1
|
Huang Y, Ni Y, Meng Y, Zeng X, He X, Zhang L, Zhang J. Integrated proteomics and metabolomics network analysis across different delivery modes in human pregnancy: a pilot study. BMC Pregnancy Childbirth 2024; 24:868. [PMID: 39725908 DOI: 10.1186/s12884-024-07097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Delivery mode has been linked to child health, e.g., allergic disease. However, it remains unclear whether protein and metabolite differences across different delivery modes may underlie child development. METHODS A cohort comprising 16 spontaneous onset vaginal delivery (VD), 16 prelabor cesarean delivery on maternal request (CS), and 8 intrapartum cesarean section (Intra_CS) women were analyzed using label-free proteomic and untargeted metabolomics assays on amniotic fluid and cord blood samples, respectively. We used weighted gene co-expression network analyses (WGCNA) to identify modules of highly correlated proteins or metabolites that associated with delivery modes and related clinical traits. KEGG enrichment analyses were performed to investigate the biological function of the identified modules. Integrative multiomics analysis was employed to examine the biological interplay between proteomic and metabolic interactions. RESULTS Compared to the CS group, the proteomic and metabolomic profiles were similar between the Intra_CS and VD groups in our study. We did not identify any enriched protein or metabolite pathways related to immune development that could influence the risk of allergic diseases in offspring across different delivery modes. However, we identified seven protein modules correlated with the duration from the rupture of the membranes to full dilation of the cervix, with the actin cytoskeleton module significantly enriched. A metabolic module in cord blood that correlated with VD was enriched in subclasses including C21 steroids, steroid sulfates, and oxysterols. Integrative analysis of proteomic and metabolomic data suggested pathways related to mode of delivery and duration of labor, encompassing the actin cytoskeleton, NADP metabolic process, nicotinate, and nicotinamide metabolism in amniotic fluid, and the steroid hormone biosynthesis pathway in cord blood. CONCLUSIONS Differences in steroid hormones and the actin cytoskeleton pathway according to proteomics and metabolomics in amniotic fluid and cord blood were more indicative of the labor process. These findings could guide future studies on delivery-associated biochemical pathways.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Ni
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Meng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing He
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Aydın N, Ketani MA, Sağsöz H. The expression of intermediate filaments in the abomasum of ruminants: A comparative study. Anat Histol Embryol 2024; 53:e13088. [PMID: 38979752 DOI: 10.1111/ahe.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Intermediate filaments (IFs) are key molecular factors of the cell and have been reported to play an important role in maintaining the structural integrity and functionality of the abomasum. This study was designed to determine the regional distribution, cellular localization and expression of several IFs, including CK8, CK18, CK19, vimentin, desmin, peripherin and nestin, as well as the connective tissue component laminin, in the bovine, ovine and caprine abomasa. Immunohistochemical analyses demonstrated varying levels of expression of CK8, CK18, CK19, vimentin, desmin, nestin, peripherin and laminin in the bovine, ovine and caprine abomasa. CK8 immunoreactions were particularly evident in the luminal and glandular epithelia of the glands found in the abomasal cardia, fundus and pylorus in all three species. In the bovine abomasum, CK18 immunoreactions were stronger in the parietal cells, compared to the chief cells. In the abomasum of all three species, the smooth muscle as well as the smooth muscle cells of the vascular media in the cardiac, fundic and pyloric regions showed strong immunoreactivity. In all three species, the cardiac, fundic and pyloric regions of the abomasum showed strong peripherin and nestin immunoreactions in the luminal and glandular epithelial cells, stromal and smooth muscle cells, nervous plexuses and blood vessels. The expression patterns of IFs and laminin in the ruminant abomasum suggest that these proteins play a structural role in the cytoskeleton and are effective in maintaining abomasal tissue integrity and stability.
