treating HCC.
Collapse
Affiliation(s)
- Lili Sun
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, 130000, People's Republic of China
| | - Yaru Li
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Renshuang Zhao
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Qinlei Fan
- Chinese Center for Animal Hygiene and Epidemiology, Qingdao, 266032, People's Republic of China
| | - Fei Liu
- Chinese Center for Animal Hygiene and Epidemiology, Qingdao, 266032, People's Republic of China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China
| | - Yunyun Liu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
| | - Yiquan Li
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China.
| |
Collapse
|
43
|
Wang B, Wei Y, Han T, Ji P, Miao H, Wu X, Qian J, Shao P. LncRNA LBX2-AS1 promotes proliferation and migratory capacity of clear cell renal cell carcinoma through mitophagy. Eur J Med Res 2024; 29:103. [PMID: 38326905 PMCID: PMC10848470 DOI: 10.1186/s40001-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been extensively investigated in the field of cancer, among which, lncRNA ladybird homeobox 2-antisense RNA 1 (LBX2-AS1) has been demonstrated to exert carcinogenic effects on a variety of malignancies. However, the biological functions of LBX2-AS1 in clear cell renal cell carcinoma (ccRCC) have not been explicitly elucidated. METHODS Arraystar lncRNA chip and qRT-PCR verify the expression of LncRNA LBX2-AS1 in ccRCC. CCK-8 assay and cell cloning assay were used to assess the proliferative capacity of ccRCC cells. Migration abilities were quantified by scratch assay and transwell assay. Potential molecular signaling pathways were determined by high-throughput whole transcriptomics analysis. WB analysis was performed to validate the relationship between LBX2-AS1 and key molecules of mitophagy pathway. The effect of LBX2-AS1 on mitophagy was observed by laser confocal microscopy. Rescue experiments further validated the role of downstream gene FOXO3A in the LBX2-AS1 signaling pathway. Finally, the authentic effect of LBX2-AS1 was verified in vivo. RESULTS LncRNA LBX2-AS1 was over expressed in ccRCC tissues and could enhance the proliferation and migration of ccRCC cells. Autophagic pathway was identified as a possible mechanism involved in the oncogenic effect of LBX2-AS1. Mitophagy levels were observed in LBX2-AS1 low-expressing cells through laser confocal microscopy. Knockdown of LBX2-AS1 significantly elevated mitophagy levels as observed using laser confocal microscopy and led to FOXOA3 decreasing in and BNIP3L and LC3 enrichment. Meanwhile, LBX2-AS1 knocking down dampened the proliferation of ccRCC cells in vivo.
Collapse
Affiliation(s)
- Bao Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuang Wei
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Han
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Ji
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haoqi Miao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangzheng Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Qian
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Pengfei Shao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
Wang C, Zhuo JJ, Li WQ, Zhou ML, Cheng KJ. Role of autophagy and mitophagy of group 2 innate lymphoid cells in allergic and local allergic rhinitis. World Allergy Organ J 2024; 17:100852. [PMID: 38298830 PMCID: PMC10827603 DOI: 10.1016/j.waojou.2023.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
Background Roles of ILC2s in allergic rhinitis (AR) and local allergic rhinitis (LAR) are unclear. In this study, we are determined to find the levels of autophagy and mitophagy of ILC2s in allergic nasal inflammation. Methods ELISA was used to detect type 2 inflammatory cytokines. Hematoxylin and eosin (H&E) staining were used to compare the eosinophil (EOS) infiltration of nasal tissue specimens. Flow cytometry was used to detect the levels of ILC2s and Th2 cells. Immunohistochemistry (IHC) and Western blot (WB) were used to detect the levels of Beclin1, LC3, p62, PINK1, Parkin, FUNDC1, and BNIP3 in nasal mucosa. The levels of autophagy related proteins and mitophagy related proteins of the ILC2s were detected by WB. The number of autophagosomes of ILC2s was observed by transmission electron microscopy. The co-localization levels of GFP-LC3 and Mito tracker in ILC2s were observed by confocal microscopy using immunofluorescence. Results We found that the level of type 2 inflammation in AR and LAR mice was significantly increased. The levels of autophagy and mitophagy of AR and LAR mice in nasal mucosa and ILC2s were both increased. Conclusions ILC2s may be associated with the occurrence and development of nasal allergic inflammation. The abnormal increase of autophagy and mitophagy levels in the nose may be associated with the incidence of AR and LAR. Abnormal autophagy and mitophagy levels of ILC2s cells may be one of the causes of allergic nasal inflammation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Jing Zhuo
