1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
3
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
4
|
Galimberti S, Rocchetti G, Di Rico F, Rossetti C, Fontana A, Lucini L, Callegari ML. Untargeted metabolomics provide new insights into the implication of Lactobacillus helveticus strains isolated from natural whey starter in methylglyoxal-mediated browning. Food Res Int 2023; 174:113644. [PMID: 37986486 DOI: 10.1016/j.foodres.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and β-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.
Collapse
Affiliation(s)
- Sofia Galimberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Di Rico
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Chiara Rossetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy.
| |
Collapse
|
5
|
Au SX, Mohd Padzil A, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM. Probing the substrate binding modes and catalytic mechanisms of BLEG-1, a promiscuous B3 metallo-β-lactamase with glyoxalase II properties. PLoS One 2023; 18:e0291012. [PMID: 37672512 PMCID: PMC10482274 DOI: 10.1371/journal.pone.0291012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
BLEG-1 from Bacillus lehensis G1 is an evolutionary divergent B3 metallo-β-lactamase (MBL) that exhibited both β-lactamase and glyoxalase II (GLXII) activities. Sequence, phylogeny, biochemical and structural relatedness of BLEG-1 to B3 MBL and GLXII suggested BLEG-1 might be an intermediate in the evolutionary path of B3 MBL from GLXII. The unique active site cavity of BLEG-1 that recognizes both β-lactam antibiotics and S-D-lactoylglutathione (SLG) had been postulated as the key factor for its dual activity. In this study, dynamic ensembles of BLEG-1 and its substrate complexes divulged conformational plasticity and binding modes of structurally distinct substrates to the enzyme, providing better insights into its structure-to-function relationship and enzymatic promiscuity. Our results highlight the flexible nature of the active site pocket of BLEG-1, which is governed by concerted loop motions involving loop7+α3+loop8 and loop12 around the catalytic core, thereby moulding the binding pocket and facilitate interactions of BLEG-1 with both ampicillin and SLG. The distribution of (i) predominantly hydrophobic amino acids in the N-terminal domain, and (ii) flexible amino acids with polar and/or charged side chains in both N- and C-termini provide additional advantages to BLEG-1 in confining the aromatic group of ampicillin, and polar groups of SLG, respectively. The importance of these residues for substrates binding was further confirmed by the reduction in MBL and GLXII activities upon alanine substitutions of Ile-10, Phe-57, Arg-94, Leu-95, and Arg-159. Based on molecular dynamics simulation, mutational, and biochemical data presented herein, the catalytic mechanisms of BLEG-1 toward the hydrolysis of β-lactams and SLG were proposed.
Collapse
Affiliation(s)
- Shaw Xian Au
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Japan
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M. Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Balparda M, Schmitz J, Duemmel M, Wuthenow IC, Schmidt M, Alseekh S, Fernie AR, Lercher MJ, Maurino VG. Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta. PLANT PHYSIOLOGY 2023; 191:1214-1233. [PMID: 36423222 PMCID: PMC9922399 DOI: 10.1093/plphys/kiac526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) and glyoxal (GO) are highly reactive, unwanted side-products of cellular metabolism maintained at harmless intracellular levels by specific scavenging mechanisms.MGO and GO are metabolized through the glyoxalase (GLX) system, which consists of two enzymes acting in sequence, GLXI and GLXII. While plant genomes encode a number of different GLX isoforms, their specific functions and how they arose during evolution are unclear. Here, we used Arabidopsis (Arabidopsis thaliana) as a model species to investigate the evolutionary history of GLXI and GLXII in plants and whether the GLX system can protect plant cells from the toxicity of RCS other than MGO and GO. We show that plants possess two GLX systems of different evolutionary origins and with distinct structural and functional properties. The first system is shared by all eukaryotes, scavenges MGO and GO, especially during seedling establishment, and features Zn2+-type GLXI proteins with a metal cofactor preference that were present in the last eukaryotic common ancestor. GLXI and GLXII of the second system, featuring Ni2+-type GLXI, were acquired by the last common ancestor of Viridiplantae through horizontal gene transfer from proteobacteria and can together metabolize keto-D-glucose (KDG, glucosone), a glucose-derived RCS, to D-gluconate. When plants displaying loss-of-function of a Viridiplantae-specific GLXI were grown in KDG, D-gluconate levels were reduced to 10%-15% of those in the wild type, while KDG levels showed an increase of 48%-67%. In contrast to bacterial GLXI homologs, which are active as dimers, plant Ni2+-type GLXI proteins contain a domain duplication, are active as monomers, and have a modified second active site. The acquisition and neofunctionalization of a structurally, biochemically, and functionally distinct GLX system indicates that Viridiplantae are under strong selection to detoxify diverse RCS.
