1
|
Aguiar Santiago JA, Marrero Miragaya MA, Figueroa Oliva DA, Aguilar Juanes A, Idavoy Corona A, Martínez Fernández S, Morán Bertot I, Rodríguez Hernández M, Canales López E, Hernández Esteves I, Silva Girado JA, Estrada Vázquez RC, Gell Cuesta O, Mendoza-Marí Y, Valdés Prado I, Rodríguez Ibarra C, Palenzuela Gardon DO, Pentón Arias E, Guillén Nieto G, Aguilar Rubido JC. Preparing for the Next Pandemic: Increased Expression of Interferon-Stimulated Genes After Local Administration of Nasalferon or HeberNasvac. DNA Cell Biol 2024; 43:95-102. [PMID: 38118108 DOI: 10.1089/dna.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
HeberNasvac, a therapeutic vaccine for chronic hepatitis B, is able to safely stimulate multiple Toll-like receptors, increasing antigen presentation in vitro and in a phase II clinical trial (Profira) in elderly volunteers who were household contacts of respiratory infection patients. Thus, a new indication as a postexposure prophylaxis or early therapy for respiratory infections has been proposed. In this study, we evaluated the expression of several interferon-stimulated genes (ISGs) after mucosal administration of HeberNasvac and compared this effect with the nasal delivery of interferon alpha 2b (Nasalferon). Molecular studies of blood samples of 50 subjects from the Profira clinical trial who were locally treated with HeberNasvac or Nasalferon and concurrent untreated individuals were compared based on their relative mRNA expression of OAS1, ISG15, ISG20, STAT1, STAT3, and DRB1-HLA II genes. In most cases, the gene expression induced by HeberNasvac was similar in profile and intensity to the expression induced by Nasalferon and significantly superior to that observed in untreated controls. The immune stimulatory effect of HeberNasvac on ISGs paved the way for its future use as an innate immunity stimulator in elderly persons and immunocompromised subjects or as part of Mambisa, a nasal vaccine to prevent severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivis Morán Bertot
- Plant Molecular Biology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Eduardo Canales López
- Plant Genomic Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - José Angel Silva Girado
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Omar Gell Cuesta
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yssel Mendoza-Marí
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Iris Valdés Prado
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | | | - Eduardo Pentón Arias
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo Guillén Nieto
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | |
Collapse
|
2
|
Kang D, Zhang G, Zhang Z, Tian Z, Gao S, Liu G, Guan G, Luo J, Yin H, Du J. Interferon-stimulated gene 15 facilitates BTV replication through interacting with the NS1 protein. Front Microbiol 2023; 14:1212242. [PMID: 37637123 PMCID: PMC10450949 DOI: 10.3389/fmicb.2023.1212242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Bluetongue virus (BTV) infection effectively activates the innate immune response, followed by the expression of interferon (IFN) and multiple interferon-stimulated genes (ISGs). ISG15 is one of the most induced ISGs, and often plays a role in inhibiting virus replication. This study aims to explore the role and specific mechanisms of ovine ISG15 (oISG15) in BTV infection. We found that the transcription level of oISG15 was upregulated in a time-dependent and BTV multiplicity of infection-dependent manner. The overexpression of exogenous oISG15 enhances BTV replication, whereas the knockdown of endogenous oISG15 inhibits BTV replication. The viral protein in wild-type oISG15-overexpressed cells and ISGylation defective oISG15-overexpressed cells have no significant differences, which indicated that oISG15 promoted BTV replication in an ISGylation-independent manner. A co-immunoprecipitation assay showed that four viral BTV proteins-VP3, VP4, VP5, and NS1-interacted with oISG15. We also found that the VP4 and NS1 proteins associated with ubiquitin via co-immunoprecipitation, and that oISG15 overexpression improved the stability of both proteins. Further results showed that the degradation of NS1 was involved in lysine 63-linked polyubiquitin. This suggested that oISG15 may interfere with NS1 degradation via the autophagy pathway. This study provides new insights on the interaction between BTV and ISG15, and enriches our understanding of the regulation and biological function of ISG15 with virus replication.
Collapse
Affiliation(s)
- Di Kang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guorui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhonghui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
4
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
5
|
Transcriptomic Analysis of Fish Hosts Responses to Nervous Necrosis Virus. Pathogens 2022; 11:pathogens11020201. [PMID: 35215144 PMCID: PMC8875540 DOI: 10.3390/pathogens11020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Nervous necrosis virus (NNV) has been responsible for mass mortalities in the aquaculture industry worldwide, with great economic and environmental impact. The present review aims to summarize the current knowledge of gene expression responses to nervous necrosis virus infection in different fish species based on transcriptomic analysis data. Four electronic databases, including PubMed, Web of Science, and SCOPUS were searched, and more than 500 publications on the subject were identified. Following the application of the appropriate testing, a total of 24 articles proved eligible for this review. NNV infection of different host species, in different developmental stages and tissues, presented in the eligible publications, are described in detail, revealing and highlighting genes and pathways that are most affected by the viral infection. Those transcriptome studies of NNV infected fish are oriented in elucidating the roles of genes/biomarkers for functions of special interest, depending on each study’s specific emphasis. This review presents a first attempt to provide an overview of universal host reaction mechanisms to viral infections, which will provide us with new perspectives to overcome NNV infection to build healthier and sustainable aquaculture systems.
Collapse
|
6
|
Bandyopadhyay S, Douglass J, Kapell S, Khan N, Feitosa-Suntheimer F, Klein JA, Temple J, Brown-Culbertson J, Tavares AH, Saeed M, Lau NC. DNA templates with blocked long 3' end single-stranded overhangs (BL3SSO) promote bona fide Cas9-stimulated homology-directed repair of long transgenes into endogenous gene loci. G3-GENES GENOMES GENETICS 2021; 11:6275753. [PMID: 33989385 PMCID: PMC8496256 DOI: 10.1093/g3journal/jkab169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing blocked long 3' single-stranded overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated genes (ISGs) loci, Viperin/RSAD2, and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.