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Qian Li
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min-Li Zhou
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke-Jia Cheng
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Sun Y, Chen Y, Liu Z, Wang J, Bai J, Du R, Long M, Shang Z. Mitophagy-Mediated Tumor Dormancy Protects Cancer Cells from Chemotherapy. Biomedicines 2024; 12:305. [PMID: 38397907 PMCID: PMC10886527 DOI: 10.3390/biomedicines12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Despite obvious tumor shrinkage, relapse after chemotherapy remains a main cause of cancer-related mortality, indicating that a subpopulation of cancer cells acquires chemoresistance and lingers after treatment. However, the mechanism involved in the emergence of chemoresistant cells remains largely unknown. Here, we demonstrate that the degradation of mitochondria via autophagy leads to a dormant state in a subpopulation of cancer cells and confers on them resistance to lethal cisplatin (DDP) exposure. The surviving DDP-resistant cells (hereafter, DRCs) have a lower metabolic rate but a stronger potential malignant potential. In the absence of DDP, these DRCs exhibit an ever-increasing self-renewal ability and heightened tumorigenicity. The combination of chloroquine and DDP exerts potent tumor-suppressive effects. In summary, our findings illuminate the mechanism between mitophagy and tumor dormancy and prove that targeting mitophagy might be a promising approach for overcoming chemoresistance in head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Mingshu Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
46
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Zheng Z, Zhao X, Yuan B, Jiang S, Yan R, Dong X, Yao Q, Liang H. Soy isoflavones induces mitophagy to inhibit the progression of osteosarcoma by blocking the AKT/mTOR signaling pathway. Mol Med 2024; 30:5. [PMID: 38191316 PMCID: PMC10775635 DOI: 10.1186/s10020-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Soy isoflavones (SI) is a natural bioactive substance exhibiting beneficial effects on human health. This study aims to elucidate the therapeutic potential of SI in the treatment of osteosarcoma (OS) and to investigate the underlying mechanisms, particularly focusing on mitophagy. METHODS The effects of SI on the proliferation, apoptosis, migration, and invasion of U2OS cells were analyzed. Mitophagy was assessed through multiple parameters: mitochondrial autophagosomes, mitochondrial membrane potential, autophagy-related proteins, reactive oxygen species (ROS), and oxygen consumption rate (OCR). Protein levels related to apoptosis, autophagy, and the AKT/mTOR pathway were analyzed using western blot. The therapeutic efficacy of SI was further identified using a mouse tumor xenograft model. Cell apoptosis and proliferation in tumor xenografts were detected by TUNEL staining and immunohistochemistry (IHC), respectively. RESULTS SI dose-dependently suppressed the viability, colony formation, migration, and invasion of U2OS cells, and enhanced the apoptosis. SI also dose-dependently induced mitophagy in OS cells, evidenced by an increase in autophagosomes and ROS levels, a decrease in mitochondrial membrane potential and OCR, and concomitant changes in autophagy-related proteins. Mdivi-1, an inhibitor of mitophagy, reversed the anti-tumor effects of SI on U2OS cells. In addition, SI blocked the AKT/mTOR pathway in U2OS cells. SC-79, an AKT agonist, reversed the effect of SI on inducing mitophagy. Moreover, SI also promoted cell apoptosis and mitophagy in tumor xenografts in vivo. CONCLUSIONS SI induces mitophagy in OS cells by blocking the AKT/mTOR pathway, contributing to the inhibition of OS.
Collapse
Affiliation(s)
- Ziang Zheng
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Xinghan Zhao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Bo Yuan
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Shan Jiang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Rushan Yan
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China.
| |
Collapse
|
48
|
Wang Y, Harada‐Shoji N, Kitamura N, Yamazaki Y, Ebata A, Amari M, Watanabe M, Miyashita M, Tada H, Abe T, Suzuki T, Gonda K, Ishida T. Mitochondrial dynamics as a novel treatment strategy for triple-negative breast cancer. Cancer Med 2024; 13:e6987. [PMID: 38334464 PMCID: PMC10854452 DOI: 10.1002/cam4.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.