Collapse
Affiliation(s)
- Manuel Balparda
- Molekulare Pflanzenphysiologie, Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Jessica Schmitz
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martin Duemmel
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabell C Wuthenow
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marc Schmidt
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Jaishankar J, Bhatoa L, Patil N, Srivastava P. Microarray profiling and identification of core promoter sequence in Gordonia. Genomics 2021; 113:4327-4336. [PMID: 34801686 DOI: 10.1016/j.ygeno.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Gordonia are Gram-positive bacteria which have immense biotechnological potential. Genomes of several Gordonia spp. have been sequenced but a detailed analysis of the differentially expressed genes during growth, the promoters which drive their expression and the information on the core promoter sequence is lacking. Here, we report the identification of core promoter sequence in Gordonia sp. IITR100. The GC content of the promoters was found to be within a range of 62-65%. The 5'-UTR length in the genes was also analysed and about 56% promoters were found to have long 5'-UTR. The functionality of the promoters was validated by microarray profiling. Based on the differential expression of genes, two growth phase dependent promoters PdsbA and Pglx were isolated and analysed. They add to the existing repertoire of the promoters functional in both Gram-negative and Gram-positive bacteria. Our results suggest that the core promoter sequence identified is conserved in members of Gordonia spp. and is similar to that of other members of Actinobacteria.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Lagan Bhatoa
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Patil
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
8
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
9
|
Dual Activity BLEG-1 from Bacillus lehensis G1 Revealed Structural Resemblance to B3 Metallo-β-Lactamase and Glyoxalase II: An Insight into Its Enzyme Promiscuity and Evolutionary Divergence. Int J Mol Sci 2021; 22:ijms22179377. [PMID: 34502284 PMCID: PMC8431146 DOI: 10.3390/ijms22179377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are class B β-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of β-lactam antibiotics. A previous study on BLEG-1 (formerly called Bleg1_2437), a hypothetical protein from Bacillus lehensis G1, revealed sequence similarity and activity to B3 subclass MBLs, despite its evolutionary divergence from these enzymes. Its relatedness to glyoxalase II (GLXII) raises the possibility of its enzymatic promiscuity and unique structural features compared to other MBLs and GLXIIs. This present study highlights that BLEG-1 possessed both MBL and GLXII activities with similar catalytic efficiencies. Its crystal structure revealed highly similar active site configuration to YcbL and GloB GLXIIs from Salmonella enterica, and L1 B3 MBL from Stenotrophomonas maltophilia. However, different from GLXIIs, BLEG-1 has an insertion of an active-site loop, forming a binding cavity similar to B3 MBL at the N-terminal region. We propose that BLEG-1 could possibly have evolved from GLXII and adopted MBL activity through this insertion.