Collapse
Affiliation(s)
- Saptaparni Bandyopadhyay
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph Douglass
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | | | - Jenny A Klein
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jasmine Temple
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Jayce Brown-Culbertson
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alexander H Tavares
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA.,Genome Science Institute, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
7
|
Song YQ, Wu C, Wu KJ, Han QB, Miao XM, Ma DL, Leung CH. Ubiquitination Regulators Discovered by Virtual Screening for the Treatment of Cancer. Front Cell Dev Biol 2021; 9:665646. [PMID: 34055799 PMCID: PMC8149734 DOI: 10.3389/fcell.2021.665646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
The ubiquitin-proteasome system oversees cellular protein degradation in order to regulate various critical processes, such as cell cycle control and DNA repair. Ubiquitination can serve as a marker for mutation, chemical damage, transcriptional or translational errors, and heat-induced denaturation. However, aberrant ubiquitination and degradation of tumor suppressor proteins may result in the growth and metastasis of cancer. Hence, targeting the ubiquitination cascade reaction has become a potential strategy for treating malignant diseases. Meanwhile, computer-aided methods have become widely accepted as fast and efficient techniques for early stage drug discovery. This review summarizes ubiquitination regulators that have been discovered via virtual screening and their applications for cancer treatment.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Xiang-Min Miao
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
8
|
Immunogene expression analysis in betanodavirus infected-Senegalese sole using an OpenArray® platform. Gene 2021; 774:145430. [PMID: 33444680 DOI: 10.1016/j.gene.2021.145430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The transcriptomic response of Senegalese sole (Solea senegalensis) triggered by two betanodaviruses with different virulence to that fish species has been assessed using an OpenArray® platform based on TaqMan™ quantitative PCR. The transcription of 112 genes per sample has been evaluated at two sampling times in two organs (head kidney and eye/brain-pooled samples). Those genes were involved in several roles or pathways, such as viral recognition, regulation of type I (IFN-1)-dependent immune responses, JAK-STAT cascade, interferon stimulated genes, protein ubiquitination, virus responsive genes, complement system, inflammatory response, other immune system effectors, regulation of T-cell proliferation, and proteolysis and apoptosis. The highly virulent isolate, wSs160.3, a wild type reassortant containing a RGNNV-type RNA1 and a SJNNV-type RNA2 segments, induced the expression of a higher number of genes in both tested organs than the moderately virulent strain, a recombinant harbouring mutations in the protruding domain of the capsid protein. The number of differentially expressed genes was higher 2 days after the infection with the wild type isolate than at 3 days post-inoculation. The wild type isolate also elicited an exacerbated interferon 1 response, which, instead of protecting sole against the infection, increases the disease severity by the induction of apoptosis and inflammation-derived immunopathology, although inflammation seems to be modulated by the complement system. Furthermore, results derived from this study suggest a potential important role for some genes with high expression after infection with the highly virulent virus, such as rtp3, sacs and isg15. On the other hand, the infection with the mutant does not induce immune response, probably due to an altered recognition by the host, which is supported by a different viral recognition pathway, involving myd88 and tbkbp1.
Collapse
|
9
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Wang P, Wang Y, Langley SA, Zhou YX, Jen KY, Sun Q, Brislawn C, Rojas CM, Wahl KL, Wang T, Fan X, Jansson JK, Celniker SE, Zou X, Threadgill DW, Snijders AM, Mao JH. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 2019; 68:1942-1952. [PMID: 30842212 PMCID: PMC6839736 DOI: 10.1136/gutjnl-2018-316691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The Collaborative Cross (CC) is a mouse population model with diverse and reproducible genetic backgrounds used to identify novel disease models and genes that contribute to human disease. Since spontaneous tumour susceptibility in CC mice remains unexplored, we assessed tumour incidence and spectrum. DESIGN We monitored 293 mice from 18 CC strains for tumour development. Genetic association analysis and RNA sequencing were used to identify susceptibility loci and candidate genes. We analysed genomes of patients with gastric cancer to evaluate the relevance of genes identified in the CC mouse model and measured the expression levels of ISG15 by immunohistochemical staining using a gastric adenocarcinoma tissue microarray. Association of gene expression with overall survival (OS) was assessed by Kaplan-Meier analysis. RESULTS CC mice displayed a wide range in the incidence and types of spontaneous tumours. More than 40% of CC036 mice developed gastric tumours within 1 year. Genetic association analysis identified Nfκb1 as a candidate susceptibility gene, while RNA sequencing analysis of non-tumour gastric tissues from CC036 mice showed significantly higher expression of inflammatory response genes. In human gastric cancers, the majority of human orthologues of the 166 mouse genes were preferentially altered by amplification or deletion and were significantly associated with OS. Higher expression of the CC036 inflammatory response gene signature is associated with poor OS. Finally, ISG15 protein is elevated in gastric adenocarcinomas and correlated with shortened patient OS. CONCLUSIONS CC strains exhibit tremendous variation in tumour susceptibility, and we present CC036 as a spontaneous laboratory mouse model for studying human gastric tumourigenesis.
Collapse
Affiliation(s)
- Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,Clinical Laboratory, Second Hospital of Shandong University, Jinan, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,College of Marine Science, Shandong University, Weihai, China
| | - Kuang-Yu Jen
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Colin Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carolina M Rojas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Kimberly L Wahl
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
11
|
Fenner BJ, Liu YC, Koh SK, Gao Y, Deng L, Beuerman RW, Zhou L, Theng JTS, Mehta JS. Mediators of Corneal Haze Following Implantation of Presbyopic Corneal Inlays. ACTA ACUST UNITED AC 2019; 60:868-876. [DOI: 10.1167/iovs.18-25761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Beau J. Fenner
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
| | - Yu-Chi Liu
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Eye Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | | | - Yan Gao
- Singapore Eye Research Institute, Singapore
| | - Lu Deng
- Department of Statistics and Applied Probability, National University of Singapore
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore
- Eye Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
- Neuroscience Signature Research Program, Duke-NUS Graduate Medical School, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
- Eye Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Eye Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
12
|
Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite damages and depression by disrupting NEDD4/Rap2A signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1477-1489. [PMID: 30826466 DOI: 10.1016/j.bbadis.2019.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Maternal immune activation (MIA) is an independent risk factor for psychiatric disorders including depression spectrum in the offsprings, but the molecular mechanism is unclear. Recent studies show that interferon-stimulated gene-15 (ISG15) is involved in inflammation and neuronal dendrite development; here we studied the role of ISG15 in MIA-induced depression and the underlying mechanisms. METHODS By vena caudalis injecting polyinosinic: polycytidylic acid (poly I:C) into the pregnant rats to mimic MIA, we used AAV or lentivirus to introduce or silence ISG15 expression. Synaptic plasticity was detected by confocal microscope and Golgi staining. Cognitive performances of the offspring were measured by Open field, Forced swimming and Sucrose preference test. RESULTS We found that MIA induced depression-like behaviors with dendrite impairments in the offspring with ISG15 level increased in the offsprings' brain. Overexpressing ISG15 in the prefrontal cortex of neonatal cubs (P0) could mimic dendritic pathology and depressive like behaviors, while downregulating ISG15 rescued these abnormalities in the offsprings. Further studies demonstrated that MIA-induced upregulation of inflammatory cytokines promoted ISG15 expression in the offspring' brain which suppressed Rap2A ubiquitination via NEDD4 and thus induced Rap2A accumulation, while upregulating NEDD4 abolished ISG15-induced dendrite impairments. CONCLUSIONS These data reveal that MIA impedes offsprings' dendrite development and causes depressive like behaviors by upregulating ISG15 and suppressing NEDD4/Rap2A signaling. The current findings suggest that inhibiting ISG15 may be a promising intervention of MIA-induced psychiatric disorders in the offsprings.
