1
|
Hojo H, Tani S, Ohba S. Modeling of skeletal development and diseases using human pluripotent stem cells. J Bone Miner Res 2024; 40:5-19. [PMID: 39498496 DOI: 10.1093/jbmr/zjae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
Human skeletal elements are formed from distinct origins at distinct positions of the embryo. For example, the neural crest produces the facial bones, the paraxial mesoderm produces the axial skeleton, and the lateral plate mesoderm produces the appendicular skeleton. During skeletal development, different combinations of signaling pathways are coordinated from distinct origins during the sequential developmental stages. Models for human skeletal development have been established using human pluripotent stem cells (hPSCs) and by exploiting our understanding of skeletal development. Stepwise protocols for generating skeletal cells from different origins have been designed to mimic developmental trails. Recently, organoid methods have allowed the multicellular organization of skeletal cell types to recapitulate complicated skeletal development and metabolism. Similarly, several genetic diseases of the skeleton have been modeled using patient-derived induced pluripotent stem cells and genome-editing technologies. Model-based drug screening is a powerful tool for identifying drug candidates. This review briefly summarizes our current understanding of the embryonic development of skeletal tissues and introduces the current state-of-the-art hPSC methods for recapitulating skeletal development, metabolism, and diseases. We also discuss the current limitations and future perspectives for applications of the hPSC-based modeling system in precision medicine in this research field.
Collapse
Affiliation(s)
- Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shoichiro Tani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Kwon HJ. Knockdown of vitamin D receptor affects early stages of pectoral fin development in zebrafish. Anat Histol Embryol 2024; 53:e13044. [PMID: 38695121 DOI: 10.1111/ahe.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
The vitamin D receptor (VDR) signalling has been implicated in vertebrate limb or fin formation. However, the involvement of VDR signalling in the early stages of limb/fin development remains to be elucidated. In this study, the role of VDR signalling in pectoral fin development was investigated in zebrafish embryos. Knockdown of vdr induced the severe impairment of pectoral fin development. The zebrafish larvae lacking vdr exhibited reduced pectoral fins with no skeletal elements. In situ hybridization revealed depletion of vdr downregulated fibroblast growth factor 24 (fgf24), a marker of early pectoral fin bud mesenchyme, in the presumptive fin field even before fin buds were visible. Moreover, a perturbed expression pattern of bone morphogenetic protein 4 (bmp4), a marker of the pectoral fin fold, was observed in the developing fin buds of zebrafish embryos that lost the vdr function. These findings suggest that VDR signalling is crucial in the early stages of fin development, potentially influencing the process by regulating other signalling molecules such as Fgf24 and Bmp4.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- University of Utah Asia Campus, Incheon, South Korea
| |
Collapse
|
3
|
Mancini FE, Humphreys PEA, Woods S, Bates N, Cuvertino S, O'Flaherty J, Biant L, Domingos MAN, Kimber SJ. Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis. Sci Rep 2024; 14:2696. [PMID: 38302538 PMCID: PMC10834951 DOI: 10.1038/s41598-024-52362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.
Collapse
Affiliation(s)
- Fabrizio E Mancini
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
- Department of Solids and Structures, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Paul E A Humphreys
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Steven Woods
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Nicola Bates
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Sara Cuvertino
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Julieta O'Flaherty
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Leela Biant
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Marco A N Domingos
- Department of Solids and Structures, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Susan J Kimber
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Gene expression changes during the evolution of the tetrapod limb. Biol Futur 2022; 73:411-426. [PMID: 36355308 DOI: 10.1007/s42977-022-00136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Major changes in the vertebrate anatomy have preceded the conquest of land by the members of this taxon, and continuous changes in limb shape and use have occurred during the later radiation of tetrapods. While the main, conserved mechanisms of limb development have been discerned over the past century using a combination of classical embryological and molecular methods, only recent advances made it possible to identify and study the regulatory changes that have contributed to the evolution of the tetrapod appendage. These advances include the expansion of the model repertoire from traditional genetic model species to non-conventional ones, a proliferation of predictive mathematical models that describe gene interactions, an explosion in genomic data and the development of high-throughput methodologies. These revolutionary innovations make it possible to identify specific mutations that are behind specific transitions in limb evolution. Also, as we continue to apply them to more and more extant species, we can expect to gain a fine-grained view of this evolutionary transition that has been so consequential for our species as well.
