1
|
Schultz‐Rogers LE, Thayer ML, Kambakam S, Wierson WA, Helmer JA, Wishman MD, Wall KA, Greig JL, Forsman JL, Puchhalapalli K, Nair S, Weiss TJ, Luiken JM, Blackburn PR, Ekker SC, Kool M, McGrail M. Rbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis. Dev Dyn 2022; 251:1267-1290. [PMID: 35266256 PMCID: PMC9356990 DOI: 10.1002/dvdy.467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.
Collapse
Affiliation(s)
- Laura E. Schultz‐Rogers
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Present address:
Department of Pathology and Lab MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Michelle L. Thayer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Wesley A. Wierson
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Jordan A. Helmer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Mark D. Wishman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kristen A. Wall
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
| | - Jessica L. Greig
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Jaimie L. Forsman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kavya Puchhalapalli
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Siddharth Nair
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| | - Trevor J. Weiss
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Jon M. Luiken
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Patrick R. Blackburn
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Marcel Kool
- Hopp Children's Cancer (KiTZ)HeidelbergGermany
- Division of Pediatric Neuro‐oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK)HeidelbergGermany
- Princess Maxima Center for Pediatric OncologyUtrechtNetherlands
| | - Maura McGrail
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| |
Collapse
|
2
|
Salimian J, Baradaran B, Azimzadeh Jamalkandi S, Moridikia A, Ahmadi A. MiR-486-5p enhances cisplatin sensitivity of human muscle-invasive bladder cancer cells by induction of apoptosis and down-regulation of metastatic genes. Urol Oncol 2020; 38:738.e9-738.e21. [PMID: 32527702 DOI: 10.1016/j.urolonc.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cisplatin is one of the common chemotherapy drugs for bladder cancer, and resistance to this drug is one of the major obstacles to effective chemotherapy. MicroRNAs (miRNAs) are a category of small noncoding RNAs that can regulate the expression of numerous genes. Recent studies showed that miRNAs can act as a powerful regulator of chemo-sensitivity in cancer cells. Hence, this study aimed to investigate the effects of miRNA-486-5p on cisplatin-sensitivity of different bladder cancer cells. MATERIAL AND METHODS The 5637 and EJ138 cancer cells were treated with miRNA-486-5p and cisplatin, individually or in combination. RESULTS Afterward, the cytotoxicity effects of these treatments were determined by MTT assay and the increased cisplatin-sensitivity observed in both cell lines, especially, 5637 cells. Moreover, subG1 phase cell cycle arrest, changes in the expression of caspase-9, caspase-3, P53, SIRT1, OLFM4, SMAD2, and Bcl-2 genes and nuclear fragmentation also revealed the induction of apoptosis in all treatments, which increased in combination groups. Also, the combination of miRNA-486-5p with cisplatin significantly down-regulated the expression of migration associated genes including ROCK, CD44, and MMP-9 as compared with cisplatin alone. CONCLUSION Altogether, these results indicated that the miRNA-486-5p could induce apoptosis and inhibit cell migration ability of the cells. It seems that pre-electroporation of cells with miRNA-486-5p has useful results in the enhancement of cisplatin sensitivity of 5637 and EJ138 cancer cells and this combination may be a promising treatment strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdollah Moridikia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Condamine T, Jager M, Leclère L, Blugeon C, Lemoine S, Copley RR, Manuel M. Molecular characterisation of a cellular conveyor belt in Clytia medusae. Dev Biol 2019; 456:212-225. [PMID: 31509769 DOI: 10.1016/j.ydbio.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2019] [Accepted: 09/07/2019] [Indexed: 11/25/2022]
Abstract
The tentacular system of Clytia hemisphaerica medusa (Cnidaria, Hydrozoa) has recently emerged as a promising experimental model to tackle the developmental mechanisms that regulate cell lineage progression in an early-diverging animal phylum. From a population of proximal stem cells, the successive steps of tentacle stinging cell (nematocyte) elaboration, are spatially ordered along a "cellular conveyor belt". Furthermore, the C. hemisphaerica tentacular system exhibits bilateral organisation, with two perpendicular polarity axes (proximo-distal and oral-aboral). We aimed to improve our knowledge of this cellular system by combining RNAseq-based differential gene expression analyses and expression studies of Wnt signalling genes. RNAseq comparisons of gene expression levels were performed (i) between the tentacular system and a control medusa deprived of all tentacles, nematogenic sites and gonads, and (ii) between three samples staggered along the cellular conveyor belt. The behaviour in these differential expression analyses of two reference gene sets (stem cell genes; nematocyte genes), as well as the relative representations of selected gene ontology categories, support the validity of the cellular conveyor belt model. Expression patterns obtained by in situ hybridisation for selected highly differentially expressed genes and for Wnt signalling genes are largely consistent with the results from RNAseq. Wnt signalling genes exhibit complex spatial deployment along both polarity axes of the tentacular system, with the Wnt/β-catenin pathway probably acting along the oral-aboral axis rather than the proximo-distal axis. These findings reinforce the idea that, despite overall radial symmetry, cnidarians have a full potential for elaboration of bilateral structures based on finely orchestrated deployment of an ancient developmental gene toolkit.