Collapse
|
10
|
Tracing the Evolution of Plant Glyoxalase III Enzymes for Structural and Functional Divergence. Antioxidants (Basel) 2021; 10:antiox10050648. [PMID: 33922426 PMCID: PMC8170915 DOI: 10.3390/antiox10050648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
Glyoxalase pathway is the primary route for metabolism of methylglyoxal (MG), a toxic ubiquitous metabolite that affects redox homeostasis. It neutralizes MG using Glyoxalase I and Glyoxalase II (GLYI and GLYII) enzymes in the presence of reduced glutathione. In addition, there also exists a shorter route for the MG detoxification in the form of Glyoxalase III (GLYIII) enzymes, which can convert MG into D-lactate in a single-step without involving glutathione. GLYIII proteins in different systems demonstrate diverse functional capacities and play a vital role in oxidative stress response. To gain insight into their evolutionary patterns, here we studied the evolution of GLYIII enzymes across prokaryotes and eukaryotes, with special emphasis on plants. GLYIII proteins are characterized by the presence of DJ-1_PfpI domains thereby, belonging to the DJ-1_PfpI protein superfamily. Our analysis delineated evolution of double DJ-1_PfpI domains in plant GLYIII. Based on sequence and structural characteristics, plant GLYIII enzymes could be categorized into three different clusters, which followed different evolutionary trajectories. Importantly, GLYIII proteins from monocots and dicots group separately in each cluster and the each of the two domains of these proteins also cluster differentially. Overall, our findings suggested that GLYIII proteins have undergone significant evolutionary changes in plants, which is likely to confer diversity and flexibility in their functions.
Collapse
|
11
|
Zunkel K, Simm A, Bartling B. Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol 2020; 141:111333. [PMID: 32298726 DOI: 10.1016/j.fct.2020.111333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Reactive carbonyls, including methylglyoxal (MG), are considered toxic compounds in foodstuffs because they irreversibly modify proteins and produce advanced glycation end products (AGEs). Therefore, we studied the long-term effect of increased MG intake in mature adult mice. Six-month-old C57BL/6N mice received MG by drinking water (2.5 mg/ml; i.e., 200-300 mg/kg BW/d) until death. This treatment caused an immediate strong increase in urine MG and a delayed moderate increase in plasma MG. At 24 months of age, mice administered MG showed no changes in the blood and tissue activity of glyoxalase-1 (Glo1), an intracellular MG-detoxifying enzyme; no signs of renal insufficiency and diabetes, including unchanged AGE modifications of plasma and vessel proteins; reduced tumour incidence; and slightly increased survival. Mice simultaneously deficient in the receptor for AGEs (RAGE) and overexpressing Glo1 exhibited higher basal plasma MG levels and did generally not respond to long-term MG intake. In vitro experiments supported the minor relevance of Glo1 in the detoxification of circulating MG but the important role of plasma albumin as an MG scavenger. In conclusion, the detoxification of dietary MG through renal excretion and further mechanisms largely prevents the toxicity of MG and possibly other food-derived reactive carbonyls in mature adults.
Collapse
Affiliation(s)
- Katja Zunkel
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Animal Health Management, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
12
|
Lienkamp AC, Heine T, Tischler D. Glutathione: A powerful but rare cofactor among Actinobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:181-217. [PMID: 32386605 DOI: 10.1016/bs.aambs.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine, GSH) is a powerful cellular redox agent. In nature only the l,l-form is common among the tree of life. It serves as antioxidant or redox buffer system, protein regeneration and activation by interaction with thiol groups, unspecific reagent for conjugation during detoxification, marker for amino acid or peptide transport even through membranes, activation or solubilization of compounds during degradative pathways or just as redox shuttle. However, the role of GSH production and utilization in bacteria is more complex and especially little is known for the Actinobacteria. Some recent reports on GSH use in degradative pathways came across and this is described herein. GSH is used by transferases to activate and solubilize epoxides. It allows funneling epoxides as isoprene oxide or styrene oxide into central metabolism. Thus, the distribution of GSH synthesis, recycling and application among bacteria and especially Actinobacteria are highlighted including the pathways and contributing enzymes.
Collapse
Affiliation(s)
- Anna C Lienkamp
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
13
|
Chaudhry V, Patil PB. Evolutionary insights into adaptation of Staphylococcus haemolyticus to human and non-human niches. Genomics 2019; 112:2052-2062. [PMID: 31785311 DOI: 10.1016/j.ygeno.2019.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Staphylococcus haemolyticus is a well-known member of human skin microbiome and an emerging opportunistic human pathogen. Presently, evolutionary studies are limited to human isolates even though it is reported from plants with beneficial properties and in environmental settings. In the present study, we report isolation of novel S. haemolyticus strains from surface sterilized rice seeds and compare their genome to other isolates from diverse niches available in public domain. The study showed expanding nature of pan-genome and revealed set of genes with putative functions related to its adaptability. This is seen by presence of type II lanthipeptide cluster in rice isolates, metal homeostasis genes in an isolate from copper coin and gene encoding methicillin resistance in human isolates. The present study on differential genome dynamics and role of horizontal gene transfers has provided novel insights into capability for ecological diversification of a bacterium of significance to human health.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India.