Collapse
|
13
|
Gu T, Lu L, An C, Zhang Y, Wu X, Xu Q, Chen G. Negative regulation of the RLR-mediated IFN signaling pathway by duck ubiquitin-specific protease 18 (USP18). J Cell Physiol 2018; 234:3995-4004. [PMID: 30256391 DOI: 10.1002/jcp.27208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/13/2018] [Indexed: 01/22/2023]
Abstract
Ubiquitin-specific protease 18 (USP18) plays an important role in regulating type I interferon (IFN) signaling in innate immunity, and has a crucial impact on the IFN therapeutic effect. Although significant progress has been made in elucidating USP18 function in mammals, the role of USP18 in ducks (duUSP18) remains poorly understood. In this study, we cloned the USP18 gene from white crested ducks by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of complementary DNA (cDNA) ends. We determined that duUSP18 cDNA contains a 52-bp 5'UTR, a 1,131-bp open reading frame and a 356-bp 3'UTR, and encodes a 376-amino acid protein. Multiple sequence alignments showed that duUSP18 shares high similarity with USP18 from other vertebrates. Overexpression of duUSP18 inhibited nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) activity, and reduced IFN-β production following 5' triphosphate double-stranded RNA (5'ppp dsRNA) or lipopolysaccharide (LPS) stimulation. duUSP18 knockdown significantly activated 5'ppp dsRNA-induced and LPS-induced NF-κB and IRF1 activation, and induced IFN-β expression in duck embryo fibroblasts. Furthermore, Quantitative real-time PCR (qRT-PCR) revealed that overexpression or knockdown of duUSP18 could alter the expression of genes related to the RLR-mediated IFN signaling pathway following the treatment with 5'ppp dsRNA. In addition, site-directed mutation analysis revealed that cysteine 66 (C66), histidine 313 (H313), and histidine 321 (H321) of duUSP18 were critical for inhibiting IFN-β activity. Taken together, these results suggest that duck USP18 plays an important role in innate immune responses against double-stranded RNA viruses in the RLR-mediated IFN signaling pathway, and that further studies are warranted to elucidate its underlying mechanisms, which could provide molecular insights into the effect of the treatment of duck diseases.
Collapse
Affiliation(s)
- Tiantian Gu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Lu Lu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Chen An
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Zuo C, Sheng X, Ma M, Xia M, Ouyang L. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system. Oncotarget 2018; 7:74393-74409. [PMID: 27626310 PMCID: PMC5342061 DOI: 10.18632/oncotarget.11911] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.
Collapse
Affiliation(s)
- Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Graduate School, University of South China, Hengyang, Hunan, China
| | - Xinyi Sheng
- Graduate School, University of South China, Hengyang, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Man Xia
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| | - Linda Ouyang
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| |
Collapse
|
15
|
Yoo L, Yoon AR, Yun CO, Chung KC. Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon. Cell Death Dis 2018; 9:97. [PMID: 29367604 PMCID: PMC5833375 DOI: 10.1038/s41419-017-0138-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity. ISG15, an ubiquitin-like modifier, is induced by type I interferon (IFN) stimulation and can be conjugated to target proteins (ISGylation). Here we demonstrated that CHIP may be a novel target of ISGylation in HEK293 cells stimulated with type I IFN. We also found that Lys143/144/145 and Lys287 residues in CHIP are important for and target residues of ISGylation. Moreover, ISGylation promotes the E3 ubiquitin ligase activity of CHIP, subsequently causing a decrease in levels of oncogenic c-Myc, one of its many ubiquitination targets, in A549 lung cancer cells and inhibiting A549 cell and tumor growth. In conclusion, the present study demonstrates that covalent ISG15 conjugation produces a novel CHIP regulatory mode that enhances the tumor-suppressive activity of CHIP, thereby contributing to the antitumor effect of type I IFN.
Collapse
Affiliation(s)
- Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Przanowski P, Loska S, Cysewski D, Dabrowski M, Kaminska B. ISG'ylation increases stability of numerous proteins including Stat1, which prevents premature termination of immune response in LPS-stimulated microglia. Neurochem Int 2017; 112:227-233. [PMID: 28774718 DOI: 10.1016/j.neuint.2017.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/19/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
Abstract
Microglia are myeloid cells in the central nervous system which maintain homeostasis and contribute to repair, but instigate neuroinflammation when are activated by infection, trauma or neurological diseases. Initiation of acute inflammatory responses could be mimicked in vitro by stimulation of microglial cultures with lipopolysaccharide (LPS). We have previously demonstrated Stat-dependent induction of the Uba7 mRNA expression in LPS stimulated microglia. Uba7 is an E1 enzyme crucial for posttranslational protein modifications. ISG'ylation is a process in which ISG15 is covalently attached to lysines of target proteins via the sequential action of three enzymes: the E1-activating enzyme UbE1L (UBA7), the E2-conjugating enzyme UBCH8, and E3 ligase HERC5. Here we use quantitative labeled-free mass spectrometry and gene silencing to determine the role of ISG'ylation in LPS-stimulated microglia. We found the increased mRNA levels of Isg15, Uba7, Ube2l6, Herc6 and profound ISG'ylation in inflammatory microglia. Silencing of Uba7 in BV2 microglial cells results in a profound decrease in the level of hundreds proteins as measured by mass spectrometry. There is statistically significant intersection of Uba7-dependent proteins in LPS-stimulated microglia and three datasets of ISG'ylated proteins reported in earlier studies. Stat1, a main activator of Uba7 expression, was modified by ISG15 after LPS stimulation. The level of both total and phospho-Stat1 is decreased after Uba7 knockdown leading to premature termination of immune responses as evidenced by the reduction of iNos and Ccl5 expression. Our results suggest that increased ISG'ylation in LPS-stimulated microglia supports stability of proteins, including Stat1, which prevents termination of immune responses during inflammation.
Collapse
Affiliation(s)
- Piotr Przanowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Stefan Loska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Dominik Cysewski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Michal Dabrowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
17
|
Arslan AD, Sassano A, Saleiro D, Lisowski P, Kosciuczuk EM, Fischietti M, Eckerdt F, Fish EN, Platanias LC. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma. Oncogene 2017; 36:6006-6019. [PMID: 28671669 PMCID: PMC5821504 DOI: 10.1038/onc.2017.205] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
We provide evidence that the IFN-regulated member of the Schlafen (SLFN) family of proteins, SLFN5, promotes the malignant phenotype in glioblastoma multiforme (GBM). Our studies indicate that SLFN5 expression promotes motility and invasiveness of GBM cells, and that high levels of SLFN5 expression correlate with high grade gliomas and shorter overall survival in patients suffering from GBM. In efforts to uncover the mechanism by which SLFN5 promotes GBM tumorigenesis, we found that this protein is a transcriptional co-repressor of STAT1. Type-I IFN treatment triggers the interaction of STAT1 with SLFN5, and the resulting complex negatively controls STAT1-mediated gene transcription via interferon stimulated response elements (ISRE). Thus, SLFN5 is both an IFN-stimulated response gene and a repressor of IFN-gene transcription, suggesting the existence of a negative-feedback regulatory loop that may account for suppression of antitumor immune responses in glioblastoma.
Collapse
Affiliation(s)
- A D Arslan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - A Sassano
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D Saleiro
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P Lisowski
- Department of Medical Genetics, Centre for Preclinical Research and Technology (CePT), Warsaw Medical University, Warsaw, Poland.,iPS Cell-Based Disease Modeling Group, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - E M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - M Fischietti
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - F Eckerdt
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - E N Fish
- Toronto Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - L C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Álvarez-Torres D, Podadera AM, Alonso MC, Bandín I, Béjar J, García-Rosado E. Molecular characterization and expression analyses of the Solea senegalensis interferon-stimulated gene 15 (isg15) following NNV infections. FISH & SHELLFISH IMMUNOLOGY 2017; 66:423-432. [PMID: 28527896 DOI: 10.1016/j.fsi.2017.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 05/07/2023]
Abstract
Interferons are essential in fish resistance to viral infections. They induce interferon-stimulated genes, such as isg15. In this study, the Senegalese sole isg15 gene (ssisg15) has been characterized. As other isg15, ssisg15 contains a 402-bp intron sited in the 5'-UTR, and the full length cDNA is 1492-bp, including a 480-bp ORF. The expression analyses revealed basal levels of isg15 transcripts, and a clear induction after poly I:C injection, that reached maximum values in brain, head kidney and gills. The ssisg15 induction patterns were similar in RGNNV- and SJNNV-inoculated fish, whereas the reassortant (RG/SJ) isolate, which has higher replication fitness, triggered delayed but higher transcript levels. Furthermore, RG/SJ infection after poly I:C treatment reduced the induction of ssisg15 transcripts, suggesting an antagonistic mechanism against interferon type I system, that might allow an efficient viral replication at the initial steps of the infective process.