Collapse
Affiliation(s)
- Thomas Condamine
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France
| | - Muriel Jager
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France
| | - Corinne Blugeon
- Genomic Paris Centre, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Paris Centre, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France
| | - Michaël Manuel
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France.
| |
Collapse
|
4
|
Boulanger-Weill J, Sumbre G. Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum. Front Cell Dev Biol 2019; 7:57. [PMID: 31058148 PMCID: PMC6477100 DOI: 10.3389/fcell.2019.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/29/2019] [Indexed: 11/15/2022] Open
Abstract
Neurogenesis persists during adulthood in restricted parts of the vertebrate brain. In the optic tectum (OT) of the zebrafish larva, newborn neurons are continuously added and contribute to visual information processing. Recent studies have started to describe the functional development and fate of newborn neurons in the OT. Like the mammalian brain, newborn neurons in the OT require sensory inputs for their integration into local networks and survival. Recent findings suggest that the functional development of newborn neurons requires both activity-dependent and hard-wired mechanisms for proper circuit integration. Here, we review these findings and argue that the study of neurogenesis in non-mammalian species will help elucidate the general mechanisms of circuit assembly following neurogenesis.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Germán Sumbre
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Lindsey BW, Hall ZJ, Heuzé A, Joly JS, Tropepe V, Kaslin J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 2018; 170:99-114. [PMID: 29902500 DOI: 10.1016/j.pneurobio.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ontario, Canada; Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| | - Zachary J Hall
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Aurélie Heuzé
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Jean-Stéphane Joly
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Bouffard S, Dambroise E, Brombin A, Lempereur S, Hatin I, Simion M, Corre R, Bourrat F, Joly JS, Jamen F. Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina. Dev Biol 2018; 437:1-16. [PMID: 29477341 DOI: 10.1016/j.ydbio.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Fibrillarin (Fbl) is a highly conserved protein that plays an essential role in ribosome biogenesis and more particularly in the methylation of ribosomal RNAs and rDNA histones. In cellular models, FBL was shown to play an important role in tumorigenesis and stem cell differentiation. We used the zebrafish as an in vivo model to study Fbl function during embryonic development. We show here that the optic tectum and the eye are severely affected by Fbl depletion whereas ventral regions of the brain are less impacted. The morphogenesis defects are associated with impaired neural differentiation and massive apoptosis. Polysome gradient experiments show that fbl mutant larvae display defects in ribosome biogenesis and activity. Strikingly, flow cytometry analyses revealed different S-phase profiles between wild-type and mutant cells, suggesting a defect in S-phase progression.
Collapse
Affiliation(s)
- Stéphanie Bouffard
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Emilie Dambroise
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Alessandro Brombin
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Sylvain Lempereur
- Tefor Core Facility, TEFOR Infrastructure, NeuroPSI, CNRS, Gif-sur-Yvette, France; Université Paris-Est, LIGM, ESIEE, Noisy-le-Grand, France
| | - Isabelle Hatin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Matthieu Simion
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Raphaël Corre
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Franck Bourrat
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France; Tefor Core Facility, TEFOR Infrastructure, NeuroPSI, CNRS, Gif-sur-Yvette, France
| | - Françoise Jamen
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Curr Biol 2017; 26:R1001-R1009. [PMID: 27780043 DOI: 10.1016/j.cub.2016.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.