Collapse
Affiliation(s)
- Nurşin Aydın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - M Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
4
|
P K M, C J, T N, F A L, M Harshan H, R S A, S A. Etiology behind canine uterine inertia: Role of uterine expression of MLCK4, MYH2, and PKC genes. Anim Reprod Sci 2023; 256:107298. [PMID: 37499285 DOI: 10.1016/j.anireprosci.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Dystocia is an obstetrical emergency, and primary uterine inertia (PUI) is the major etiological reason among the more prevalent maternal causes in dogs. The present study involved the relative expression analysis of genes associated with myometrial contraction in medium-sized dog breeds with uterine inertia. Dogs without any progress in the parturition process even after four hours of the onset of labor and the absence of uterine contractions were considered to have complete primary uterine inertia (CPUI, n = 9). Dogs that had expelled at least one fetus and made no further progress in parturition in the absence of active uterine contraction were considered to be experiencing partial primary uterine inertia (PPUI, n = 6). Dogs with the fetal cause of dystocia (FCD), i.e., obstructive dystocia, were taken as the third (n = 7) group. Uterine tissue samples were collected during cesarean section in each group, RNA was isolated, and the relative expression of myometrial ACTA2, ACTG2, MLCK4, MYH2, and PKC genes was analyzed. The MLCK4 gene expression was downregulated in CPUI (P ≤ 0.05) and PPUI (P ≤ 0.01) when compared to FCD. The MYH2 gene expression was downregulated in PPUI in comparison to CPUI (P ≤ 0.01) and FCD (P ≤ 0.05). The PKC gene expression was upregulated in PPUI in comparison to FCD and CPUI (P ≤ 0.05). The downregulation of MLCK4 and MYH2 gene expressions recorded in PPUI indicated the possibility of myometrial defects. The possibility of myometrial defects was also observed in CPUI, but to a lesser degree, suggesting other etiologies.
Collapse
Affiliation(s)
- Magnus P K
- Department of Animal Reproduction Gynaecology and Obstetrics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India.
| | - Jayakumar C
- Department of Animal Reproduction Gynaecology and Obstetrics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Naicy T
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Lali F A
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Hiron M Harshan
- Department of Animal Reproduction Gynaecology and Obstetrics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Abhilash R S
- Department of Animal Reproduction Gynaecology and Obstetrics, College of Veterinary and Animal Sciences Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Ajithkumar S
- University Veterinary Hospital and Teaching Veterinary Clinical Complex, Mannuthy, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| |
Collapse
|
5
|
ADAMTS9-Regulated Pericellular Matrix Dynamics Governs Focal Adhesion-Dependent Smooth Muscle Differentiation. Cell Rep 2019; 23:485-498. [PMID: 29642006 PMCID: PMC5987776 DOI: 10.1016/j.celrep.2018.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022] Open
Abstract
Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM.
Collapse
|
6
|
Wrobel MH, Mlynarczuk J. Chlorinated insecticides (toxaphene and endrin) affect oxytocin, testosterone, oestradiol and prostaglandin secretion from ovarian and uterine cells as well as myometrial contractions in cow in vitro. CHEMOSPHERE 2018; 198:432-441. [PMID: 29425943 DOI: 10.1016/j.chemosphere.2018.01.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We examined the direct effects of toxaphene and endrin, chlorinated insecticides that are widespread in the environment, on myometrial contractions and on the secretion of hormones involved in regulating these contractions. Granulosa, luteal, endometrial and myometrial cells, and myometrial strips from non-pregnant cows were incubated with both insecticides at environmentally relevant doses. Toxaphene inhibited and endrin stimulated the secretion of testosterone and oestradiol from granulosa cells. Toxaphene also inhibited and endrin stimulated the expression of the mRNA encoding the precursor of oxytocin (OT), as well OT secretion in luteal cell cultures. Moreover, endrin increased OT secretion from granulosa cells. Neither insecticide exerted an effect on progesterone secretion from luteal cells. Only toxaphene decreased the secretion of prostaglandins (PGF2 and PGE2) from endometrial cells. Meanwhile, only endrin decreased basal myometrial contractions, which was accompanied by inhibition of PGF2 secretion from the myometrium. Both endrin and toxaphene also decreased the force of the OT-stimulated myometrial contractions, whereas only toxaphene inhibited the stimulatory effect of OT on the force of myometrial contractions. In contrast to endrin, toxaphene decreased synthesis and secretion of one of the primary stimulators of myometrial contractions (OT) and indirectly inhibited OT signal reception in the myometrium by reducing E2 secretion. Both insecticides decreased OT-stimulated myometrial contractions; therefore, they may inhibit further transmission of the OT signal. Moreover, endrin inhibited basal myometrial contractions, potentially resulting from reduced PGF2 secretion from the myometrium. Our data indicate the potential of these insecticides to disturb the course of the oestrous cycle or fertilisation.