| |
Collapse
|
14
|
Al-Sha'er MA, Al-Balas QA, Hassan MA, Al Jabal GA, Almaaytah AM. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents. Comput Biol Chem 2019; 80:102-110. [DOI: 10.1016/j.compbiolchem.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
15
|
González JM, Agostini RB, Alvarez CE, Klinke S, Andreo CS, Campos-Bermudez VA. Deciphering the number and location of active sites in the monomeric glyoxalase I of Zea mays. FEBS J 2019; 286:3255-3271. [PMID: 30993890 DOI: 10.1111/febs.14855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 11/26/2022]
Abstract
Detoxification of methylglyoxal, a toxic by-product of central sugar metabolism, is a major issue for all forms of life. The glyoxalase pathway evolved to effectively convert methylglyoxal into d-lactate via a glutathione hemithioacetal intermediate. Recently, we have shown that the monomeric glyoxalase I from maize exhibits a symmetric fold with two cavities, potentially harboring two active sites, in analogy with homodimeric enzyme surrogates. Here we confirm that only one of the two cavities exhibits glyoxalase I activity and show that it adopts a tunnel-shaped structure upon substrate binding. Such conformational change gives rise to independent binding sites for glutathione and methylglyoxal in the same active site, with important implications for the molecular reaction mechanism, which has been a matter of debate for several decades. DATABASE: Structural data are available in The Protein Data Bank database under the accession numbers 6BNN, 6BNX, and 6BNZ.
Collapse
Affiliation(s)
- Javier M González
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Argentina
| | - Romina B Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| | - Valeria A Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
16
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
17
|
Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, Yates J, Ragni L, Brandelli A. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol 2018; 76:310-318. [DOI: 10.1016/j.fm.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
18
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
19
|
Gandhi NN, Cobra PF, Steele JL, Markley JL, Rankin SA. Lactobacillus demonstrate thiol-independent metabolism of methylglyoxal: Implications toward browning prevention in Parmesan cheese. J Dairy Sci 2018; 101:968-978. [PMID: 29274980 PMCID: PMC6204231 DOI: 10.3168/jds.2017-13577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Endogenous production of α-dicarbonyls by lactic acid bacteria can influence the quality and consistency of fermented foods and beverages. Methylglyoxal (MG) in Parmesan cheese can contribute toward undesired browning during low temperature ripening and storage conditions, leading to the economic depreciation of affected cheeses. We demonstrate the effects of exogenously added MG on browning and volatile formation using a Parmesan cheese extract (PCE). To determine the influence of Lactobacillus on α-dicarbonyls, strains were screened for their ability to modulate concentrations of MG, glyoxal, and diacetyl in PCE. It was found that a major metabolic pathway of MG in Lactobacillus is a thiol-independent reduction, whereby MG is partially or fully reduced to acetol and 1,2-propanediol, respectively. The majority of lactobacilli grown in PCE accumulated the intermediate acetol, whereas Lactobacillus brevis 367 formed exclusively 1,2-propanediol and Lactobacillus fermentum 14931 formed both metabolites. In addition, we determined the inherent tolerance to bacteriostatic concentrations of MG among lactobacilli grown in rich media. It was found that L. brevis 367 reduces MG exclusively to 1,2-propanediol, which correlates to both its ability to significantly decrease MG concentrations in PCE, as well as its significantly higher tolerance to MG, in comparison to other lactobacilli screened. These findings have broader implications toward lactobacilli as a viable solution for reducing MG-mediated browning of Parmesan cheese.