Collapse
|
8
|
Davis TL, Rebay I. Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 2017; 144:2640-2651. [PMID: 28619818 DOI: 10.1242/dev.147231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The transition from proliferation to specification is fundamental to the development of appropriately patterned tissues. In the developing Drosophila eye, Eyes absent (Eya) and Sine oculis (So) orchestrate the progression of progenitor cells from asynchronous cell division to G1 arrest and neuronal specification at the morphogenetic furrow. Here, we uncover a novel role for Eya and So in promoting cell cycle exit in the second mitotic wave (SMW), a synchronized, terminal cell division that occurs several hours after passage of the furrow. We show that Combgap (Cg), a zinc-finger transcription factor, antagonizes Eya-So function in the SMW. Based on the ability of Cg to attenuate Eya-So transcriptional output in vivo and in cultured cells and on meta analysis of their chromatin occupancy profiles, we speculate that Cg limits Eya-So activation of select target genes posterior to the furrow to ensure properly timed mitotic exit. Our work supports a model in which context-specific modulation of transcriptional activity enables Eya and So to promote both entry into and exit from the cell cycle in a distinct spatiotemporal sequence.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Dambroise E, Simion M, Bourquard T, Bouffard S, Rizzi B, Jaszczyszyn Y, Bourge M, Affaticati P, Heuzé A, Jouralet J, Edouard J, Brown S, Thermes C, Poupon A, Reiter E, Sohm F, Bourrat F, Joly JS. Postembryonic Fish Brain Proliferation Zones Exhibit Neuroepithelial-Type Gene Expression Profile. Stem Cells 2017; 35:1505-1518. [PMID: 28181357 DOI: 10.1002/stem.2588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023]
Abstract
In mammals, neuroepithelial cells play an essential role in embryonic neurogenesis, whereas glial stem cells are the principal source of neurons at postembryonic stages. By contrast, neuroepithelial-like stem/progenitor (NE) cells have been shown to be present throughout life in teleosts. We used three-dimensional (3D) reconstructions of cleared transgenic wdr12:GFP medaka brains to demonstrate that this cell type is widespread in juvenile and to identify new regions containing NE cells. We established the gene expression profile of optic tectum (OT) NE cells by cell sorting followed by RNA-seq. Our results demonstrate that most OT NE cells are indeed active stem cells and that some of them exhibit long G2 phases. We identified several novel pathways (e.g., DNA repair pathways) potentially involved in NE cell homeostasis. In situ hybridization studies showed that all NE populations in the postembryonic medaka brain have a similar molecular signature. Our findings highlight the importance of NE progenitors in medaka and improve our understanding of NE-cell biology. These cells are potentially useful not only for neural stem cell studies but also for improving the characterization of neurodevelopmental diseases, such as microcephaly. Stem Cells 2017;35:1505-1518.
Collapse
Affiliation(s)
- Emilie Dambroise
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | - Matthieu Simion
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | | | | | - Barbara Rizzi
- Tefor Core Facility, TEFOR Infrastructure, Neuro-PSI, CNRS, Gif-sur-Yvette, France
| | | | | | - Pierre Affaticati
- Tefor Core Facility, TEFOR Infrastructure, Neuro-PSI, CNRS, Gif-sur-Yvette, France
| | - Aurélie Heuzé
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | - Julia Jouralet
- Plateforme BM-Gif, Imagif, UMR 9198, CNRS, Gif-sur-Yvette, France
| | - Joanne Edouard
- UMS AMAGEN CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | | | | - Frédéric Sohm
- UMS AMAGEN CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Bourrat
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
10
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
11
|
Galant S, Furlan G, Coolen M, Dirian L, Foucher I, Bally-Cuif L. Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. Dev Biol 2016; 420:120-135. [PMID: 27693369 PMCID: PMC5156517 DOI: 10.1016/j.ydbio.2016.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 01/11/2023]
Abstract
Neurogenesis in the post-embryonic vertebrate brain varies in extent and efficiency between species and brain territories. Distinct neurogenesis modes may account for this diversity, and several neural progenitor subtypes, radial glial cells (RG) and neuroepithelial progenitors (NE), have been identified in the adult zebrafish brain. The neurogenic sequences issued from these progenitors, and their contribution to brain construction, remain incompletely understood. Here we use genetic tracing techniques based on conditional Cre recombination and Tet-On neuronal birthdating to unravel the neurogenic sequence operating from NE progenitors in the zebrafish post-embryonic optic tectum. We reveal that a subpopulation of her5-positive NE cells of the posterior midbrain layer stands at the top of a neurogenic hierarchy involving, in order, the amplification pool of the tectal proliferation zone (TPZ), followed by her4-positive RG cells with transient neurogenic activity. We further demonstrate that the adult her5-positive NE pool is issued in lineage from an identically located NE pool expressing the same gene in the embryonic neural tube. Finally, we show that these features are reminiscent of the neurogenic sequence and embryonic origin of the her9-positive progenitor NE pool involved in the construction of the lateral pallium at post-embryonic stages. Together, our results highlight the shared recruitment of an identical neurogenic strategy by two remote brain territories, where long-lasting NE pools serve both as a growth zone and as the life-long source of young neurogenic RG cells. Zebrafish post-embryonic tectal neurogenesis is driven by neuroepithelial progenitors. The neuroepithelial progenitor pool is long-lasting and expresses Her5 life long. Tectal radial glia originate from the her5-positive pool and are transiently neurogenic. The post-embryonic neurogenic sequences of the tectum and lateral pallium are similar.