Collapse
Affiliation(s)
- Yuechen Wang
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narumi Harada‐Shoji
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yuto Yamazaki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masakazu Amari
- Department of Breast SurgeryTohoku Kosai HospitalSendaiJapan
| | - Mika Watanabe
- Department of PathologyTohoku Kosai HospitalSendaiJapan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Medical ScienceTohoku University Graduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversitySendaiJapan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
49
|
Wen L, Shao M, Li Y, Zhang Y, Peng C, Yu H, Zhang K. Unveiling the hypoxia-induced mitophagy process through two-channel real-time imaging of NTR and viscosity under the same excitation. Talanta 2024; 266:125028. [PMID: 37549565 DOI: 10.1016/j.talanta.2023.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Mitophagy is an essential physiological process that eliminates damaged mitochondria via lysosomes. It is reported that hypoxia, inflammatory stimuli or other stress conditions could lead to mitochondrial damage and mitochondrial dysfunction, which induces the process of mitophagy. Herein, we report a novel fluorescent probe PC-NTR for imaging hypoxia-induced mitophagy by monitoring the change of nitroreductase and viscosity simultaneously. To our delight, PC-NTR could respond simultaneously to nitroreductase and viscosity at different fluorescence channels with no mutual interference under the same excitation wavelength. The fluorescence emission around 535 nm was enhanced dramatically after addition of nitroreductase while the fluorescence emission around 635 nm heightened as the viscosity increased. The probe would be able to selectively targeting of mitochondria in cells because of the positively charged pyridine salt structure of PC-NTR. The probe was successfully applied to assess the different levels of hypoxia and real-time imaging of mitochondrial autophagy in live cells. More importantly, using dual channel imaging, PC-NTR could be used to distinguish cancer cells from normal cells and was successfully applied to imaging experiments in HeLa-derived tumor-bearing nude mice. Therefore, PC-NTR would be an important molecular tool for hypoxia imaging and detecting solid tumors in vivo.
Collapse
Affiliation(s)
- Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mengqi Shao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Yanjun Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huan Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
50
|
Kong F, Zhang L, Zhao X, Zhao L, Wang P, Zhang R, Tian H, Ma S. Resveratrol augments paclitaxel sensitivity by modulating miR-671-5p/STOML2/PINK1/Parkin-mediated autophagy signaling in A549 cell. J Biochem Mol Toxicol 2024; 38:e23557. [PMID: 37840424 DOI: 10.1002/jbt.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/03/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Paclitaxel (PTX) resistance has become a notable clinical concern of Non-small cell lung cancer (NSCLC). Our study aim is to investigate the effects of Resveratrol (RES) on NSCLC cells that have developed resistance to PTX. The NSCLC cell line A549 was employed in this investigation to establish a PTX-resistant NSCLC cell line, denoted as A549/PTX, and established tumor transplantaton model. The presence of miR-671-5p, Stomatin-like protein 2 (STOML2), and mitophagy biomarkers was evaluated using quantitative teal-time PCR (qRT-PCR) and western blot, The assessment of cell proliferation and apoptosis was conducted through the utilisation of colony formation and flow cytometry assays. The investigation of mitochondrial autolysosomes was conducted using transmission electron microscopy (TEM). Our results showed that the application of RES therapy resulted in a substantial improvement in the sansitivity of A549/PTX cells. RES exhibited an augmentation of apoptosis and a suppression of mitophagy in A549/PTX cells. RES induced an upregulation in the expression of miR-671-5p. This, in turn, leaded to the inhibition of STOML2, a protein that directly interacts with PINK1. In summary, our research indicates that RES improved the susceptibility of A549/PTX cells to PTX through miR-671-5p-mediated STOML2 inhibition.
Collapse
Affiliation(s)
- Fanhua Kong
- Department of Thoracic Surgery, Liao Cheng People's Hospital, Liaocheng, People's Republic of China
- Department of Thoracic Surgery, Qi Lu Hospital Affiliated to Shandong University, Jinan, People's Republic of China
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, People's Republic of China
| | - Lianfu Zhang
- Department of Thoracic Surgery, Fei Cheng Hospital Affiliated to Shandong First Medical University, Taian, People's Republic of China
| | - Xudong Zhao
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, People's Republic of China
| | - Lili Zhao
- Department of Presonnel Section, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People's Republic of China
| | - Peng Wang
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, People's Republic of China
| | - Runqi Zhang
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, People's Republic of China
| | - Hui Tian
- Department of Thoracic Surgery, Qi Lu Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Shengjun Ma
- Department of Cardiac Surgery, Liao Cheng People's Hospital, Liaocheng, People's Republic of China
| |
Collapse
|