Collapse
Affiliation(s)
- Daniel Álvarez-Torres
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain; Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Ana María Podadera
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Isabel Bandín
- Universidad de Santiago de Compostela, Departamento de Microbiología, Instituto de Acuicultura, 15782 Santiago de Compostela, Spain
| | - Julia Béjar
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Esther García-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
19
|
Kim CD, Reed RE, Juncker MA, Fang Z, Desai SD. Evidence for the Deregulation of Protein Turnover Pathways in Atm-Deficient Mouse Cerebellum: An Organotypic Study. J Neuropathol Exp Neurol 2017; 76:578-584. [DOI: 10.1093/jnen/nlx038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
Dai Z, Li J, Hu C, Wang F, Wang B, Shi X, Hou Q, Huang W, Lin G. Transcriptome data analysis of grass carp (Ctenopharyngodon idella) infected by reovirus provides insights into two immune-related genes. FISH & SHELLFISH IMMUNOLOGY 2017; 64:68-77. [PMID: 28279792 DOI: 10.1016/j.fsi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Grass carp (Ctenopharyngodon idella) was one of the economically important freshwater fish in China. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in a tremendous loss in the process of grass carp cultivation. Transcriptome analysis could provide a comprehensive understanding of the molecular mechanisms involved in specific biological processes and diseases for the resistance to reovirus infection of grass carp. In this study, the raw data from NCBI (accession number: SRA099702) were analyzed, in which, 50 significant differentially expressed genes by routine transcriptome analysis and 84 notably differentially expressed genes by co-expression network method. KEGG analysis revealed that the pathway in hemorrhagic diseases in grass carp was similar to the influenza A induced pathway. The interferon-stimulated gene ISG15 and sacsin-like gene, which were up-regulated in data (SRA099702), were also up-regulated in data (SRP049081) from a similar assay. QPCR experiment was performed to validate these up-regulated genes. The ISG15 gene was shown to be the core gene in the co-expression network. The results would enhance our understanding of the antivirus system of grass carp infected by reovirus.
Collapse
Affiliation(s)
- Zao Dai
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jicheng Li
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Fang Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao Shi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Waigen Huang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
21
|
Sharma A, Dolganiuc A, Dolganiuc A. Alcohol Fuels Hepatitis C Virus Propensity for Infection in ISGylation/Proteasome-Dependent Manner. Alcohol Clin Exp Res 2016; 41:23-25. [PMID: 27966793 DOI: 10.1111/acer.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
|
22
|
Haq IU, Han Y, Ali T, Wang Y, Gao H, Lin L, Wu Y, Wu S, Zeng S. Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle. Reprod Biol 2016; 16:255-260. [DOI: 10.1016/j.repbio.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
|
23
|
Honke N, Shaabani N, Zhang DE, Hardt C, Lang KS. Multiple functions of USP18. Cell Death Dis 2016; 7:e2444. [PMID: 27809302 PMCID: PMC5260889 DOI: 10.1038/cddis.2016.326] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Since the discovery of the ubiquitin system and the description of its important role in the degradation of proteins, many studies have shown the importance of ubiquitin-specific peptidases (USPs). One special member of this family is the USP18 protein (formerly UBP43). In the past two decades, several functions of USP18 have been discovered: this protein is not only an isopeptidase but also a potent inhibitor of interferon signaling. Therefore, USP18 functions as 'a' maestro of many biological pathways in various cell types. This review outlines multiple functions of USP18 in the regulation of various immunological processes, including pathogen control, cancer development, and autoimmune diseases.
Collapse
Affiliation(s)
- Nadine Honke
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Namir Shaabani
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
24
|
Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat Commun 2016; 7:12513. [PMID: 27545325 PMCID: PMC4996943 DOI: 10.1038/ncomms12513] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
p53 plays a pivotal role in tumour suppression under stresses, such as DNA damage. ISG15 has been implicated in the control of tumorigenesis. Intriguingly, the expression of ISG15, UBE1L and UBCH8 is induced by DNA-damaging agents, such as ultraviolet and doxorubicin, which are known to induce p53. Here, we show that the genes encoding ISG15, UBE1L, UBCH8 and EFP, have the p53-responsive elements and their expression is induced in a p53-dependent fashion under DNA damage conditions. Furthermore, DNA damage induces ISG15 conjugation to p53 and this modification markedly enhances the binding of p53 to the promoters of its target genes (for example, CDKN1 and BAX) as well as of its own gene by promoting phosphorylation and acetylation, leading to suppression of cell growth and tumorigenesis. These findings establish a novel feedback circuit between p53 and ISG15-conjugating system for positive regulation of the tumour suppressive function of p53 under DNA damage conditions. The ‘genome guardian' p53 has a well-established role in suppressing tumour development after DNA damage. Here the authors show that expression of the ubiquitin-like protein ISG15 is regulated by p53 which in turn is modified by ISG15 to enhance binding to target gene promoters.
Collapse
|
25
|
Chen C, Zhang YB, Gui JF. Expression characterization, genomic structure and function analysis of fish ubiquitin-specific protease 18 (USP18) genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:112-122. [PMID: 25981749 DOI: 10.1016/j.dci.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
In mammals, USP18 (ubiquitin-specific protease 18) is an interferon (IFN) inducible protein and plays a role in regulation of IFN response upon viral infection. In this study, we first cloned a USP18 homologous gene from virally-infected crucian carp (Carassius auratus) blastula embryonic (CAB) cells, and later found in other fish species including zebrafish. All fish USP18 genes have 10 exons and 9 introns comparable to 11 exons and 10 introns in non-fish vertebrates. Expression analysis revealed that fish USP18 was significantly induced in vitro and in vivo by IFN and IFN stimuli. Using promoter-driven luciferase reporter assay system to explore the molecular mechanism underlying fish USP18 expression, fish USP18 was identified as a typical interferon (IFN)-stimulated gene (ISG). Intracellular poly(I:C)-triggered zebrafish USP18 expression was regulated through RLR-IFN pathway, which was consistent with the fact that fish USP18 gene promoter contained two typical IFN-stimulated response elements (ISREs). Further mutation assays revealed that the distant ISRE motif primarily contributed to the induction of zebrafish USP18 by fish IFN and IFN stimuli. Functionally, fish USP18 inhibited poly(I:C)- and IFN-triggered activation of a common ISRE-containing promoter, and attenuated transcriptional expression of some ISGs including Stat1 and PKZ by recombinant IFN. Finally, we found that fish USP18 protein was expressed in cytoplasm and exhibited an ability to interact with ISG15. These results indicate that fish USP18 likely exerts its function similar to mammalian homologs.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Li C, Wang J, Zhang H, Zhu M, Chen F, Hu Y, Liu H, Zhu H. Interferon-stimulated gene 15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget 2015; 5:8429-41. [PMID: 25238261 PMCID: PMC4226694 DOI: 10.18632/oncotarget.2316] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with poor prognosis. IFN-stimulated genes 15 (ISG15) is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, the role of ISG15 in HCC remains unclear. In this study, we investigated the function of ISG15 during HCC progression and related mechanism using clinicopathological data, cell line and xenograft model. Our results indicated that ISG15 is highly expressed in HCC tissues and multiple HCC cell lines. ISG15 expression is significantly associated with the differentiation grade, metastatic of tumor and survival of HCC patients. However, the expression of ISG15 is not affected by HBV infection. ISG15 promotes the proliferation and migration of hepatocarcinoma cells through maintaining Survivin protein stabilization via sequestering XIAP from interacting with Survivin. Knowing down ISG15 with SiRNA inhibited the xenografted tumor growth and prolonged the lifespan of tumor-bearing mice. All these results support that ISG15 high expression is an intrinsic feature for HCC and a trigger for tumorigenesis and metastasis. ISG15 may be a prognostic biomarker and the inhibition of ISG15 could provide a therapeutic advantage for HCC patients over-expressing ISG15.