Collapse
Affiliation(s)
- Sonya Galant
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Giacomo Furlan
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Marion Coolen
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Lara Dirian
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Isabelle Foucher
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
12
|
Ctenophores: an evolutionary-developmental perspective. Curr Opin Genet Dev 2016; 39:85-92. [PMID: 27351593 DOI: 10.1016/j.gde.2016.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/04/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Ctenophores are non-bilaterian metazoans of uncertain phylogenetic position, some recent studies placing them as sister-group to all other animals whereas others suggest this placement is artefactual and ctenophores are more closely allied with cnidarians and bilaterians, with which they share nerve cells, muscles and gut. Available information about developmental genes and their expression and function in ctenophores is reviewed. These data not only unveil some conserved aspects of molecular developmental mechanisms with other basal metazoan lineages, but also can be expected to enlighten the genomic and molecular bases of the evolution of ctenophore-specific traits, including their unique embryonic development, complex anatomy and high cell type diversity.
Collapse
|
13
|
Benítez-Santana T, Simion M, Corraze G, Médale F, Joly JS. Effect of Nutrient Availability on Progenitor Cells in Zebrafish (Danio Rerio). Dev Neurobiol 2016; 77:26-38. [DOI: 10.1002/dneu.22406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tibiábin Benítez-Santana
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| | - Matthieu Simion
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| | - Geneviève Corraze
- INRA UR 1067, Nutrition, Metabolism, and Aquaculture; Saint Pée-sur-Nivelle France
| | - Françoise Médale
- INRA UR 1067, Nutrition, Metabolism, and Aquaculture; Saint Pée-sur-Nivelle France
| | - Jean-Stéphane Joly
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
14
|
Coste A, Jager M, Chambon JP, Manuel M. Comparative study of Hippo pathway genes in cellular conveyor belts of a ctenophore and a cnidarian. EvoDevo 2016; 7:4. [PMID: 26900447 PMCID: PMC4761220 DOI: 10.1186/s13227-016-0041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/10/2016] [Indexed: 11/14/2022] Open
Abstract
Background The Hippo pathway regulates growth rate and organ size in fly and mouse, notably through control of cell proliferation. Molecular interactions at the heart of this pathway are known to have originated in the unicellular ancestry of metazoans. They notably involve a cascade of phosphorylations triggered by the kinase Hippo, with subsequent nuclear to cytoplasmic shift of Yorkie localisation, preventing its binding to the transcription factor Scalloped, thereby silencing proliferation genes. There are few comparative expression data of Hippo pathway genes in non-model animal species and notably none in non-bilaterian phyla. Results All core Hippo pathway genes could be retrieved from the ctenophore Pleurobrachia pileus and the hydrozoan cnidarian Clytia hemisphaerica, with the important exception of Yorkie in ctenophore. Expression study of the Hippo, Salvador and Scalloped genes in tentacle “cellular conveyor belts” of these two organisms revealed striking differences. In P. pileus, their transcripts were detected in areas where undifferentiated progenitors intensely proliferate and where expression of cyclins B and D was also seen. In C. hemisphaerica, these three genes and Yorkie are expressed not only in the proliferating but also in the differentiation zone of the tentacle bulb and in mature tentacle cells. However, using an antibody designed against the C. hemiphaerica Yorkie protein, we show in two distinct cell lineages of the medusa that Yorkie localisation is predominantly nuclear in areas of active cell proliferation and mainly cytoplasmic elsewhere. Conclusions This is the first evidence of nucleocytoplasmic Yorkie shift in association with the arrest of cell proliferation in a cnidarian, strongly evoking the cell division-promoting role of this protein and its inhibition by the activated Hippo pathway in bilaterian models. Our results furthermore highlight important differences in terms of deployment and regulation of Hippo pathway genes between cnidarians and ctenophores. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0041-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Coste
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS) CNRS, UMR 7138 Evolution Paris-Seine, Case 05, 7 quai St Bernard, 75005 Paris, France
| | - Muriel Jager
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS) CNRS, UMR 7138 Evolution Paris-Seine, Case 05, 7 quai St Bernard, 75005 Paris, France
| | - Jean-Philippe Chambon
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS) CNRS, UMR 7138 Evolution Paris-Seine, Case 05, 7 quai St Bernard, 75005 Paris, France
| | - Michaël Manuel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS) CNRS, UMR 7138 Evolution Paris-Seine, Case 05, 7 quai St Bernard, 75005 Paris, France
