1
|
Gupta M, Kurth T, Heinemann F, Schwille P, Keil S, Knopf F, Brand M. Fine-tuning of Fgf8 morphogen gradient by heparan sulfate proteoglycans in the extracellular matrix. Biophys J 2024:S0006-3495(24)04070-0. [PMID: 39668564 DOI: 10.1016/j.bpj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
Embryonic development is orchestrated by the action of morphogens, which spread out from a local source and activate, in a field of target cells, different cellular programs based on their concentration gradient. Fibroblast growth factor 8 (Fgf8) is a morphogen with important functions in embryonic organizing centers. It forms a gradient in the extracellular space by free diffusion, interaction with the extracellular matrix (ECM), and receptor-mediated endocytosis. However, morphogen gradient regulation by ECM is still poorly understood. Here, we show that specific heparan sulfate proteoglycans (HSPGs) bind Fgf8 with different affinities directly in the ECM of living zebrafish embryos, thus affecting its diffusion and signaling. Using single-molecule fluorescence correlation spectroscopy, we quantify this binding in vivo, and find two different modes of interaction. First, reducing or increasing the concentration of specific HSPGs in the extracellular space alters Fgf8 diffusion and, thus, its gradient shape. Second, ternary complex formation of Fgf8 ligand with Fgf receptors and HSPGs at the cell surface requires HSPG attachment to the cell membrane. Together, our results show that graded Fgf8 morphogen distribution is achieved by constraining free Fgf8 diffusion through successive interactions with HSPGs at the cell surface and in ECM space.
Collapse
Affiliation(s)
- Mansi Gupta
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Thomas Kurth
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Fabian Heinemann
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Sebastian Keil
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - Michael Brand
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany; PoL - Excellence Cluster Physics of Life, Dresden, Germany.
| |
Collapse
|
2
|
Sabin KZ, Chen S, Hill EM, Weaver KJ, Yonke J, Kirkman M, Redwine WB, Klompen AML, Zhao X, Guo F, McKinney MC, Dewey JL, Gibson MC. Graded FGF activity patterns distinct cell types within the apical sensory organ of the sea anemone Nematostella vectensis. Dev Biol 2024; 510:50-65. [PMID: 38521499 DOI: 10.1016/j.ydbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.
Collapse
Affiliation(s)
- Keith Z Sabin
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jacob Yonke
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | | | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Jarva TM, Phillips NM, Von Eiff C, Poulakis GR, Naylor G, Feldheim KA, Flynt AS. Gene expression, evolution, and the genetics of electrosensing in the smalltooth sawfish, Pristis pectinata. Ecol Evol 2024; 14:e11260. [PMID: 38694751 PMCID: PMC11057056 DOI: 10.1002/ece3.11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Sawfishes (Pristidae) are large, highly threatened rays named for their tooth-studded rostrum, which is used for prey sensing and capture. Of all five species, the smalltooth sawfish, Pristis pectinata, has experienced the greatest decline in range, currently found in only ~20% of its historic range. To better understand the genetic underpinnings of these taxonomically and morphologically unique animals, we collected transcriptomic data from several tissue types, mapped them to the recently completed reference genome, and contrasted the patterns observed with comparable data from other elasmobranchs. Evidence of positive selection was detected in 79 genes in P. pectinata, several of which are involved in growth factor/receptor tyrosine kinase signaling and body symmetry and may be related to the unique morphology of sawfishes. Changes in these genes may impact cellular responses to environmental conditions such as temperature, dissolved oxygen, and salinity. Data acquired also allow for examination of the molecular components of P. pectinata electrosensory systems, which are highly developed in sawfishes and have likely been influential in their evolutionary success.