Collapse
Affiliation(s)
- Chong Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China. CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ji Wang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingao Zhu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feifei Chen
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hudan Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Zaheer RS, Wiehler S, Hudy MH, Traves SL, Pelikan JB, Leigh R, Proud D. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity. Mucosal Immunol 2014; 7:1127-38. [PMID: 24448099 PMCID: PMC4137743 DOI: 10.1038/mi.2013.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/23/2013] [Indexed: 02/04/2023]
Abstract
Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule.
Collapse
Affiliation(s)
- R S Zaheer
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - S Wiehler
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - M H Hudy
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - S L Traves
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - J B Pelikan
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - R Leigh
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada,Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Department of Medicine, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - D Proud
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Departments of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada,()
| |
Collapse
|
28
|
Lasecka L, Baron MD. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch Virol 2014; 159:1249-65. [PMID: 24327094 PMCID: PMC7087186 DOI: 10.1007/s00705-013-1940-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/24/2022]
Abstract
The nairoviruses are a rapidly emerging group of tick-borne bunyaviruses that includes pathogens of humans (Crimean-Congo hemorrhagic fever virus [CCHFV]) and livestock (Nairobi sheep disease virus [NSDV], also known as Ganjam virus), as well as a large number of viruses for which the normal vertebrate host has not been established. Studies on this group of viruses have been fairly limited, not least because CCHFV is a BSL4 human pathogen, restricting the number of labs able to study the live virus, while NSDV, although highly pathogenic in naive animals, is not seen as a threat in developed countries, making it a low priority. Nevertheless, recent years have seen significant progress in our understanding of the biology of these viruses, particularly that of CCHFV, and this article seeks to draw together our existing knowledge to generate an overall picture of their molecular biology, underlining areas of particular ignorance for future studies.
Collapse
Affiliation(s)
- Lidia Lasecka
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Michael D. Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| |
Collapse
|
29
|
Zhou T, Zhang Y, Wu P, Sun Q, Guo Y, Yang Y. Potential biomarkers and latent pathways for vasculitis based on latent pathway identification analysis. Int J Rheum Dis 2014; 17:671-8. [PMID: 24867262 DOI: 10.1111/1756-185x.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tao Zhou
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yudong Zhang
- Department of Peripheral Vascular; Affiliated Hospital of Shandong Traditional Chinese Medicine University; Jinan Shandong Province China
| | - Peng Wu
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Qiang Sun
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanan Guo
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanfei Yang
- The Second Hospital of Shandong University; Jinan Shandong Province China
| |
Collapse
|
30
|
Nie L, Xiong R, Zhang YS, Zhu LY, Shao JZ, Xiang LX. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:23-29. [PMID: 24183820 DOI: 10.1016/j.dci.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS-1) protein is a critical regulator in the immune systems of humans and mammals, which functions classically as an inhibitor of the IFN signaling pathways. However, data on functional characterisation of SOCS-1 in ancient vertebrates are limited. In this study, we report the function of teleost SOCS-1s in IFN signaling in fish models (zebrafish and Tetraodon) and human cells. Structurally, teleost SOCS-1s share conserved functional domains with their mammalian counterparts. Functionally, teleost SOCS-1s could be significantly induced upon stimulation with IFN stimulants and zebrafish IFNφ1. Overexpression of teleost SOCS-1s could dramatically suppress IFNφ1-induced Mx, Viperin and PKZ activation in zebrafish, and IFN-induced ISG15 activation in HeLa cells. Furthermore, a SOCS-1 variant that lacks the KIR domain was also characterised. This study demonstrates the conserved negative regulatory role of teleost SOCS-1s in IFN signaling pathways, providing perspective into the functional conservation of SOCS-1 proteins during evolution.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ran Xiong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ying-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
31
|
Hess AP, Talbi S, Hamilton AE, Baston-Buest DM, Nyegaard M, Irwin JC, Barragan F, Kruessel JS, Germeyer A, Giudice LC. The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reprod Biomed Online 2013; 27:423-35. [PMID: 23953067 DOI: 10.1016/j.rbmo.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/15/2013] [Accepted: 06/25/2013] [Indexed: 11/15/2022]
Abstract
The human oviduct serves as a conduit for spermatozoa in the peri-ovulatory phase and nurtures and facilitates transport of the developing embryo for nidation during the luteal phase. Interactions between the embryo and oviductal epithelial surface proteins and secreted products during embryo transit are largely undefined. This study investigated gene expression in the human oviduct in the early luteal versus follicular phases to identify candidate genes and biomolecular processes that may participate in maturation and transport of the embryo as it traverses this tissue. Oviductal RNA was hybridized to oligonucleotide arrays and resulting data were analysed by bioinformatic approaches. There were 650 genes significantly down-regulated and 683 genes significantly up-regulated (P<0.05) in the luteal versus follicular phase. Quantitative real-time PCR, immunoblot analysis and immunohistochemistry confirmed selected gene expression and cellular protein localization. Down-regulated genes involved macrophage recruitment, immunomodulation and matrix-degeneration, and up-regulated genes involved anti-inflammatory, ion transport, anti-angiogenic and early pregnancy recognition. The oviduct displayed some similarities and differences in progesterone-regulated genes compared with the human endometrium. Together, these data suggest a unique hormonally regulated environment during embryo development, maturation and transport through human oviduct and some conservation of progesterone signalling in tissues of common embryological origin. The oviduct serves as a conduit for spermatozoa in the peri-ovulatory phase and it nurtures and facilitates transport of the developing embryo during the luteal phase of the menstrual cycle, although precise interactions between the embryo and oviductal epithelium and secreted products are largely undefined. Herein, we investigated gene expression in human oviduct to identify candidate genes and processes that may participate in maturation and transport of the embryo as it develops implantation competence. Total RNA from human ampullary oviducts in the early luteal versus follicular phases was isolated and hybridized to oligonucleotide arrays. The data, analysed by bioinformatic approaches, revealed that 650 genes were significantly down- and 683 genes were significantly up-regulated in the luteal phase. Quantitative real-time PCR, immunoblot analysis and immunohistochemistry confirmed selected gene expression and cellular protein localization. The data demonstrated down-regulation of genes involved in macrophage recruitment, immunomodulation and matrix degeneration and up-regulation of ion transport and secretions, as well as anti-angiogenic and early pregnancy recognition. Together, these data suggest a unique hormonally regulated environment during embryo development, maturation and transport through the human oviduct and provide insight into mechanisms influencing acquisition of implantation competence of the human embryo during its passage through the oviduct en route to the uterine endometrium.