Collapse
|
6
|
Lancman JJ, Hasso SM, Suzuki T, Kherdjemil Y, Kmita M, Ferris A, Dong PDS, Ros MA, Fallon JF. Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Dev Dyn 2022; 251:1439-1455. [PMID: 34719843 PMCID: PMC9054941 DOI: 10.1002/dvdy.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.
Collapse
Affiliation(s)
- Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sean M Hasso
- Heat Biologics, Morrisville, North Carolina, USA
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yacine Kherdjemil
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea Ferris
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-Sociedad para al Desarrollo Cantabria, Santander, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - John F Fallon
- Department of Anatomy, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
8
|
Anderson EB, Mao Q, Ho RK. Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 2022; 481:201-214. [PMID: 34756968 PMCID: PMC8665139 DOI: 10.1016/j.ydbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023]
Abstract
The T-box containing family member, TBX5, has been shown to play important functional roles in the pectoral appendages of a variety of vertebrate species. While a single TBX5 gene exists in all tetrapods studied to date, the zebrafish genome retains two paralogues, designated as tbx5a and tbx5b, resulting from a whole genome duplication in the teleost lineage. Zebrafish deficient in tbx5a lack pectoral fin buds, whereas zebrafish deficient in tbx5b exhibit misshapen pectoral fins, showing that both paralogues function in fin development. The mesenchymal cells of the limb/fin bud are derived from the Lateral Plate Mesoderm (LPM). Previous fate mapping work in zebrafish has shown that wildtype (wt) fin field cells are initially located adjacent to somites (s)1-4. The wt fin field cells migrate in opposing diagonal directions placing the limb bud between s2-3 and lateral to the main body. To better characterize tbx5 paralogue functions in zebrafish, time-lapse analyses of the migrations of fin bud precursors under conditions of tbx5a knock-down, tbx5b knock-down and double-knock-down were performed. Our data suggest that zebrafish tbx5a and tbx5b have functionally separated migration direction vectors, that when combined recapitulate the migration of the wt fin field. We and others have shown that loss of Tbx5a function abolishes an fgf24 signaling cue resulting in fin field cells failing to converge in an Antero-Posterior (AP) direction and migrating only in a mediolateral (ML) direction. We show here that loss of Tbx5b function affects initial ML directed movements so that fin field cells fail to migrate laterally but continue to converge along the AP axis. Furthermore, fin field cells in the double Tbx5a/Tbx5b knock-down zebrafish do not engage in directed migrations along either the ML or AP axis. Therefore, these two paralogues may be acting to instruct separate vectors of fin field migration in order to direct proper fin bud formation.
Collapse
Affiliation(s)
- Erin Boyle Anderson
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL
| | - Qiyan Mao
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL,present address: Universite de Aix-Marseille; Marseille, France
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Gamart J, Barozzi I, Laurent F, Reinhardt R, Martins LR, Oberholzer T, Visel A, Zeller R, Zuniga A. SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning. Development 2021; 148:273522. [PMID: 34822715 PMCID: PMC8714076 DOI: 10.1242/dev.200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
SMAD4 regulates gene expression in response to BMP and TGFβ signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds. Summary: The transcriptional targets of SMAD4 in early limb buds are identified and the largely opposing impact of BMP and SHH signaling on early digit patterning and outgrowth is revealed.