Collapse
Affiliation(s)
- N N Gandhi
- Department of Food Science, and National Magnetic Resonance Facility, University of Wisconsin, Madison 53706
| | - P F Cobra
- Department of Biochemistry, National Magnetic Resonance Facility, University of Wisconsin, Madison 53706
| | - J L Steele
- Department of Food Science, and National Magnetic Resonance Facility, University of Wisconsin, Madison 53706
| | - J L Markley
- Department of Biochemistry, National Magnetic Resonance Facility, University of Wisconsin, Madison 53706
| | - S A Rankin
- Department of Food Science, and National Magnetic Resonance Facility, University of Wisconsin, Madison 53706.
| |
Collapse
|
20
|
Wezena CA, Alisch R, Golzmann A, Liedgens L, Staudacher V, Pradel G, Deponte M. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development. MICROBIAL CELL 2017; 5:32-41. [PMID: 29354648 PMCID: PMC5772037 DOI: 10.15698/mic2018.01.608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enzymes glyoxalase 1 and 2 (Glo1 and Glo2) are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE) in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Romy Alisch
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Alexandra Golzmann
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Linda Liedgens
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
21
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
22
|
Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Int J Mol Sci 2017; 18:ijms18040250. [PMID: 28358304 PMCID: PMC5412262 DOI: 10.3390/ijms18040250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
- Department of Plant Molecular Biology, University of Delhi South campus, New Delhi 110021, India.
| | - Mohammad Rokebul Hasan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
23
|
Tan SH, Normi YM, Leow ATC, Salleh AB, Murad AMA, Mahadi NM, Rahman MBA. Danger lurking in the "unknowns": structure-to-function studies of hypothetical protein Bleg1_2437 from Bacillus lehensis G1 alkaliphile revealed an evolutionary divergent B3 metallo-beta-lactamase. J Biochem 2017; 161:167-186. [PMID: 28175318 DOI: 10.1093/jb/mvw058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/22/2016] [Indexed: 11/12/2022] Open
Abstract
The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.
Collapse
Affiliation(s)
- Soo Huei Tan
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Kajang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Kajang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Al-Balas QA, Hassan MA, Al-Shar'i NA, Mhaidat NM, Almaaytah AM, Al-Mahasneh FM, Isawi IH. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents. Drug Des Devel Ther 2016; 10:2623-9. [PMID: 27574401 PMCID: PMC4993257 DOI: 10.2147/dddt.s110997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps.
Collapse
Affiliation(s)
| | | | | | | | - Ammar M Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
25
|
Wezena CA, Urscher M, Vince R, More SS, Deponte M. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum. Redox Biol 2016; 8:348-53. [PMID: 26972115 PMCID: PMC4789335 DOI: 10.1016/j.redox.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022] Open
Abstract
Glyoxalases prevent the formation of advanced glycation end products by converting glycolysis-derived methylglyoxal to d-lactate with the help of glutathione. Vander Jagt and colleagues previously showed that erythrocytes release about thirty times more d-lactate after infection with the human malaria parasite Plasmodium falciparum. Functional glyoxalases in the host-parasite unit might therefore be crucial for parasite survival. Here, we determined the antimalarial and hemolytic activity of two tight-binding glyoxalase inhibitors using infected and uninfected erythrocytes. In addition, we synthesized and analyzed a set of diester derivates of both tight-binding inhibitors resulting in up to threefold lower IC50 values and an altered methemoglobin formation and hemolytic activity depending on the type of ester. Inhibitor treatments of uninfected erythrocytes revealed an extremely slow inactivation of the host cell glyoxalase, irrespective of inhibitor modifications, and a potential dispensability of the host cell enzyme for parasite survival. Our study highlights the benefits and drawbacks of different esterifications of glutathione-derived inhibitors and demonstrates the suitability of glyoxalase inhibitors as a tool for deciphering the relevance and mode of action of different glyoxalase systems in a host-parasite unit.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Miriam Urscher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Abstract
AbstractThe glyoxalase enzyme system utilizes intracellular thiols such as glutathione to convert α-ketoaldehydes, such as methylglyoxal, into D-hydroxyacids. This overview discusses several main aspects of the glyoxalase system and its likely function in the cell. The control of methylglyoxal levels in the cell is an important biochemical imperative and high levels have been associated with major medical symptoms that relate to this metabolite’s capability to covalently modify proteins, lipids and nucleic acid.