Collapse
Affiliation(s)
- A P Hess
- Department of Gynecology and Obstetrics, Stanford University Medical School, CA, USA; University of Dusseldorf, Medical Faculty, Department of Gynecology, Obstetrics and REI (UniKiD), Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis 2012; 3:e419. [PMID: 23152055 PMCID: PMC3542594 DOI: 10.1038/cddis.2012.158] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease targeting pancreatic beta cells. Genome-wide association studies and gene expression analysis identified interferon (IFN)-driven gene networks as crucial pathways in the pathogenesis of T1D. IFNs are linked to the response to viral infections and might contribute to the initiation of the autoimmune process in T1D. We presently analyzed the role of ubiquitin-specific peptidase 18 (USP18), an interferon-stimulated gene 15-specific protease, on IFN-induced pancreatic beta cell inflammation and apoptosis. Our findings indicate that USP18 inhibition induces inflammation by increasing the STAT signaling and exacerbates IFN-induced beta cell apoptosis by the mitochondrial pathway of cell death. USP18 regulates activation of three BH3-only proteins, namely, DP5, Bim and PUMA in pancreatic beta cells, suggesting a direct link between regulators of the type I IFN signaling pathway and members of the BCL-2 family. USP18 depletion increases the expression of the T1D candidate gene MDA5, leading to an upregulation of double-stranded RNA-induced chemokine production. These data suggest a cross talk between the type I IFN signaling pathway and a candidate gene for T1D to increase pro-inflammatory responses in beta cells. The present study shows that USP18 is a key regulator of IFN signaling in beta cells and underlines the importance of this pathway in beta cell inflammation and death.
Collapse
|
33
|
Sharma B, Joshi S, Sassano A, Majchrzak B, Kaur S, Aggarwal P, Nabet B, Bulic M, Stein BL, McMahon B, Baker DP, Fukunaga R, Altman JK, Licht JD, Fish EN, Platanias LC. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. J Biol Chem 2012; 287:42352-60. [PMID: 23074222 DOI: 10.1074/jbc.m112.400721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interferons (IFNs) have important antiviral and antineoplastic properties, but the precise mechanisms required for generation of these responses remain to be defined. We provide evidence that during engagement of the Type I IFN receptor (IFNR), there is up-regulation of expression of Sprouty (Spry) proteins 1, 2, and 4. Our studies demonstrate that IFN-inducible up-regulation of Spry proteins is Mnk kinase-dependent and results in suppressive effects on the IFN-activated p38 MAP kinase (MAPK), the function of which is required for transcription of interferon-stimulated genes (ISGs). Our data establish that ISG15 mRNA expression and IFN-dependent antiviral responses are enhanced in Spry1,2,4 triple knock-out mouse embryonic fibroblasts, consistent with negative feedback regulatory roles for Spry proteins in IFN-mediated signaling. In other studies, we found that siRNA-mediated knockdown of Spry1, Spry2, or Spry4 promotes IFN-inducible antileukemic effects in vitro and results in enhanced suppressive effects on malignant hematopoietic progenitors from patients with polycythemia vera. Altogether, our findings demonstrate that Spry proteins are potent regulators of Type I IFN signaling and negatively control induction of Type I IFN-mediated biological responses.
Collapse
Affiliation(s)
- Bhumika Sharma
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang W, Zhang M, Xiao ZZ, Sun L. Cynoglossus semilaevis ISG15: a secreted cytokine-like protein that stimulates antiviral immune response in a LRGG motif-dependent manner. PLoS One 2012; 7:e44884. [PMID: 23028660 PMCID: PMC3445607 DOI: 10.1371/journal.pone.0044884] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022] Open
Abstract
ISG15 is an ubiquitin-like protein that is induced rapidly by interferon stimulation. Like ubiquitin, ISG15 forms covalent conjugates with its target proteins in a process called ISGylation, which in mammals is known to play a role in antiviral immunity. In contrast to mammalian ISG15, the function of teleost ISG15 is unclear. In this study, we identified and analyzed the function of an ISG15 homologue, CsISG15, from tongue sole (Cynoglossus semilaevis). CsISG15 is composed of 162 residues and possesses two tandem ubiquitin-like domains and the highly conserved LRGG motif found in all known ISG15. Expression of CsISG15 occurred in a wide range of tissues and was upregulated in kidney and spleen by viral and bacterial infection. In vitro study with primary head kidney (HK) lymphocytes showed that megalocytivirus infection caused induction of CsISG15 expression and extracellular release of CsISG15 protein. Purified recombinant CsISG15 (rCsISG15) activated HK macrophages and enhanced the expression of immune genes in HK lymphocytes, both these effects, however, were significantly reduced when the conserved LRGG sequence was mutated to LAAG. Further study showed that the presence of rCsISG15 during megalocytivirus infection of HK lymphocytes reduced intracellular viral load, whereas antibody blocking of CsISG15 enhanced viral infection. Likewise, interference with CsISG15 expression by RNAi promoted viral infection. Taken together, these results indicate that CsISG15, a teleost ISG15, promotes antiviral immune response and that, unlike mammalian ISG15, CsISG15 exerts its immunoregulatory effect in the form of an unconjugated extracellular cytokine. In addition, these results also suggest a role for the LRGG motif other than that in protein conjugation.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-zhong Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
35
|
Bade VN, Nickels J, Keusekotten K, Praefcke GJK. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region. PLoS One 2012; 7:e38294. [PMID: 22693631 PMCID: PMC3367918 DOI: 10.1371/journal.pone.0038294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/04/2012] [Indexed: 02/03/2023] Open
Abstract
The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls), ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation). ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no reducing agent present.
Collapse
Affiliation(s)
- Veronika N. Bade
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jochen Nickels
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kirstin Keusekotten
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, University of Cologne, Cologne, Germany
| | - Gerrit J. K. Praefcke
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
36
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012; 3:255-266. [PMID: 23710261 DOI: 10.1515/bmc-2011-0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
37
|
Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proc Natl Acad Sci U S A 2012; 109:7723-8. [PMID: 22550181 DOI: 10.1073/pnas.1118122109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IFNs transduce signals by binding to cell surface receptors and activating cellular pathways and regulatory networks that control transcription of IFN-stimulated genes (ISGs) and mRNA translation, leading to generation of protein products that mediate biological responses. Previous studies have shown that type I IFN receptor-engaged pathways downstream of AKT and mammalian target of rapamycin complex (mTORC) 1 play important roles in mRNA translation of ISGs and the generation of IFN responses, but the roles of mTORC2 complexes in IFN signaling are unknown. We provide evidence that mTORC2 complexes control IFN-induced phosphorylation of AKT on serine 473 and their function is ultimately required for IFN-dependent gene transcription via interferon-stimulated response elements. We also demonstrate that such complexes exhibit regulatory effects on other IFN-dependent mammalian target of rapamycin-mediated signaling events, likely via engagement of the AKT/mTORC1 axis, including IFN-induced phosphorylation of S6 kinase and its effector rpS6, as well as phosphorylation of the translational repressor 4E-binding protein 1. We also show that induction of ISG protein expression and the generation of antiviral responses are defective in Rictor and mLST8-KO cells. Together, our data provide evidence for unique functions of mTORC2 complexes in the induction of type I IFN responses and suggest a critical role for mTORC2-mediated signals in IFN signaling.