Collapse
Affiliation(s)
- Michael Hubert Wrobel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland.
| | - Jaroslaw Mlynarczuk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| |
Collapse
|
7
|
Bagheripuor F, Ghanbari M, Piryaei A, Ghasemi A. Effects of fetal hypothyroidism on uterine smooth muscle contraction and structure of offspring rats. Exp Physiol 2018; 103:683-692. [DOI: 10.1113/ep086564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Fatemeh Bagheripuor
- Endocrine Physiology Research Center; Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center; Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center; Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
8
|
Nicoletti JG, White BG, Miskiewicz EI, MacPhee DJ. Induction of expression and phosphorylation of heat shock protein B5 (CRYAB) in rat myometrium during pregnancy and labour. Reproduction 2016; 152:69-79. [DOI: 10.1530/rep-16-0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023]
Abstract
During pregnancy the myometrium undergoes a programme of differentiation induced by endocrine, cellular, and biophysical inputs. Small heat shock proteins (HSPs) are a family of ten (B1–B10) small-molecular-weight proteins that not only act as chaperones, but also assist in processes such as cytoskeleton rearrangements and immune system activation. Thus, it was hypothesized that HSPB5 (CRYAB) would be highly expressed in the rat myometrium during the contractile and labour phases of myometrial differentiation when such processes are prominent. Immunoblot analysis revealed that myometrial CRYAB protein expression significantly increased from day (D) 15 to D23 (labour;P<0.05). In correlation with these findings, serine 59-phosphorylated (pSer59) CRYAB protein expression significantly increased from D15 to D23, and was also elevated 1-day post-partum (P<0.05). pSer59-CRYAB was detected in the cytoplasm of myocytes within both uterine muscle layers mid- to late-pregnancy. In unilaterally pregnant rats, pSer59-CRYAB protein expression was significantly elevated in the gravid uterine horns at both D19 and D23 of gestation compared with non-gravid horns. Co-immunolocalization experiments using the hTERT-human myometrial cell line and confocal microscopy demonstrated that pSer59-CRYAB co-localized with the focal adhesion protein FERMT2 at the ends of actin filaments as well as with the exosomal marker CD63. Overall, pSer59-CRYAB is highly expressed in myometrium during late pregnancy and labour and its expression appears to be regulated by uterine distension. CRYAB may be involved in the regulation of actin filament dynamics at focal adhesions and could be secreted by exosomes as a prelude to involvement in immune activation in the myometrium.
Collapse
|
9
|
Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci U S A 2015. [PMID: 26195731 DOI: 10.1073/pnas.1503497112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For successful birth, contractions need to become progressively stronger. The underlying mechanisms are unknown, however. We have found that a novel mechanism, hypoxia-induced force increase (HIFI), is switched on selectively, at term, and is essential to strengthening contractions. HIFI is initiated as contractions cyclically reduce blood flow and produce repeated hypoxic stresses, with associated metabolic and transcriptomic changes. The increases in contractility are a long-lasting, oxytocin-independent, intrinsic mechanism present only in the full-term pregnant uterus. HIFI is inhibited by adenosine receptor antagonism and blockade of cyclooxygenase-2 signaling, and partially reproduced by brief episodes of acidic (but not alkalotic) pH. HIFI explains how labor can progress despite paradoxical metabolic challenge, and provides a new mechanistic target for the 1 in 10 women suffering dysfunctional labor because of poor contractions.