Collapse
|
27
|
Turra GL, Agostini RB, Fauguel CM, Presello DA, Andreo CS, González JM, Campos-Bermudez VA. Structure of the novel monomeric glyoxalase I from Zea mays. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2009-20. [PMID: 26457425 PMCID: PMC4601366 DOI: 10.1107/s1399004715015205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/14/2015] [Indexed: 11/10/2022]
Abstract
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.
Collapse
Affiliation(s)
- Gino L. Turra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Romina B. Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Carolina M. Fauguel
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Daniel A. Presello
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Carlos S. Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Javier M. González
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Valeria A. Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
28
|
Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor. Acta Pharmacol Sin 2015; 36:1145-50. [PMID: 26279158 DOI: 10.1038/aps.2015.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
AIM Glyoxalase I (GLOI), a glutathione (GSH)-dependent enzyme, is overexpressed in tumor cells and related to multi-drug resistance in chemotherapy, making GLOI inhibitors as potential anti-tumor agents. But the most studied GSH analogs exhibit poor pharmacokinetic properties. The aim of this study was to discover novel non-GSH analog GLOI inhibitors and analyze their binding mechanisms. METHODS Mouse GLOI (mGLOI) was expressed in BL21 (DE3) pLysS after induction with isopropyl-β-D-1-thiogalactopyranoside and purified using AKTA FPLC system. An in vitro mGLOI enzyme assay was used to screen a small pool of compounds containing carboxyl groups. Crystal structure of the mGLOI-inhibitor complex was determined at 2.3 Å resolution. Molecular docking study was performed using Discovery Studio 2.5 software package. RESULTS A natural compound 18-β-glycyrrhetinic acid (GA) and its derivative carbenoxolone were identified as potent competitive non-GSH analog mGLOI inhibitors with Ki values of 0.29 μmol/L and 0.93 μmol/L, respectively. Four pentacyclic triterpenes (ursolic acid, oleanolic acid, betulic acid and tripterine) showed weak activities (mGLOI inhibition ratio <25% at 10 μmol/L) and other three (maslinic acid, corosolic acid and madecassic acid) were inactive. The crystal structure of the mGLOI-GA complex showed that the carboxyl group of GA mimicked the γ-glutamyl residue of GSH by hydrogen bonding to the glutamyl sites (residues Arg38B, Asn104B and Arg123A) in the GSH binding site of mGLOI. The extensive van der Waals interactions between GA and the surrounding residues also contributed greatly to the binding of GA and mGLOI. CONCLUSION This work demonstrates a carboxyl group to be an important functional feature of non-GSH analog GLOI inhibitors.
Collapse
|
29
|
Abstract
A number of bacterial glyoxalase I enzymes are maximally activated by Ni2+ and Co2+ ions, but are inactive in the presence of Zn2+, yet these enzymes will also bind this metal ion. The structure-activity relationships between these two classes of glyoxalase I serve as important clues as to how the molecular structures of these proteins control metal-activation profiles.
Collapse
|
30
|
Chakraborty S, Karmakar K, Chakravortty D. Cells producing their own nemesis: Understanding methylglyoxal metabolism. IUBMB Life 2014; 66:667-78. [PMID: 25380137 DOI: 10.1002/iub.1324] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| |
Collapse
|
31
|
Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:93-105. [PMID: 25039836 DOI: 10.1111/tpj.12621] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 05/04/2023]
Abstract
Glyoxalase II (GLY II), the second enzyme of glyoxalase pathway that detoxifies cytotoxic metabolite methylglyoxal (MG), belongs to the superfamily of metallo-β-lactamases. Here, detailed analysis of one of the uncharacterized rice glyoxalase II family members, OsGLYII-2 was conducted in terms of its metal content, enzyme kinetics and stress tolerance potential. Functional complementation of yeast GLY II mutant (∆GLO2) and enzyme kinetics data suggested that OsGLYII-2 possesses characteristic GLY II activity using S-lactoylglutathione (SLG) as the substrate. Further, Inductively Coupled Plasma Atomic Emission spectroscopy and modelled structure revealed that OsGLYII-2 contains a binuclear Zn/Fe centre in its active site and chelation studies indicated that these are essential for its activity. Interestingly, reconstitution of chelated enzyme with Zn(2+), and/or Fe(2+) could not reactivate the enzyme, while addition of Co(2+) was able to do so. End product inhibition study provides insight into the kinetics of GLY II enzyme and assigns hitherto unknown function to reduced glutathione (GSH). Ectopic expression of OsGLYII-2 in Escherichia coli and tobacco provides improved tolerance against salinity and dicarbonyl stress indicating towards its role in abiotic stress tolerance. Maintained levels of MG and GSH as well as better photosynthesis rate and reduced oxidative damage in transgenic plants under stress conditions seems to be the possible mechanism facilitating enhanced stress tolerance.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
32
|
Abstract
Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure–function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host–parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.