Collapse
Affiliation(s)
- Julie Gamart
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frédéric Laurent
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Reinhardt
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Laurène Ramos Martins
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Thomas Oberholzer
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.,School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Yamada D, Nakamura M, Takao T, Takihira S, Yoshida A, Kawai S, Miura A, Ming L, Yoshitomi H, Gozu M, Okamoto K, Hojo H, Kusaka N, Iwai R, Nakata E, Ozaki T, Toguchida J, Takarada T. Induction and expansion of human PRRX1 + limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 2021; 5:926-940. [PMID: 34373601 DOI: 10.1038/s41551-021-00778-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Current protocols for the differentiation of human pluripotent stem cells (hPSCs) into chondrocytes do not allow for the expansion of intermediate progenitors so as to prospectively assess their chondrogenic potential. Here we report a protocol that leverages PRRX1-tdTomato reporter hPSCs for the selective induction of expandable and ontogenetically defined PRRX1+ limb-bud-like mesenchymal cells under defined xeno-free conditions, and the prospective assessment of the cells' chondrogenic potential via the cell-surface markers CD90, CD140B and CD82. The cells, which proliferated stably and exhibited the potential to undergo chondrogenic differentiation, formed hyaline cartilaginous-like tissue commensurate to their PRRX1-expression levels. Moreover, we show that limb-bud-like mesenchymal cells derived from patient-derived induced hPSCs can be used to identify therapeutic candidates for type II collagenopathy and we developed a method to generate uniformly sized hyaline cartilaginous-like particles by plating the cells on culture dishes coated with spots of a zwitterionic polymer. PRRX1+ limb-bud-like mesenchymal cells could facilitate the mass production of chondrocytes and cartilaginous tissues for applications in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kawai
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Lu Ming
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mai Gozu
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kumi Okamoto
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kusaka
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
11
|
Sun L, Huang Y, Zhao S, Zhao J, Yan Z, Guo Y, Lin M, Zhong W, Yin Y, Chen Z, Zhang N, Zhang Y, Zhao Z, Li Q, Wang L, Dong X, Li Y, Li X, Qiu G, Zhang TJ, Wu Z, Tian W, Wu N. Deciphering the mutational signature of congenital limb malformations. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:961-970. [PMID: 34094714 PMCID: PMC8141661 DOI: 10.1016/j.omtn.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Congenital limb malformations (CLMs) affect 1 in 500 live births. However, the value of exome sequencing (ES) for CLM is lacking. The purpose of this study was to decipher the mutational signature of CLM on an exome level. We enrolled a cohort of 66 unrelated probands (including 47 families) with CLM requiring surgical correction. ES was performed for all patients and available parental samples. A definite molecular diagnosis was achieved in 21 out of 66 (32%) patients. We identified 19 pathogenic or likely pathogenic single-nucleotide variants and three copy number variants, of which 11 variants were novel. We identified four variants of uncertain significance. Additionally, we identified RPL9 and UBA2 as novel candidate genes for CLM. By comparing the detailed phenotypic features, we expand the phenotypic spectrum of diastrophic dysplasia and chromosome 6q terminal deletion syndrome. We also found that the diagnostic rate was significantly higher in patients with a family history of CLM (p = 0.012) or more than one limb affected (p = 0.034). Our study expands our understanding of the mutational and phenotypic spectrum of CLM and provides novel insights into the genetic basis of these syndromes.
Collapse
Affiliation(s)
- Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junhui Zhao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zihui Yan
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Guo
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Mao Lin
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenyao Zhong
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuehan Yin
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Zhang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zongxuan Zhao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qingyang Li
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiying Dong
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yaqi Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
12
|
Guerin DJ, Kha CX, Tseng KAS. From Cell Death to Regeneration: Rebuilding After Injury. Front Cell Dev Biol 2021; 9:655048. [PMID: 33816506 PMCID: PMC8012889 DOI: 10.3389/fcell.2021.655048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to regrow lost or damaged tissues is widespread, but highly variable among animals. Understanding this variation remains a challenge in regeneration biology. Numerous studies from Hydra to mouse have shown that apoptosis acts as a potent and necessary mechanism in regeneration. Much is known about the involvement of apoptosis during normal development in regulating the number and type of cells in the body. In the context of regeneration, apoptosis also regulates cell number and proliferation in tissue remodeling. Apoptosis acts both early in the process to stimulate regeneration and later to regulate regenerative patterning. Multiple studies indicate that apoptosis acts as a signal to stimulate proliferation within the regenerative tissues, producing the cells needed for full regeneration. The conservation of apoptosis as a regenerative mechanism demonstrated across species highlights its importance and motivates the continued investigation of this important facet of programmed cell death. This review summarizes what is known about the roles of apoptosis during regeneration, and compares regenerative apoptosis with the mechanisms and function of apoptosis in development. Defining the complexity of regenerative apoptosis will contribute to new knowledge and perspectives for understanding mechanisms of apoptosis induction and regulation.