Collapse
|
38
|
Cong XL, Lo MC, Reuter BA, Yan M, Fan JB, Zhang DE. Usp18 promotes conventional CD11b+ dendritic cell development. THE JOURNAL OF IMMUNOLOGY 2012; 188:4776-81. [PMID: 22491252 DOI: 10.4049/jimmunol.1101609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dendritic cells (DCs) represent the key cells linking innate and adaptive immune responses. It is critical to understand the molecular factors regulating DC differentiation. Usp18 is an IFN-inducible member of the ubiquitin-specific protease family, which deconjugates ubiquitin-like modifier ISG15 from target proteins and competitively inhibits IFN-α/β-induced JAK/STAT activation. This study demonstrates that the frequency of conventional CD11b(+) DCs in the spleen of Usp18(-/-) mice was significantly reduced, whereas the frequencies of conventional CD8(+) DCs and plasmacytoid DCs remained normal. In addition, Usp18(-/-) bone marrow (BM) cells generate DCs less efficiently in GM-CSF-supplemented culture, demonstrating a fundamental defect throughout the DC differentiation pathway. Usp18(-/-) BM cells were rescued by exogenous expression of either wild-type or deconjugation-inactive Usp18, and superimposition of an IFN-α/β receptor knockout returned in vivo DC populations to normal, clearly showing that the defect seen is due solely to Usp18's effect on IFN signaling. Finally, Usp18(-/-) BM-derived DCs expressed high levels of SOCS1/SOCS3, known inhibitors of GM-CSF signaling, providing a mechanistic explanation for the phenotype. In conclusion, we have identified a novel role of Usp18 in modulating conventional CD11b(+) DC development via its inhibitory effect on type I IFN signaling.
Collapse
Affiliation(s)
- Xiu-Li Cong
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species. Parasitol Res 2012; 111:37-51. [DOI: 10.1007/s00436-011-2799-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
40
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012. [PMID: 23710261 DOI: 10.1515/bmc-2011-1057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
41
|
Abstract
TLRs (Toll-like receptors), as evolutionarily conserved germline-encoded pattern recognition receptors, have a crucial role in early host defence by recognizing so-called PAMPs (pathogen-associated molecular patterns) and may serve as an important link between innate and adaptive immunity. In the liver, TLRs play an important role in the wound healing and regeneration processes, but they are also involved in the pathogenesis and progression of various inflammatory liver diseases, including autoimmune liver disease, alcoholic liver disease, non-alcoholic steatohepatitis, fibrogenesis, and chronic HBV (hepatitis B virus) and HCV (hepatitis C virus) infection. Hepatitis viruses have developed different evading strategies to subvert the innate immune system. Thus recent studies have suggested that TLR-based therapies may represent a promising approach in the treatment in viral hepatitis. The present review focuses on the role of the local innate immune system, and TLRs in particular, in the liver.
Collapse
|
42
|
Maragno AL, Pironin M, Alcalde H, Cong X, Knobeloch KP, Tangy F, Zhang DE, Ghysdael J, Quang CT. ISG15 modulates development of the erythroid lineage. PLoS One 2011; 6:e26068. [PMID: 22022510 PMCID: PMC3192153 DOI: 10.1371/journal.pone.0026068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022] Open
Abstract
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.
Collapse
Affiliation(s)
- Ana Leticia Maragno
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Martine Pironin
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Hélène Alcalde
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Xiuli Cong
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | | | - Frederic Tangy
- Unité de Génomique Virale et Vaccination, CNRS URA-3015, Institut Pasteur, Paris, France
| | - Dong-Er Zhang
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | - Jacques Ghysdael
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Christine Tran Quang
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| |
Collapse
|
43
|
Wood LM, Sankar S, Reed RE, Haas AL, Liu LF, McKinnon P, Desai SD. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 2011; 6:e16422. [PMID: 21298066 PMCID: PMC3027683 DOI: 10.1371/journal.pone.0016422] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/15/2010] [Indexed: 01/12/2023] Open
Abstract
Ataxia Telangiectasia (A-T) is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Laurence M. Wood
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Surendran Sankar
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Ryan E. Reed
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Arthur L. Haas
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Leroy F. Liu
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | - Peter McKinnon
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Shyamal D. Desai
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
44
|
Zhang D, Zhang DE. Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 2010; 31:119-30. [PMID: 21190487 DOI: 10.1089/jir.2010.0110] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is one of the most upregulated genes upon Type I interferon treatment or pathogen infection. Its 17 kDa protein product, ISG15, was the first ubiquitin-like modifier identified, and is similar to a ubiquitin linear dimer. As ISG15 modifies proteins in a similar manner to ubiquitylation, protein conjugation by ISG15 is termed ISGylation. Some of the primary enzymes that promote ISGylation are also involved in ubiquitin conjugation. The process to remove ISG15 from its conjugated proteins, termed de-ISGylation, is performed by a cellular ISG15-specific protease, ubiquitin-specific proteases with molecular mass 43 kDa (UBP43)/ubiquitin-specific proteases 18. Relative to ubiquitin, the biological function of ISG15 is still poorly understood, but ISG15 appears to play important roles in various biological and cellular functions. Therefore, there is growing interest in ISG15, as the study of free ISG15 and functional consequences of ISGylation/de-ISGylation may identify useful therapeutic targets. This review highlights recent discoveries and remaining questions important to understanding the biological functions of ISG15.
Collapse
Affiliation(s)
- Dongxian Zhang
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
45
|
Guo Y, Dolinko AV, Chinyengetere F, Stanton B, Bomberger JM, Demidenko E, Zhou DC, Gallagher R, Ma T, Galimberti F, Liu X, Sekula D, Freemantle S, Dmitrovsky E. Blockade of the ubiquitin protease UBP43 destabilizes transcription factor PML/RARα and inhibits the growth of acute promyelocytic leukemia. Cancer Res 2010; 70:9875-85. [PMID: 20935222 DOI: 10.1158/0008-5472.can-10-1100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
More effective treatments for acute promyelocytic leukemia (APL) are needed. APL cell treatment with all-trans-retinoic acid (RA) degrades the chimeric, dominant-negative-acting transcription factor promyelocytic leukemia gene (PML)/RARα, which is generated in APL by chromosomal translocation. The E1-like ubiquitin-activating enzyme (UBE1L) associates with interferon-stimulated gene ISG15 that binds and represses PML/RARα protein. Ubiquitin protease UBP43/USP18 removes ISG15 from conjugated proteins. In this study, we explored how RA regulates UBP43 expression and the effects of UBP43 on PML/RARα stability and APL growth, apoptosis, or differentiation. RA treatment induced UBE1L, ISG15, and UBP43 expression in RA-sensitive but not RA-resistant APL cells. Similar in vivo findings were obtained in a transgenic mouse model of transplantable APL, and in the RA response of leukemic cells harvested directly from APL patients. UBP43 knockdown repressed PML/RARα protein levels and inhibited RA-sensitive or RA-resistant cell growth by destabilizing the PML domain of PML/RARα. This inhibitory effect promoted apoptosis but did not affect the RA differentiation response in these APL cells. In contrast, elevation of UBP43 expression stabilized PML/RARα protein and inhibited apoptosis. Taken together, our findings define the ubiquitin protease UBP43 as a novel candidate drug target for APL treatment.