| |
Collapse
|
15
|
Arenas-Mena C, Coffman JA. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals. Dev Dyn 2015; 244:1193-201. [PMID: 26173445 PMCID: PMC4705838 DOI: 10.1002/dvdy.24305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, New York
| | | |
Collapse
|
16
|
Abstract
The regulation of neural stem cells is key to their use for repair. Reporting in this issue of Developmental Cell, Dirian et al. (2014) identify an adult neural stem cell population surprisingly distinct in Notch independence, lack of radial glia hallmarks, and late contribution to neurogenesis in a strikingly region-specific manner.
Collapse
Affiliation(s)
- Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, München, Germany; Biomedical Center, University of Munich, 80336 München, Germany; Munich Cluster for Systems Neurology SYNERGY, University of Munich, 80336 München, Germany.
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, München, Germany; Biomedical Center, University of Munich, 80336 München, Germany; Munich Cluster for Systems Neurology SYNERGY, University of Munich, 80336 München, Germany.
| |
Collapse
|
17
|
Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I. Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell 2014; 30:123-36. [PMID: 25017692 DOI: 10.1016/j.devcel.2014.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/25/2014] [Accepted: 05/14/2014] [Indexed: 01/10/2023]
Abstract
Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing, activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging, coupled with gene expression analyses and Notch invalidations, to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation. Dorsomedial aNSCs derive from the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the contrary, the lateral aNSC population is formed by stepwise addition at the pallial edge from a discrete neuroepithelial progenitor pool of the posterior telencephalic roof, activated at postembryonic stages and persisting lifelong. This dual origin of the pallial germinal zone allows the temporally organized building of pallial territories as a patchwork of juxtaposed compartments.
Collapse
Affiliation(s)
- Lara Dirian
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France
| | - Sonya Galant
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France
| | - Marion Coolen
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2213 Garland Ave, Nashville, TN 37232, USA
| | - Sébastien Bedu
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Laure Bally-Cuif
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France.
| | - Isabelle Foucher
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Yang Q, He X, Li X, Xu W, Luo Y, Yang X, Wang Y, Li Y, Huang K. DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293). Mutat Res 2014; 765:22-31. [PMID: 25847125 DOI: 10.1016/j.mrfmmm.2014.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 12/29/2022]
Abstract
Ochratoxin A (OTA) is a ubiquitous mycotoxin with potential nephrotoxic, hepatotoxic and immunotoxic effects. The mechanisms underlying the nephrotoxicity of OTA remain obscure. To investigate DNA damage and the changes of the cell cycle distribution induced by OTA, human embryonic kidney cells (HEK 293 cells) were incubated with various concentrations of OTA for 24h in vitro. The results indicated that OTA treatment led to the production of reactive oxygen species (ROS) and to a decrease of the mitochondrial membrane potential (ΔΨm). OTA-induced DNA damage in HEK 293 cells was evidenced by DNA comet tails formation and increased expression of γ-H2AX. In addition, OTA could induce cell cycle arrest at the S phase in HEK 293 cells. The expression of key cell cycle regulatory factors that were critical to the S phase, including cyclin A2, cyclin E1, and CDK2, were further detected. The expression of cyclin A2, cyclin E1, and CDK2 were significantly decreased by OTA treatment at both the mRNA and protein levels. The apoptosis of HEK 293 cells after OTA treatment was observed using Hoechst 33342 staining. The results confirmed that OTA did induce apoptosis in HEK 293 cells. In conclusion, our results provided new insights into the molecular mechanisms by which OTA might promote nephrotoxicity.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaoyun He
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Xiaohong Li
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yunbo Luo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xuan Yang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Yan Wang
- The Supervision, Inspection & Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, PR China
| | - Yingcong Li
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
19
|
Abstract
Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a 'society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TOFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Prakash Kulkarni
- Department of Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, Manuel M. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One 2013; 8:e84363. [PMID: 24391946 PMCID: PMC3877318 DOI: 10.1371/journal.pone.0084363] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.
