1
|
Quan W, Li P, Wei J, Jiang Y, Liang Y, Zhang W, Chen Q, Wu K, Luo H, Ouyang Q. Bio-Multifunctional Sponges Containing Alginate/Chitosan/Sargassum Polysaccharides Promote the Healing of Full-Thickness Wounds. Biomolecules 2022; 12:1601. [PMID: 36358951 PMCID: PMC9687973 DOI: 10.3390/biom12111601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2024] Open
Abstract
Creation of bio-multifunctional wound dressings with potent hemostatic, antibacterial, anti-inflammatory, and angiogenesis features for bolstering the healing of full-thickness wounds is sought after for clinical applications. We created bio-multifunctional composite sponges by coupling alginate and chitosan with Sargassum pallidum polysaccharides through electrostatic interactions, calcium ion (Ca2+) crosslinking, and lyophilization. Alginate/chitosan (AC) sponges with different concentrations of Sargassum pallidum polysaccharides were obtained and termed AC, ACS-1%, ACS-2.5%, and ACS-5%. ACS-1% and ACS-2.5% sponges exhibited uniform porosity, high water vapor transmission rate, high water absorption, as well as good hemostatic and antibacterial abilities. ACS-2.5% sponges facilitated wound closure and promoted angiogenesis and re-epithelialization in the dermis. These data suggest that ACS sponges containing a certain amount of Sargassum pallidum polysaccharides could be employed for treatment of full-thickness skin wounds.
Collapse
Affiliation(s)
- Weiyan Quan
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Puwang Li
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang 524023, China
| | - Jinsong Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuwei Jiang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yingye Liang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weilin Zhang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qizhou Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
2
|
Boshans LL, Soh H, Wood WM, Nolan TM, Mandoiu II, Yanagawa Y, Tzingounis AV, Nishiyama A. Direct reprogramming of oligodendrocyte precursor cells into GABAergic inhibitory neurons by a single homeodomain transcription factor Dlx2. Sci Rep 2021; 11:3552. [PMID: 33574458 PMCID: PMC7878775 DOI: 10.1038/s41598-021-82931-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocyte precursor cells (NG2 glia) are uniformly distributed proliferative cells in the mammalian central nervous system and generate myelinating oligodendrocytes throughout life. A subpopulation of OPCs in the neocortex arises from progenitor cells in the embryonic ganglionic eminences that also produce inhibitory neurons. The neuronal fate of some progenitor cells is sealed before birth as they become committed to the oligodendrocyte lineage, marked by sustained expression of the oligodendrocyte transcription factor Olig2, which represses the interneuron transcription factor Dlx2. Here we show that misexpression of Dlx2 alone in postnatal mouse OPCs caused them to switch their fate to GABAergic neurons within 2 days by downregulating Olig2 and upregulating a network of inhibitory neuron transcripts. After two weeks, some OPC-derived neurons generated trains of action potentials and formed clusters of GABAergic synaptic proteins. Our study revealed that the developmental molecular logic can be applied to promote neuronal reprogramming from OPCs.
Collapse
Affiliation(s)
- Linda L Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Timothy M Nolan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Putoux A, Baas D, Paschaki M, Morlé L, Maire C, Attié-Bitach T, Thomas S, Durand B. Altered GLI3 and FGF8 signaling underlies acrocallosal syndrome phenotypes in Kif7 depleted mice. Hum Mol Genet 2020; 28:877-887. [PMID: 30445565 DOI: 10.1093/hmg/ddy392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Acrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes. To understand the pathological mechanisms involved in CC defects in this syndrome, we took advantage of a previously described Kif7-/- mouse model to demonstrate that in addition to polydactyly and neural tube closure defects, these mice present CC agenesis with characteristic Probst bundles, thus recapitulating major ACLS features. We show that CC agenesis in these mice is associated with specific patterning defects of the cortical septum boundary leading to altered distribution of guidepost cells required to guide the callosal axons through the midline. Furthermore, by crossing Kif7-/- mice with Gli3Δ699 mice exclusively producing the repressive isoform of GLI3 (GLI3R), we demonstrate that decreased GLI3R signaling is fully responsible for the ACLS features in these mice, as all phenotypes are rescued by increasing GLI3R activity. Moreover, we show that increased FGF8 signaling is responsible in part for CC defects associated to KIF7 depletion, as modulating FGF8 signaling rescued CC formation anteriorly in Kif7-/- mice. Taken together our data demonstrate that ACLS features rely on defective GLI3R and FGF8 signaling.