Collapse
|
10
|
Albers RM, Schnapper A, Beyerbach M, Boos A. Quantitative morphological changes in the interplacentomal wall of the gravid uterine horn of cattle during pregnancy. Reprod Biol Endocrinol 2015; 13:32. [PMID: 25903583 PMCID: PMC4407553 DOI: 10.1186/s12958-015-0030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The interplacentomal wall of the gravid uterine horn in cattle is the subject of reports dealing mainly with specific aspects of early pregnancy or the peripartal period. Only a very limited number of early and descriptive studies includes the whole period of pregnancy. Thus, there is a gap concerning quantitative morphological data of the uterine wall during pregnancy. We hypothesized that the specific requirements of pregnancy are reflected by significant and characteristic morphologic changes. METHODS Interplacentomal segments of the fetus-bearing horn of the uterus of 47 cows were collected at slaughter, assessed quantitatively by light microscopy, grouped into trimesters (trim), and data were analyzed statistically. RESULTS During pregnancy there were significant increases (p<0.05) in the measured parameters: heights of the endometrial surface epithelium (31 increased to 46 and 46 μm, in the 1st, 2nd and 3rd trim, respectively), glandular epithelium (19.6 to 22.4 and 25.4 μm, respectively), diameters of glands (94 to 166 to 239 μm, respectively) and glandular lumina (56 to 122 to 188 μm, respectively). Volume density of the glandular epithelium did not change, while that of glandular lumina increased significantly (8 to 26 to 40% in the 1st, 2nd and 3rd trim, respectively) and of endometrial stroma decreased with ongoing pregnancy (67 to 46 to 37%; p<0.05). Diameters of myometrial smooth muscle cells (MSMC) (9.7 to 12.4 and 12.9 μm, respectively, for the 1st, 2nd and 3rd trim; p<0.05), and the volume fraction of myometrial stroma increased (6 to 10 to 13%; p<0.05), while decreases were observed in MSMC nuclear volume density (4.4 and 4.0 to 2.4%; p<0.05). The fraction of MSMC cytoplasm (89 to 85%) and the nucleus:cytoplasm ratio (0.05 to 0.03%) both decreased for the 1st vs. 3rd trim, respectively (p<0.05). CONCLUSIONS These results indicate that the interplacentomal wall of the gravid uterine horn is subjected to significant morphological changes during pregnancy, underlining the importance of endometrial surface epithelium and of gland hypertrophy for nourishment of the conceptus, of increased myometrial extracellular matrix for uterine tensile strength and of myometrial smooth muscle hypertrophy for expulsion of the fetus at term.
Collapse
Affiliation(s)
- Rose M Albers
- Institute of Veterinary Anatomy, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - Anke Schnapper
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| | - Martin Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| | - Alois Boos
- Institute of Veterinary Anatomy, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Ravanos K, Dagklis T, Petousis S, Margioula-Siarkou C, Prapas Y, Prapas N. Factors implicated in the initiation of human parturition in term and preterm labor: a review. Gynecol Endocrinol 2015; 31:679-83. [PMID: 26303116 DOI: 10.3109/09513590.2015.1076783] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After accommodating the pregnancy for an average of 40 weeks, the uterus expels the fetus, the placenta and the membranes through the birth canal in a process named parturition. The absolute sequence of events that trigger and sustain human parturition are not yet fully clarified. Evidence suggests that spontaneous preterm and term labor seem to share a common inflammatory pathway. However, there are several other factors being involved in the initiation of human parturition. Placental corticotropin releasing hormone production seems to serve as a placental clock that might be set to ring earlier or later determining the duration of pregnancy and timing of labor. Estrogens do not cause contractions but their properties seem to capacitate uterus to coordinate and enhance contractions. Cytokines, prostaglandins, nitric oxide and steroids seem also to induce ripening by mediating remodeling of the extracellular matrix and collagen. Infection and microbe invasion resulting in chorioamnionitis also represents a common cause of early preterm labour. This review provides an overview of all these factors considered to be implicated in the initiation of human parturition.
Collapse
Affiliation(s)
| | | | | | | | - Yannis Prapas
- a IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | - Nikolaos Prapas
- a IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| |
Collapse
|
12
|
Molecular pathways regulating contractility in rat uterus through late gestation and parturition. Am J Obstet Gynecol 2012; 207:76.e15-24. [PMID: 22727353 DOI: 10.1016/j.ajog.2012.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Endogenous uterine agonists can activate numerous signaling pathways to effect increased force. Our objective was to assess expression of key constituents of these pathways, in alliance with contractile function, through late gestation and during term and preterm labor. STUDY DESIGN Using myography, we measured the response to 3 agonists compared with depolarization alone (K(+), 124 mEq/L) and calculated agonist/depolarization ratio. We measured gene expression using quantitative reverse transcription-polymerase chain reaction. RESULTS Contractile responsiveness to depolarization alone, oxytocin, or endothelin-1 increased during pregnancy compared with nonpregnant animals. The agonist/depolarization ratio did not change during uterine activation or parturition. Inhibition of rhoA-associated kinase decreased responses to oxytocin in all tissues, but significantly more during uterine activation. Expression of rhoA and rhoA-associated kinase was increased significantly in active labor at term or preterm. CONCLUSION The rhoA/rhoA-associated kinase pathway is a key regulator of uterine activation during labor and may be a useful target for the prevention of spontaneous preterm birth.