Collapse
Affiliation(s)
- Dylan J Guerin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Cindy X Kha
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
13
|
Yaryhin O, Klembara J, Pichugin Y, Kaucka M, Werneburg I. Limb reduction in squamate reptiles correlates with the reduction of the chondrocranium: A case study on serpentiform anguids. Dev Dyn 2021; 250:1300-1317. [PMID: 33511716 DOI: 10.1002/dvdy.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In vertebrates, the skull evolves from a complex network of dermal bones and cartilage-the latter forming the pharyngeal apparatus and the chondrocranium. Squamates are particularly important in this regard as they maintain at least part of the chondrocranium throughout their whole ontogeny until adulthood. Anguid lizards represent a unique group of squamates, which contains limbed and limbless forms and show conspicuous variation of the adult skull. RESULTS Based on several emboadryonic stages of the limbless lizards Pseudopus apodus and Anguis fragilis, and by comparing with other squamates, we identified and interpreted major differences in chondrocranial anatomy. Among others, the most important differences are in the orbitotemporal region. P. apodus shows a strikingly similar development of this region to other squamates. Unexpectedly, however, A. fragilis differs considerably in the composition of the orbitotemporal region. In addition, A. fragilis retains a paedomorphic state of the nasal region. CONCLUSIONS Taxonomic comparisons indicate that even closely related species with reduced limbs show significant differences in chondrocranial anatomy. The Pearson correlation coefficient suggests strong correlation between chondrocranial reduction and limb reduction. We pose the hypothesis that limb reduction could be associated with the reduction in chondrocrania by means of genetic mechanisms.
Collapse
Affiliation(s)
- Oleksandr Yaryhin
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Schmalhausen Institute of Zoology of NAS of Ukraine, Kyiv, Ukraine
| | - Jozef Klembara
- Faculty of Natural Sciences, Department of Ecology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP) an der Universität Tübingen, Tübingen, Germany.,Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Towler OW, Peck SH, Kaplan FS, Shore EM. Dysregulated BMP signaling through ACVR1 impairs digit joint development in fibrodysplasia ossificans progressiva (FOP). Dev Biol 2020; 470:136-146. [PMID: 33217406 DOI: 10.1016/j.ydbio.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.
Collapse
Affiliation(s)
- O Will Towler
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Sun H Peck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Xiong F, Li S. SF3b4: A Versatile Player in Eukaryotic Cells. Front Cell Dev Biol 2020; 8:14. [PMID: 32083075 PMCID: PMC7002316 DOI: 10.3389/fcell.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023] Open
Abstract
Spliceosomes are large protein-RNA complexes regulating pre-mRNA processing in eukaryotes. SF3b4 encodes a core subunit of the U2-type spliceosome, loss- or gain-of-function of which often associates with abnormal cell growth, leading to tumorigenesis. Homologs of SF3b4 in other phyla are also essential. In this review, we summarize recent findings on the function of SF3b4. Importantly, we highlight the versatile roles of SF3b4, not only as a component for pre-mRNA splicing, but also as a regulator for transcription, translation, and cell signaling. Recent studies of SF3b4 homologs in different species across evolution will facilitate a better understanding of human diseases caused by the malfunction of SF3b4, such as Nager syndrome (NS) and cancer, in the future.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China.,Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Feregrino C, Sacher F, Parnas O, Tschopp P. A single-cell transcriptomic atlas of the developing chicken limb. BMC Genomics 2019; 20:401. [PMID: 31117954 PMCID: PMC6530069 DOI: 10.1186/s12864-019-5802-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution. RESULTS Using single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits. CONCLUSIONS We provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.