Collapse
Affiliation(s)
- Audrey Putoux
- Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France.,Service de Génétique et Centre de Référence des Anomalies du Développement de la Région Auvergne-Rhône-Alpes, CHU de Lyon, France
| | - Dominique Baas
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Marie Paschaki
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Laurette Morlé
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Charline Maire
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Histology-Embryology and Cytogenetics, Necker Hospital, AP-HP, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| |
Collapse
|
4
|
Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One 2019; 14:e0220530. [PMID: 31361780 PMCID: PMC6667164 DOI: 10.1371/journal.pone.0220530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Collapse
Affiliation(s)
- Megan L. Linscott
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Wilson C. J. Chung
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
5
|
Hehr CL, Halabi R, McFarlane S. Polarity and morphogenesis of the eye epithelium requires the adhesion junction associated adaptor protein Traf4. Cell Adh Migr 2018; 12:489-502. [PMID: 29961393 DOI: 10.1080/19336918.2018.1477900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/28/2022] Open
Abstract
During development, neuroepithelial progenitors acquire apico-basal polarity and adhere to one another via apically located tight and adherens junction complexes. This polarized neuroepithelium must continue to integrate cells arising through cell divisions and intercalation, and allow for cell movements, at the same time as undergoing morphogenesis. Cell proliferation, migration and intercalation all occur in the morphing embryonic eye. To understand how eye development might depend on dynamic epithelial adhesion, we investigated the function of a known regulator of junctional plasticity, Tumour necrosis factor receptor-associated factor 4 (Traf4). traf4a mRNA is expressed in the developing eye vesicle over the period of optic cup morphogenesis, and Traf4a loss leads to disrupted evagination and elongation of the eye vesicles, and aberrant organization and apico-basal polarity of the eye epithelium. We propose a model whereby Traf4a regulates apical junction plasticity in nascent eye epithelium, allowing for its polarization and morphogenesis. Symbols and Abbreviations: AB: apico-basal; aPKC: atypical protein kinase-C; CRISPR: clustered regularly-interspaced short palindromic repeats; GFP: green fluorescent protein; hpf: hours post-fertilization; MO: antisense morpholino oligonucleotide; pHH3: phospho histone H3; ss: somite stage; Traf4: Tumour necrosis factor receptor-associated factor 4; ZO-1: zona occludens-1.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Rami Halabi
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Sarah McFarlane
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| |
Collapse
|
6
|
Chan WK, Price DJ, Pratt T. FGF8 morphogen gradients are differentially regulated by heparan sulphotransferases Hs2st and Hs6st1 in the developing brain. Biol Open 2017; 6:1933-1942. [PMID: 29158323 PMCID: PMC5769653 DOI: 10.1242/bio.028605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor (FGF) morphogen signalling through the evolutionarily ancient extracellular signalling-regulated kinase/mitogen activated protein kinase (ERK/MAPK) pathway recurs in many neural and non-neural developmental contexts, and understanding the mechanisms that regulate FGF/ERK function are correspondingly important. The glycosaminoglycan heparan sulphate (HS) binds to FGFs and exists in an enormous number of differentially sulphated forms produced by the action of HS modifying enzymes, and so has the potential to present an extremely large amount of information in FGF/ERK signalling. Although there have been many studies demonstrating that HS is an important regulator of FGF function, experimental evidence on the role of the different HS modifying enzymes on FGF gradient formation has been lacking until now. We challenged ex vivo developing mouse neural tissue, in which HS had either been enzymatically removed by heparanase treatment or lacking either the HS modifying enzymes Hs2st (Hs2st-/- tissue) or Hs6st1 (Hs6st1-/- tissue), with exogenous Fgf8 to gain insight on how HS and the function of these two HS modifying enzymes impacts on Fgf8 gradient formation from an exogenously supplied source of Fgf8 protein. We discover that two different HS modifying enzymes, Hs2st and Hs6st1, indeed differentially modulate the properties of emerging Fgf8 protein concentration gradients and the Erk signalling output in response to Fgf8 in living tissue in ex vivo cultures. Both Hs2st and Hs6st1 are required for stable Fgf8 gradients to form as rapidly as they do in wild-type tissue while only Hs6st1 has a significant effect on suppressing the levels of Fgf8 protein in the gradient compared to wild type. Next we show that Hs2st and Hs6st1 act to antagonise and agonise the Erk signalling in response to Fgf8 protein, respectively, in ex vivo cultures of living tissue. Examination of endogenous Fgf8 protein and Erk signalling outputs in Hs2st-/- and Hs6st1-/- embryos suggests that our ex vivo findings have physiological relevance in vivo Our discovery identifies a new class of mechanism to tune Fgf8 function by regulated expression of Hs2st and Hs6st1 that is likely to have broader application to the >200 other signalling proteins that interact with HS and their function in neural development and disease.
Collapse
Affiliation(s)
- Wai-Kit Chan
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas Pratt
- Centre for Integrative Physiology, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
7
|
Hou N, Zhang M, Xu Y, Sun Z, Wang J, Zhang L, Zhang Q. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities. Int J Biol Macromol 2017; 105:1511-1518. [PMID: 28619642 DOI: 10.1016/j.ijbiomac.2017.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators.