Collapse
|
33
|
Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol 2014; 80:1799-806. [PMID: 24389926 DOI: 10.1128/aem.03281-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe(2+) for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.
Collapse
|
34
|
Affiliation(s)
- Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
35
|
Kaur C, Vishnoi A, Ariyadasa TU, Bhattacharya A, Singla-Pareek SL, Sopory SK. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep 2013; 3:3076. [PMID: 24220130 PMCID: PMC3826101 DOI: 10.1038/srep03076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/04/2013] [Indexed: 02/05/2023] Open
Abstract
Glyoxalase pathway plays an important role in stress adaptation and many clinical disorders. The first enzyme of this pathway, glyoxalase I (GlxI), uses methylglyoxal as a substrate and requires either Ni(II)/Co(II) or Zn(II) for activity. Here we have investigated the origin of different metal ion specificities of GlxI and subsequent pattern of inheritance during evolution. Our results suggest a primitive origin of single-domain Ni dependent GlxI [Ni-GlxI]. This subsequently evolved into Zn activated GlxI [Zn-GlxI] in deltaproteobacteria. However, origin of eukaryotic Zn-GlxI is different and can be traced to GlxI from Candidatus pelagibacter and Sphingomonas. In eukaryotes GlxI has evolved as two-domain protein but the corresponding Zn form is lost in plants/higher eukaryotes. In plants gene expansion has given rise to multiple two-domain Ni-GlxI which are differentially regulated under abiotic stress conditions. Our results suggest that different forms of GlxI have evolved to help plants adapt to stress.
Collapse
Affiliation(s)
- Charanpreet Kaur
- 1] International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi, India [2] [3]
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The discovery of the enzymatic formation of lactic acid from methylglyoxal dates back to 1913 and was believed to be associated with one enzyme termed ketonaldehydemutase or glyoxalase, the latter designation prevailed. However, in 1951 it was shown that two enzymes were needed and that glutathione was the required catalytic co-factor. The concept of a metabolic pathway defined by two enzymes emerged at this time. Its association to detoxification and anti-glycation defence are its presently accepted roles, since methylglyoxal exerts irreversible effects on protein structure and function, associated with misfolding. This functional defence role has been the rationale behind the possible use of the glyoxalase pathway as a therapeutic target, since its inhibition might lead to an increased methylglyoxal concentration and cellular damage. However, metabolic pathway analysis showed that glyoxalase effects on methylglyoxal concentration are likely to be negligible and several organisms, from mammals to yeast and protozoan parasites, show no phenotype in the absence of one or both glyoxalase enzymes. The aim of the present review is to show the evolution of thought regarding the glyoxalase pathway since its discovery 100 years ago, the current knowledge on the glyoxalase enzymes and their recognized role in the control of glycation processes.