Collapse
|
13
|
Madekurozwa MC. An Immunohistochemical Study of the Oviduct in the Domestic Fowl (Gallus domesticus). Anat Histol Embryol 2012; 42:48-56. [DOI: 10.1111/j.1439-0264.2012.01164.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Affiliation(s)
- M.-C. Madekurozwa
- Department of Anatomy and Physiology; University of Pretoria; Private bag X04; Onderstepoort; 0110; South Africa
| |
Collapse
|
14
|
White BG, MacPhee DJ. Distension of the uterus induces HspB1 expression in rat uterine smooth muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1418-26. [DOI: 10.1152/ajpregu.00272.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The uterine musculature, or myometrium, demonstrates tremendous plasticity during pregnancy under the influences of the endocrine environment and mechanical stresses. Expression of the small stress protein heat shock protein B1 (HspB1) has been reported to increase dramatically during late pregnancy, a period marked by myometrial hypertrophy caused by fetal growth-induced uterine distension. Thus, using unilaterally pregnant rat models and ovariectomized nonpregnant rats with uteri containing laminaria tents to induce uterine distension, we examined the effect of uterine distension on myometrial HspB1 expression. In unilaterally pregnant rats, HspB1 mRNA and Ser15-phosphorylated HspB1 (pSer15 HspB1) protein expression were significantly elevated in distended gravid uterine horns at days 19 and 23 (labor) of gestation compared with nongravid horns. Similarly, pSer15 HspB1 protein in situ was only readily detectable in the distended horns compared with the nongravid horns at days 19 and 23; however, pSer15 HspB1 was primarily detectable in situ at day 19 in membrane-associated regions, while it had primarily a cytoplasmic localization in myometrial cells at day 23. HspB1 mRNA and pSer15 HspB1 protein expression were also markedly increased in ovariectomized nonpregnant rat myometrium distended for 24 h with laminaria tents compared with empty horns. Therefore, uterine distension plays a major role in the stimulation of myometrial HspB1 expression, and increased expression of this small stress protein could be a mechanoadaptive response to the increasing uterine distension that occurs during pregnancy.
Collapse
Affiliation(s)
- B. G. White
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - D. J. MacPhee
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
15
|
Tong WC, Choi CY, Karche S, Holden AV, Zhang H, Taggart MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One 2011; 6:e18685. [PMID: 21559514 PMCID: PMC3084699 DOI: 10.1371/journal.pone.0018685] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/15/2011] [Indexed: 11/18/2022] Open
Abstract
Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Cecilia Y. Choi
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Sanjay Karche
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Arun V. Holden
- Institute of Membrane and System Biology, University of Leeds, Leeds, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| |
Collapse
|
16
|
Cytoskeletal remodelling proteins identified in fetal-maternal interface in pregnant women and rhesus monkeys. J Mol Histol 2011; 42:161-6. [PMID: 21373848 DOI: 10.1007/s10735-011-9319-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/07/2011] [Indexed: 10/25/2022]
Abstract
The uterus undergoes dramatic remodelling in preparation for embryo implantation and pregnancy establishment. A receptive uterus is pivotal for embryo attachment, implantation and the eventual formation of a hemochorial placenta. We have previously identified by proteomics that tropomyosin alpha-4 chain (TPM4), protein disulfide isomerase A1 (PDIA1) and src substrate cortactin 8 (SRC8) were up regulated in the decidualized stromal cells during the late secretory phase of the menstrual cycle in women. These three proteins are associated with cytoskeletal remodelling. This study determined the localization of these three cytoskeletal proteins in the fetal-maternal interface including the decidual cells in the 1st trimester of pregnancy in women and rhesus monkeys. Immunohistochemical analysis revealed that TPM4, PDIA1 and SRC8 were all expressed by the decidual cells and the wall of the spiral arterioles in pregnant women. Similar expression pattern were also found in the rhesus monkey. In addition, TPM4, PDIA and SRC8 were also localized to the trophoblast cells, further highlighting the importance of these cytoskeletal remodelling proteins in early pregnancy.