Collapse
Affiliation(s)
- Ningning Hou
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Meng Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingjie Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhongmin Sun
- Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lijuan Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Quanbin Zhang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China.
| |
Collapse
|
8
|
Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 2017; 525:2782-2799. [PMID: 28510270 DOI: 10.1002/cne.24242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
The isthmus is recognized as the most rostral segment of the hindbrain in non-mammalian vertebrates. In mammalian embryos, transient Fgf8 expression defines the developing isthmic region, lying between the midbrain and the first rhombomere, but there has been uncertainty about the existence of a distinct isthmic segment in postnatal mammals. We attempted to find if the region of early embryonic Fgf8 expression (which is considered to involve the entire extent of the prospective isthmus initially) might help to identify the boundaries of the isthmus in postnatal animals. By creating an Fgf8-Cre-LacZ lineage in mice, we were able to show that Fgf8-Cre reporter expression in postnatal mice is present in the same nuclei that characterize the isthmic region in birds. The 'signature' isthmic structures in birds include the trochlear nucleus, the dorsal raphe nucleus, the microcellular tegmental nuclei, the pedunculotegmental nucleus, the vermis of the cerebellum, rostral parts of the parabrachial complex and locus coeruleus, and the caudal parts of the substantia nigra and VTA. We found that all of these structures were labeled with the Fgf8-Cre reporter in the mouse brain, and we conclude that the isthmus is a distinct segment of the mammalian brain lying caudal to the midbrain and rostral to rhombomere 1 of the hindbrain.
Collapse
Affiliation(s)
| | | | - Luis Puelles
- Faculty of Medicine and IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
10
|
Montiel JF, Molnár Z. The impact of gene expression analysis on evolving views of avian brain organization. J Comp Neurol 2013; 521:3604-13. [DOI: 10.1002/cne.23403] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2013] [Revised: 05/15/2013] [Accepted: 06/21/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Juan F. Montiel
- Department of Physiology, Anatomy, and Genetics; Le Gros Clark Building, University of Oxford; Oxford OX1 3QX United Kingdom
- Center for Biomedical Research, Faculty of Medicine; Universidad Diego Portales; Santiago Chile
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics; Le Gros Clark Building, University of Oxford; Oxford OX1 3QX United Kingdom
| |
Collapse
|
11
|
García-Hernández S, Potashner SJ, Morest DK. Role of fibroblast growth factor 8 in neurite outgrowth from spiral ganglion neurons in vitro. Brain Res 2013; 1529:39-45. [PMID: 23891716 PMCID: PMC5217747 DOI: 10.1016/j.brainres.2013.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022]
Abstract
Many neurons degenerate after injuries resulting from overstimulation, drugs, genetic mutations, and aging. Although several growth factors and neurotrophins delay degeneration and promote regrowth of neural processes, the role of fibroblast growth factor 8 (FGF8) in mammalian spiral ganglion neurons (SGN) neurite outgrowth has not been examined. This study develops and uses SGN cell cultures suitable for experimental analysis, it investigates whether FGF8a and FGF8b isoforms affect the neurite outgrowth from SGN cultured in vitro. We found that both FGF8a and FGF8b promoted the outgrowth of neurites from cultured SGN. This response is mediated by FGF receptors and involves the activation of IκBα-mediated NFκB signaling pathway. These findings suggest that, besides its morphogenetic role during development, FGF8 may have trophic functions in the adult which are relevant to regeneration.
Collapse
Affiliation(s)
- Sofía García-Hernández
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
12
|
Clanton JA, Hope KD, Gamse JT. Fgf signaling governs cell fate in the zebrafish pineal complex. Development 2013; 140:323-32. [PMID: 23250206 DOI: 10.1242/dev.083709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Left-right (L-R) asymmetries in neuroanatomy exist throughout the animal kingdom, with implications for function and behavior. The molecular mechanisms that control formation of such asymmetries are beginning to be understood. Significant progress has been made by studying the zebrafish parapineal organ, a group of neurons on the left side of the epithalamus. Parapineal cells arise from the medially located pineal complex anlage and migrate to the left side of the brain. We have found that Fgf8a regulates a fate decision among anterior pineal complex progenitors that occurs just prior to the initiation of leftward migration. Cell fate analysis shows that in the absence of Fgf8a a subset of cells in the anterior pineal complex anlage differentiate as cone photoreceptors rather than parapineal neurons. Fgf8a acts permissively to promote parapineal fate in conjunction with the transcription factor Tbx2b, but might also block cone photoreceptor fate. We conclude that this subset of anterior pineal complex precursors, which normally become parapineal cells, are bipotential and require Fgf8a to maintain parapineal identity and/or prevent cone identity.