Collapse
Affiliation(s)
- Muriel Jager
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Cyrielle Dayraud
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Antoine Mialot
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Eric Quéinnec
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Hervé le Guyader
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Michaël Manuel
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| |
Collapse
|
21
|
Recher G, Jouralet J, Brombin A, Heuzé A, Mugniery E, Hermel JM, Desnoulez S, Savy T, Herbomel P, Bourrat F, Peyriéras N, Jamen F, Joly JS. Zebrafish midbrain slow-amplifying progenitors exhibit high levels of transcripts for nucleotide and ribosome biogenesis. Development 2013; 140:4860-9. [PMID: 24198278 DOI: 10.1242/dev.099010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigating neural stem cell (NSC) behaviour in vivo, which is a major area of research, requires NSC models to be developed. We carried out a multilevel characterisation of the zebrafish embryo peripheral midbrain layer (PML) and identified a unique vertebrate progenitor population. Located dorsally in the transparent embryo midbrain, these large slow-amplifying progenitors (SAPs) are accessible for long-term in vivo imaging. They form a neuroepithelial layer adjacent to the optic tectum, which has transitory fast-amplifying progenitors (FAPs) at its margin. The presence of these SAPs and FAPs in separate domains provided the opportunity to data mine the ZFIN expression pattern database for SAP markers, which are co-expressed in the retina. Most of them are involved in nucleotide synthesis, or encode nucleolar and ribosomal proteins. A mutant for the cad gene, which is strongly expressed in the PML, reveals severe midbrain defects with massive apoptosis and sustained proliferation. We discuss how fish midbrain and retina progenitors might derive from ancient sister cell types and have specific features that are not shared with other SAPs.
Collapse
Affiliation(s)
- Gaëlle Recher
- CNRS, UPR3294 Unité Neurobiologie et Développement, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang ZQ, Wang J, Ling WH, Zhang XG, Shi Q. Effects of CD40 ligation combined with chemotherapy drugs on human breast cancer cell lines. J Int Med Res 2013; 41:1495-504. [PMID: 23934044 DOI: 10.1177/0300060513490084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the influence of recombinant human CD40 ligand (rhCD40L) on the biological behaviour of breast cancer cells. METHODS MDA-MB-23l and MDA-MB-435 treated with rhCD40L were observed for changes in the cell cycle, in membrane proteins, and in mRNA levels of B cell lymphoma-extra-large (Bcl-xl), Bcl-2 associated X protein (Bax) and regulated upon activation, normal T cell expressed and secreted (RANTES). Effects of rhCD40L on cell proliferation in the presence or absence of interferon (IFN)-γ (500 IU/ml) and/or doxorubicin (20 ng/ml) were also determined. RESULTS rhCD40L dose-dependently inhibited cell proliferation. Combination of rhCD40L with IFN-γ or doxorubicin potentiated the inhibitory activity. After treatment, an increase in cells entering the G₁ phase of the cell cycle was observed, with a significant decrease in the number entering the S phase. Levels of several membrane proteins including CD95L and CD120a were also increased. Reverse transcription-polymerase chain reaction revealed an increase in the Bax/Bcl-xl mRNA ratio and an increase in RANTES. CONCLUSION rhCD40L treatment of breast cancer cells mediates a variety of anti-tumour effects, not only by direct cytotoxic activity but also by upregulation of adhesion molecules, co-stimulators and cytokines to rectify T cell immunity.
Collapse
Affiliation(s)
- Zhi-Qing Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | |
Collapse
|
23
|
Rodríguez-Aznar E, Barrallo-Gimeno A, Nieto MA. Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons. J Neurosci 2013; 33:5095-105. [PMID: 23516276 PMCID: PMC6704984 DOI: 10.1523/jneurosci.4459-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/25/2023] Open
Abstract
During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.
Collapse
Affiliation(s)
| | | | - M. Angela Nieto
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante 03550, Spain
| |
Collapse
|