Collapse
Affiliation(s)
| | - Fabio Sacher
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Oren Parnas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Present address: The Concern Foundation Laboratories at the Lautenberg Centre for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120 Jerusalem, Israel
| | - Patrick Tschopp
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
17
|
Eyal S, Rubin S, Krief S, Levin L, Zelzer E. Common cellular origin and diverging developmental programs for different sesamoid bones. Development 2019; 146:dev.167452. [PMID: 30745426 DOI: 10.1242/dev.167452] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Sesamoid bones are small auxiliary bones that form near joints and contribute to their stability and function. Thus far, providing a comprehensive developmental model or classification system for this highly diverse group of bones has been challenging. Here, we compare our previously reported mechanisms of patella development in the mouse with those of two anatomically different sesamoids, namely lateral fabella and digit sesamoids. We show that all three types of sesamoid bones originate from Sox9+ /Scx+ progenitors under the regulation of TGFβ and independently of mechanical stimuli from muscles. Whereas BMP2 regulates the growth of all examined sesamoids, the differentiation of lateral fabella or digit sesamoids is regulated redundantly by BMP4 and BMP2. Next, we show that whereas patella and digit sesamoids initially form in juxtaposition to long bones, lateral fabella forms independently and at a distance. Finally, our evidence suggests that, unlike the synovial joint that separates patella from femur, digit sesamoids detach from the phalanx by formation of a fibrocartilaginous joint. These findings highlight both common and divergent molecular and mechanical features of sesamoid bone development, which underscores their evolutionary plasticity.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Sarah Rubin
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Sharon Krief
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Lihi Levin
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
18
|
Giffin JL, Gaitor D, Franz-Odendaal TA. The Forgotten Skeletogenic Condensations: A Comparison of Early Skeletal Development Amongst Vertebrates. J Dev Biol 2019; 7:jdb7010004. [PMID: 30717314 PMCID: PMC6473759 DOI: 10.3390/jdb7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Abstract
The development of a skeletogenic condensation is perhaps the most critical yet considerably overlooked stage of skeletogenesis. Described in this comprehensive review are the mechanisms that facilitate skeletogenic condensation formation, growth, and maintenance to allow for overt differentiation into a skeletal element. This review discusses the current knowledge of gene regulation and characterization of skeletogenic condensations in the chicken, mouse, zebrafish, and other developmental models. We limited our scope to condensations that give rise to the bones and cartilages of the vertebrate skeleton, with a particular focus on craniofacial and limb bud regions. While many of the skeletogenic processes are similar among vertebrate lineages, differences are apparent in the site and timing of the initial epithelial⁻mesenchymal interactions as well as in whether the condensation has an osteogenic or chondrogenic fate, both within and among species. Further comparative studies are needed to clarify and broaden the existing knowledge of this intricate phenomenon.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
| | - Danielle Gaitor
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
19
|
Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proc Natl Acad Sci U S A 2018; 115:4625-4630. [PMID: 29666250 DOI: 10.1073/pnas.1720658115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.
Collapse
|
20
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
21
|
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci Rep 2017; 7:9079. [PMID: 28831049 PMCID: PMC5567270 DOI: 10.1038/s41598-017-06300-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 01/20/2023] Open
Abstract
Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.