Collapse
Affiliation(s)
- Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205, USA
| | | | | |
Collapse
|
13
|
Liao WH, Cheng CH, Hung KS, Chiu WT, Chen GD, Hwang PP, Hwang SPL, Kuan YS, Huang CJ. Protein tyrosine phosphatase receptor type O (Ptpro) regulates cerebellar formation during zebrafish development through modulating Fgf signaling. Cell Mol Life Sci 2013; 70:2367-81. [PMID: 23361036 PMCID: PMC3676743 DOI: 10.1007/s00018-013-1259-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 02/04/2023]
Abstract
Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Apert syndrome (Acrocephalosyndactyly type I; AS) is a rare but well-known autosomal dominant disorder characterized by craniosynostosis, midface hypoplasia, bony/cutaneous syndactyly of fingers and toes as well as a variety of associated congenital anomalies involving the brain, heart, limbs and other organ systems. We report the case of a fetus with molecularly confirmed Apert syndrome and additional fusion of the thalamic nuclei. Various central nervous system anomalies, have been reported in patients with AS. However, as far as we know cases of fused thalami in Apert syndrome have never been reported so far.
Collapse
Affiliation(s)
- Kathrin Ludwig
- Pathology Unit, Department of Medical Diagnostic Sciences & Special Therapies, Padova, Italy
| | | | | | | | | | | |
Collapse
|
15
|
A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 2012; 7:e43785. [PMID: 22937095 PMCID: PMC3427154 DOI: 10.1371/journal.pone.0043785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Transposable elements, including short interspersed repetitive elements (SINEs), comprise nearly half the mammalian genome. Moreover, they are a major source of conserved non-coding elements (CNEs), which play important functional roles in regulating development-related genes, such as enhancing and silencing, serving for the diversification of morphological and physiological features among species. We previously reported a novel SINE family, AmnSINE1, as part of mammalian-specific CNEs. One AmnSINE1 locus, named AS071, showed an enhancer property in the developing mouse diencephalon. Indeed, AS071 appears to recapitulate the expression of diencephalic fibroblast growth factor 8 (Fgf8). Here we established three independent lines of AS071-transgenic mice and performed detailed expression profiling of AS071-enhanced lacZ in comparison with that of Fgf8 across embryonic stages. We demonstrate that AS071 is a distal enhancer that directs Fgf8 expression in the developing diencephalon. Furthermore, enhancer assays with constructs encoding partially deleted AS071 sequence revealed a unique modular organization in which AS071 contains at least three functionally distinct sub-elements that cooperatively direct the enhancer activity in three diencephalic domains, namely the dorsal midline and the lateral wall of the diencephalon, and the ventral midline of the hypothalamus. Interestingly, the AmnSINE1-derived sub-element was found to specify the enhancer activity to the ventral midline of the hypothalamus. To our knowledge, this is the first discovery of an enhancer element that could be separated into respective sub-elements that determine regional specificity and/or the core enhancing activity. These results potentiate our understanding of the evolution of retroposon-derived cis-regulatory elements as well as the basis for future studies of the molecular mechanism underlying the determination of domain-specificity of an enhancer.
Collapse
|
16
|
Wang Y, Song L, Zhou CJ. The canonical Wnt/β-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 2010; 349:250-60. [PMID: 21070765 DOI: 10.1016/j.ydbio.2010.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway has implications in early facial development; yet, its function and signaling mechanism remain poorly understood. We report here that the frontonasal and upper jaw primordia cannot be formed after conditional ablation of β-catenin with Foxg1-Cre mice in the facial ectoderm and the adjacent telencephalic neuroepithelium. Gene expression of several cell-survival and patterning factors, including Fgf8, Fgf3, and Fgf17, is dramatically diminished in the anterior neural ridge (ANR, a rostral signaling center) and/or the adjacent frontonasal ectoderm of the β-catenin conditional mutant mice. In addition, Shh expression is diminished in the ventral telencephalon of the mutants, while Tcfap2a expression is less affected in the facial primordia. Apoptosis occurs robustly in the rostral head tissues following inactivation of Fgf signaling in the conditional mutants. Consequently, the upper jaw, nasal, ocular and telencephalic structures are absent, but the tongue and mandible are relatively developed in the conditional mutants at birth. Using molecular biological approaches, we demonstrate that the Fgf8 gene is transcriptionally targeted by Wnt/β-catenin signaling during early facial and forebrain development. Furthermore, we show that conditional gain-of-function of β-catenin signaling causes drastic upregulation of Fgf8 mRNA in the ANR and the entire facial ectoderm, which also arrests facial and forebrain development. Taken together, our results suggest that canonical Wnt/β-catenin signaling is required for early development of the mammalian face and related head structures, which mainly or partly acts through the initiation and modulation of balanced Fgf signaling activity.
Collapse
Affiliation(s)
- Yongping Wang
- Department of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|