Collapse
|
17
|
Ku CY, Murtazina DA, Kim YS, Garfield RE, Sanborn BM. Changes in rat myometrial plasma membrane protein kinase A are confined to parturition. Reprod Sci 2010; 17:696-704. [PMID: 20457802 DOI: 10.1177/1933719110368869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously shown that pregnant rat myometrial plasma membrane-associated cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) decreases prior to delivery, coincident with a decline in the inhibitory effect of cAMP on contractant-stimulated parameters. We now find that rat myometrial membrane-associated PKA concentrations in early to mid-pregnancy are equivalent to those in cycling rats. Following the decline associated with parturition, membrane PKA recovers within 1 to 2 days postpartum. Treatment with the antiprogestin onapristone caused a decrease in myometrial membrane PKA catalytic and regulatory subunits compared to untreated controls by 12 hours. This coincided temporally with recently reported increases in electrical and contractile activity. In unilaterally pregnant rats, the decline in plasma membrane PKA was observed in both nonpregnant and pregnant horns but was more rapid in the pregnant horns. These data indicate that the myometrial plasma membrane PKA pattern before and during most of pregnancy is not consistent with progesterone exerting a primary influence on PKA membrane localization. Rather, the fall in membrane PKA associated with parturition may contribute to or be influenced by the increased contractile and electrical activity of labor that is a consequence of the loss of progesterone influence and is not absolutely dependent on the presence of fetuses.
Collapse
Affiliation(s)
- Chun-Ying Ku
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
18
|
Chung D, Kim YS, Phillips JN, Ulloa A, Ku CY, Galan HL, Sanborn BM. Attenuation of canonical transient receptor potential-like channel 6 expression specifically reduces the diacylglycerol-mediated increase in intracellular calcium in human myometrial cells. Endocrinology 2010; 151:406-16. [PMID: 19940041 PMCID: PMC2803151 DOI: 10.1210/en.2009-0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An increase in intracellular Ca(2+) ([Ca(2+)](i)) as a result of release of Ca(2+) from intracellular stores or influx of extracellular Ca(2+) contributes to the regulation of smooth muscle contractile activity. Human uterine smooth muscle cells exhibit receptor-, store-, and diacylglycerol (OAG)-mediated extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and express canonical transient receptor potential-like channels (TRPC) mRNAs (predominantly TRPC1, -4, and -6) that have been implicated in SRCE. To determine the role of TRPC6 in human myometrial SRCE, short hairpin RNA constructs were designed that effectively targeted a TRPC6 mRNA reporter for degradation. One sequence was used to produce an adenovirus construct (TC6sh1). TC6sh1 reduced TRPC6 mRNA but not TRPC1, -3, -4, -5, or -7 mRNAs in PHM1-41 myometrial cells. Compared with uninfected cells or cells infected with empty vector, the increase in [Ca(2+)](i) in response to OAG was specifically inhibited by TC6sh1, whereas SRCE responses elicited by either oxytocin or thapsigargin were not changed. Similar findings were observed in primary pregnant human myometrial cells. When PHM1-41 cells were activated by OAG in the absence of extracellular Na(+), the increase in [Ca(2+)](i) was partially reduced. Furthermore, pretreatment with nifedipine, an L-type calcium channel blocker, also partially reduced the OAG-induced [Ca(2+)](i) increase. Similar effects were observed in primary human myometrial cells. These findings suggest that OAG activates channels containing TRPC6 in myometrial cells and that these channels act via both enhanced Na(+) entry coupled to activation of voltage-dependent Ca(2+) entry channels and a nifedipine-independent Ca(2+) entry mechanism to promote elevation of intracellular Ca(2+).
Collapse
Affiliation(s)
- Daesuk Chung
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling. PLoS One 2009; 4:e7489. [PMID: 19834610 PMCID: PMC2759504 DOI: 10.1371/journal.pone.0007489] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/24/2009] [Indexed: 12/12/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV) as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.
Collapse
|
20
|
Gangopadhyay SS, Kengni E, Appel S, Gallant C, Kim HR, Leavis P, DeGnore J, Morgan KG. Smooth muscle archvillin is an ERK scaffolding protein. J Biol Chem 2009; 284:17607-15. [PMID: 19406750 DOI: 10.1074/jbc.m109.002386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.
Collapse
|
21
|
Syyong H, Cheung C, Solomon D, Seow CY, Kuo KH. Adaptive response of pulmonary arterial smooth muscle to length change. J Appl Physiol (1985) 2008; 104:1014-20. [DOI: 10.1152/japplphysiol.01203.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12–16 s, 20 V, 60 Hz). The length-force relationship was determined at Lref to 0.6 Lref, where Lref was a reference length close to the in situ length of PASM. The response to length oscillations was determined at Lref, after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from Lref to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% Lref caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension.
Collapse
|