Collapse
|
37
|
Synthesis, structure, and properties of bis(2-(1-ethyl-1H-imidazol-4-yl)acetate) copper(II). Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Ozyamak E, de Almeida C, de Moura APS, Miller S, Booth IR. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I. Mol Microbiol 2013; 88:936-50. [PMID: 23646895 PMCID: PMC3739934 DOI: 10.1111/mmi.12234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 12/02/2022]
Abstract
Methylglyoxal (MG) elicits activation of K+ efflux systems to protect cells against the toxicity of the electrophile. ChIP-chip targeting RNA polymerase, supported by a range of other biochemical measurements and mutant creation, was used to identify genes transcribed in response to MG and which complement this rapid response. The SOS DNA repair regulon is induced at cytotoxic levels of MG, even when exposure to MG is transient. Glyoxalase I alone among the core MG protective systems is induced in response to MG exposure. Increased expression is an indirect consequence of induction of the upstream nemRA operon, encoding an enzyme system that itself does not contribute to MG detoxification. Moreover, this induction, via nemRA only occurs when cells are exposed to growth inhibitory concentrations of MG. We show that the kdpFABCDE genes are induced and that this expression occurs as a result of depletion of cytoplasmic K+ consequent upon activation of the KefGB K+ efflux system. Finally, our analysis suggests that the transcriptional changes in response to MG are a culmination of the damage to DNA and proteins, but that some integrate specific functions, such as DNA repair, to augment the allosteric activation of the main protective system, KefGB.
Collapse
Affiliation(s)
- Ertan Ozyamak
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
39
|
Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2013; 126:415-25. [PMID: 23203352 DOI: 10.1007/s10265-012-0532-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/20/2012] [Indexed: 05/06/2023]
Abstract
Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chuan Wu
- College of Life Sciences, Heilongjiang University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
41
|
|
42
|
Al-Balas Q, Hassan M, Al-Oudat B, Alzoubi H, Mhaidat N, Almaaytah A. Generation of the first structure-based pharmacophore model containing a selective "zinc binding group" feature to identify potential glyoxalase-1 inhibitors. Molecules 2012; 17:13740-58. [PMID: 23174893 PMCID: PMC6268171 DOI: 10.3390/molecules171213740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a “zinc binding group” which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available “Zinc Clean Drug-Like Database” that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the “zinc binding group” with the highest consensus scoring from docking.
Collapse
Affiliation(s)
- Qosay Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +96-2-776337216; Fax: +962-2-7201075
| | - Mohammad Hassan
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Buthina Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Hassan Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mails: (M.H.); (B.A.-O.); (H.A.)
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mail:
| | - Ammar Almaaytah
- Department of Pharmaceu tical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; E-Mail:
| |
Collapse
|
43
|
Mullings KY, Sukdeo N, Suttisansanee U, Ran Y, Honek JF. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily. J Inorg Biochem 2011; 108:133-40. [PMID: 22173092 DOI: 10.1016/j.jinorgbio.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/11/2011] [Accepted: 11/11/2011] [Indexed: 11/25/2022]
Abstract
The Escherichia coli glyoxalase system consists of the metalloenzymes glyoxalase I and glyoxalase II. Little is known regarding Ni(2+)-activated E. coli glyoxalase I substrate specificity, its thiol cofactor preference, the presence or absence of any substrate kinetic isotope effects on the enzyme mechanism, or whether glyoxalase I might catalyze additional reactions similar to those exhibited by related βαβββ structural superfamily members. The current investigation has shown that this two-enzyme system is capable of utilizing the thiol cofactors glutathionylspermidine and trypanothione, in addition to the known tripeptide glutathione, to convert substrate methylglyoxal to non-toxic D-lactate in the presence of Ni(2+) ion. E. coli glyoxalase I, reconstituted with either Ni(2+) or Cd(2+), was observed to efficiently process deuterated and non-deuterated phenylglyoxal utilizing glutathione as cofactor. Interestingly, a substrate kinetic isotope effect for the Ni(2+)-substituted enzyme was not detected; however, the proton transfer step was observed to be partially rate limiting for the Cd(2+)-substituted enzyme. This is the first non-Zn(2+)-activated GlxI where a metal ion-dependent kinetic isotope effect using deuterium-labelled substrate has been observed. Attempts to detect a glutathione conjugation reaction with the antibiotic fosfomycin, similar to the reaction catalyzed by the related superfamily member FosA, were unsuccessful when utilizing the E. coli glyoxalase I E56A mutein.
Collapse
Affiliation(s)
- Kadia Y Mullings
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|