Collapse
Affiliation(s)
- Yongli Guo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The host innate immune response, including the production of type-I IFN, represents the primary line of defense against invading viral pathogens. Of the hundreds of IFN-stimulated genes (ISGs) discovered to date, ISG15 was one of the first identified and shown to encode a ubiquitin-like protein that functions, in part, as a modifier of protein function. Evidence implicating ISG15 as an innate immune protein with broad-spectrum antiviral activity continues to accumulate rapidly. This review will summarize recent findings on the innate antiviral activity of ISG15, with a focus on the interplay between ubiquitination and ISGylation pathways resulting in modulation of RNA virus assembly/budding. Indeed, ubiquitination is known to be proviral for some RNA viruses, whereas the parallel ISGylation pathway is known to be antiviral. A better understanding of the antiviral activities of ISG15 will enhance our fundamental knowledge of host innate responses to viral pathogens and may provide insight useful for the development of novel therapeutic approaches designed to enhance the immune response against such pathogens.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
47
|
Liu CS, Sun Y, Zhang M, Sun L. Identification and analysis of a Sciaenops ocellatus ISG15 homologue that is involved in host immune defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2010; 29:167-174. [PMID: 20385242 DOI: 10.1016/j.fsi.2010.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/02/2010] [Accepted: 03/26/2010] [Indexed: 05/29/2023]
Abstract
ISG15 is an interferon-stimulated gene that encodes a ubiquitin-like protein. ISG15 homologues have been identified in a number of fish species, some of which are known to be regulated at expression level by virus infection and lipopolysaccharide (LPS) treatment. However, the relationship between ISG15 and live bacterial infection has not been investigated in piscine models. In this study, an ISG15 homologue, SoISG15, was identified from red drum Sciaenops ocellatus and analyzed at expression and functional levels. The open reading frame of SoISG15 is 477 base pairs (bp) and intronless, with a 5'-untranslated region (UTR) of 91 bp and a 3'-UTR of 415 bp. The deduced amino acid sequence of SoISG15 shares 60-67% overall identities with the ISG15 of several fish species. SoISG15 possesses two conserved ubiquitin-like domains and the canonical ubiquitin conjugation motif, LRGG, at the C-terminus. Expressional analysis showed that constitutive expression of SoISG15 was highest in blood and lowest in kidney. Experimental challenges with LPS and bacterial pathogens induced significant SoISG15 expression in the kidney but not in the liver. Similar differential induction was also observed at cellular level with primary hepatocytes and head kidney (HK) lymphocytes. Poly(I:C), however, effected drastic induction of SoISG15 expression in kidney and liver at both tissue and cellular levels. Immunoblot analysis showed that SoISG15 was secreted by cultured HK lymphocytes into the extracellular milieu. Recombinant SoISG15 expressed in and purified from Escherichia coli was able to enhance the respiratory burst activity, acid phosphatase activity, and bactericidal activity of HK macrophages. Taken together, the results of this study indicated that SoISG15 possesses apparent immunological property and is likely to be involved in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Chun-Sheng Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
48
|
Abstract
This chapter recapitulates our current knowledge about the functions of the interferon stimulated gene 15 (ISG15) system in vivo with a specific focus on physiological aspects and the biological relevance of ISG15 conjugation and deconjugation. ISG15 contains two domains with structural similarity to ubiquitin and was the first ubiquitin like modifier (UBL) described. It can be conjugated to protein substrates in a process similar to ubiquitin modification termed ISGylation. Of all ubiquitin like modifications ISGylation exhibits the highest degree of interlace with the ubiquitin system and distinct ubiquitin ligases and isopeptidases can also mediate ISG15 linkage and deconjugation, respectively. The system is strongly induced by Type I interferons or microbial infections and studies based on gene targeted mice have shown that it plays an important role in antiviral defence.
Collapse
Affiliation(s)
- Klaus-Peter Knobeloch
- Department of Neuropathology, University Freiburg, Breisacher Str.64, 79106, Freiburg, Germany,
| |
Collapse
|
49
|
Hsiao NW, Chen JW, Yang TC, Orloff GM, Wu YY, Lai CH, Lan YC, Lin CW. ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells. Antiviral Res 2009; 85:504-11. [PMID: 20035788 DOI: 10.1016/j.antiviral.2009.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/15/2009] [Accepted: 12/15/2009] [Indexed: 01/13/2023]
Abstract
IFN-stimulated gene 15 (ISG15), an ubiquitin-like protein, is rapidly induced by IFN-alpha/beta, and ISG15 conjugation is associated with the antiviral immune response. Japanese encephalitis virus (JEV), a mosquito-borne neurotropic flavivirus, causes severe central nervous system diseases. We investigated the potential anti-JEV effect of ISG15 over-expression. ISG15 over-expression in human medulloblastoma cells significantly reduced the JEV-induced cytopathic effect and inhibited JEV replication by reducing the viral titers and genomes (p<0.05, Student's t-test); it also increased activation of the interferon stimulatory response element (ISRE)-luciferase cis-acting reporter in JEV-infected cells (p<0.05, Chi-square test). Furthermore, Western blotting revealed that ISG15 over-expression increased phosphorylation of IRF-3 (Ser396), JAK2 (Tyr1007/1008) and STAT1 (Tyr701 and Ser727) in JEV-infected cells (P<0.05, Chi-square test). Confocal imaging indicated that nucleus translocation of transcription factor STAT1 occurred in ISG15-over-expressing cells but not in vector control cells post-JEV infection. ISG15 over-expression activated the expression of STAT1-dependent genes including IRF-3, IFN-beta, IL-8, PKR and OAS before and post-JEV infection (p=0.063, Student's t-test). The results enabled elucidation of the molecular mechanism of ISG15 over-expression against JEV, which will be useful for developing a novel treatment to combat JEV infection.
Collapse
Affiliation(s)
- Nai-Wan Hsiao
- Institute of Biotechnology, National Changhua University of Education, Changhua 500, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Herington JL, Bany BM. Do molecular signals from the conceptus influence endometrium decidualization in rodents? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:797-816. [PMID: 19551814 PMCID: PMC2844778 DOI: 10.1002/jez.b.21308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A critical period in establishing pregnancy occurs after the onset of implantation but before placental development. Evidence strongly suggests that abnormalities occurring during this period can result in pregnancy termination or in pre-eclampsia; the latter may lead to small-for-gestational-weight offspring that are likely to be unhealthy. Clearly, events occurring in the endometrium during the implantation process are crucial for proper fetal development and for optimal offspring health. In several mammalian species bi-directional communication between the conceptus and endometrium during implantation is required for successful pregnancy. Although different implantation and placentation modes occur in different mammalian species, common aspects of this bi-directional signaling may exist. The molecular signals from the trophoblast cells of the conceptus, which direct endometrial changes during implantation progression, are well known in some nonrodent species. Currently, we know little about such signaling in rodents during implantation progression, when the endometrium undergoes decidualization. This review focuses on data that support the hypothesis that paracrine signals from the rodent conceptus influence decidualization. Where possible, these findings are compared and contrasted with information currently known in other species that exhibit different implantation modes.
Collapse
Affiliation(s)
- Jennifer L. Herington
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA,
| |
Collapse
|