Collapse
|
22
|
Mariani FV, Fernandez-Teran M, Ros MA. Ectoderm-mesoderm crosstalk in the embryonic limb: The role of fibroblast growth factor signaling. Dev Dyn 2017; 246:208-216. [PMID: 28002626 PMCID: PMC8262604 DOI: 10.1002/dvdy.24480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/27/2023] Open
Abstract
In this commentary we focus on the function of FGFs during limb development and morphogenesis. Our goal is to understand, interpret and, when possible, reconcile the interesting findings and conflicting results that remain unexplained. For example, the cell death pattern observed after surgical removal of the AER versus genetic removal of the AER-Fgfs is strikingly different and the field is at an impasse with regard to an explanation. We also discuss the idea that AER function may involve signaling components in addition to the AER-FGFs and that signaling from the non-AER ectoderm may also have a significant contribution. We hope that a re-evaluation of current studies and a discussion of outstanding questions will motivate new experiments, especially considering the availability of new technologies, that will fuel further progress toward understanding the intricate ectoderm-to-mesoderm crosstalk during limb development. Developmental Dynamics 246:208-216, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca V Mariani
- Department of Cell and Neurobiology, Broad CIRM Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marian Fernandez-Teran
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Maria A Ros
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-SODERCAN-Universidad de Cantabria, 39011, Santander, Spain
| |
Collapse
|
23
|
Suzuki K, Matsumaru D, Matsushita S, Murashima A, Ludwig M, Reutter H, Yamada G. Epispadias and the associated embryopathies: genetic and developmental basis. Clin Genet 2016; 91:247-253. [PMID: 27649475 DOI: 10.1111/cge.12871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
The abnormalities in the urogenital organs are frequently observed as human developmental diseases. Among such diseases, the defects in the upper part of external genitalia are rather rare named epispadias. The cleft in the dorsal part of external genitalia often reaches to the urethra. In general, the urogenital abnormalities accompany defects in the adjacent tissues and organs. The ventral body wall and bladder can also be affected in the patients with dorsal defects of the external genitalia. Therefore, such multiple malformations are often classified as bladder exstrophy and epispadias complex (BEEC). Because of the lower frequency of such birth defects and their early embryonic development, animal models are required to analyze the pathogenic mechanisms and the functions of responsible genes. Mutant mouse analyses on various signal cascades for external genitalia and body wall development are increasingly performed. The genetic interactions between growth factors such as bone morphogenetic proteins (Bmp) and transcription factors such as Msx1/2 and Isl1 have been suggested to play roles for such organogenesis. The significance of epithelial-mesenchymal interaction (EMI) is suggested during development. In this review, we describe on such local interactions and developmental regulators. We also introduce some mutant mouse models displaying external genitalia-body wall abnormalities.
Collapse
Affiliation(s)
- K Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - D Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - S Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - A Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan.,Division of Human Embryology, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - M Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - H Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - G Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
24
|
Langhans MT, Yu S, Tuan RS. Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther 2016; 11:453-474. [PMID: 26423296 DOI: 10.2174/1574888x10666151001115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering are presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering.
Collapse
Affiliation(s)
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, USA.
| |
Collapse
|
25
|
Abstract
Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Eckalbar WL, Schlebusch SA, Mason MK, Gill Z, Parker AV, Booker BM, Nishizaki S, Muswamba-Nday C, Terhune E, Nevonen KA, Makki N, Friedrich T, VanderMeer JE, Pollard KS, Carbone L, Wall JD, Illing N, Ahituv N. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet 2016; 48:528-36. [PMID: 27019111 PMCID: PMC4848140 DOI: 10.1038/ng.3537] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation.
Collapse
Affiliation(s)
- Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Stephen A Schlebusch
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mandy K Mason
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Zoe Gill
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ash V Parker
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Betty M Booker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Sierra Nishizaki
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | | | - Elizabeth Terhune
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Kimberly A Nevonen
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Tara Friedrich
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Julia E VanderMeer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Lucia Carbone
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | - Jeff D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev Biol 2016; 415:371-382. [PMID: 26874011 DOI: 10.1016/j.ydbio.2016.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause of Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4.
Collapse
Affiliation(s)
- Arun Devotta
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Hugo Juraver-Geslin
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Jose Antonio Gonzalez
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Master Program in Biology, New York University, New York, USA
| | - Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA.
| |
Collapse
|
28
|
Seki R, Kitajima K, Matsubara H, Suzuki T, Saito D, Yokoyama H, Tamura K. AP-2β is a transcriptional regulator for determination of digit length in tetrapods. Dev Biol 2015; 407:75-89. [DOI: 10.1016/j.ydbio.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
|
29
|
Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW. Gremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 2015; 138 Pt 3:256-67. [DOI: 10.1016/j.mod.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
|
30
|
Norrie JL, Lewandowski JP, Bouldin CM, Amarnath S, Li Q, Vokes MS, Ehrlich LIR, Harfe BD, Vokes SA. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly. Dev Biol 2014; 393:270-281. [PMID: 25034710 DOI: 10.1016/j.ydbio.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/20/2023]
Abstract
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Jordan P Lewandowski
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Cortney M Bouldin
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Smita Amarnath
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Martha S Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|