Collapse
Affiliation(s)
- Taiya M. Jarva
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Nicole M. Phillips
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Cory Von Eiff
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Gregg R. Poulakis
- Charlotte Harbor Field LaboratoryFish and Wildlife Research Institute, Florida Fish and Wildlife Conservation CommissionPort CharlotteFloridaUSA
| | - Gavin Naylor
- Florida Program for Shark ResearchUniversity of FloridaGainesvilleFloridaUSA
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, the Field MuseumChicagoIllinoisUSA
| | - Alex S. Flynt
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| |
Collapse
|
4
|
Fischer SC, Schardt S, Lilao-Garzón J, Muñoz-Descalzo S. The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors. iScience 2023; 26:108106. [PMID: 37915595 PMCID: PMC10616410 DOI: 10.1016/j.isci.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Simon Schardt
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| |
Collapse
|
5
|
Fibroblast growth factor 5 overexpression ameliorated lipopolysaccharide-induced apoptosis of hepatocytes through regulation of the phosphoinositide-3-kinase/protein kinase B pathway. Chin Med J (Engl) 2022; 135:2859-2868. [PMID: 36728504 PMCID: PMC9943982 DOI: 10.1097/cm9.0000000000002540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory syndrome induced by several infectious agents. Multiple organs are affected by sepsis, including the liver, which plays an important role in metabolism and immune homeostasis. Fibroblast growth factors (FGFs) participate in several biological processes, although the role of FGF5 in sepsis is unclear. METHODS In this study, lipopolysaccharide (LPS) was administrated to mice to establish a sepsis-induced liver injury. A similar in vitro study was conducted using L-02 hepatocytes. Western blot and immunohistochemistry staining were performed to evaluate the FGF5 expression level in liver tissues and cells. Inflammatory cell infiltrations, cleaved-caspase-3 expressions, reactive oxygen species and levels of inflammatory cytokines were detected by immunofluorescence, dihydroethidium staining, and reverse transcription quantitative polymerase chain reaction analysis, respectively. Flow cytometry was used to detect the apoptosis level of cells. In addition, ribonucleic acid (RNA)-sequencing was applied to explore the possible mechanism by which FGF5 exerted effects. RESULTS LPS administration caused FGF5 down-regulation in the mouse liver as well as in L-02 hepatocytes. Additionally, with FGF5 overexpression, liver injury and the level of hepatocyte apoptosis were ameliorated. Further, RNA sequencing performed in hepatocytes revealed the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) pathway as a possible pathway regulated by FGF5 . This was supported using an inhibitor of the PI3K/AKT pathway, which abrogated the protective effect of FGF5 in LPS-induced hepatocyte injury. CONCLUSION The anti-apoptotic effect of FGF5 on hepatocytes suffering from LPS has been demonstrated and was dependent on the activation of the PI3K/AKT signaling pathway.
Collapse
|
6
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Gómez-Virgilio L, Silva-Lucero MDC, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, Pacheco-Herrero M, Cardenas-Aguayo MDC. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022; 11:cells11152262. [PMID: 35892559 PMCID: PMC9329718 DOI: 10.3390/cells11152262] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Diego-Salvador Flores-Morelos
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - Jazmin Gallardo-Nieto
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Arminda-Mercedes Abarca-Fernandez
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Ana-Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 11805, Dominican Republic
| | - Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic;
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Correspondence: ; Tel.: +52-55-2907-0937
| |
Collapse
|
8
|
Wang N, Dong Y, Xu X, Shen Y, Huang Z, Yu Y, Liu Z, Gong W, Zhang S, Zheng Y, Song Y, Zhu Z, Jin L, Cong W. Fibroblast growth factor 10 protects against UVB‐induced skin injury by activating the ERK/YAP signalling pathway. Cell Prolif 2022; 55:e13315. [DOI: 10.1111/cpr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nan Wang
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Yetong Dong
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Xiejun Xu
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Yingjie Shen
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
- College of Pharmacy and Research Institute for Drug Development Chonnam National University Gwangju Republic of Korea
| | - Zhiyuan Huang
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Yin Yu
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Zhili Liu
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Wenjie Gong
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Siyi Zhang
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Yeyi Zheng
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Yonghuan Song
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou People's Republic of China
| | - Zhongxin Zhu
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Litai Jin
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science Wenzhou Medical University Wenzhou People's Republic of China
| |
Collapse
|
9
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
10
|
Thukral S, Kaity B, Mitra D, Dey B, Dey P, Uttekar B, Mitra MK, Nandi A, Rikhy R. Pseudocleavage furrows restrict plasma membrane-associated PH domain in syncytial Drosophila embryos. Biophys J 2022; 121:2419-2435. [PMID: 35591789 PMCID: PMC9279176 DOI: 10.1016/j.bpj.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.
Collapse
Affiliation(s)
- Sameer Thukral
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Bivash Kaity
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Debasmita Mitra
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Bipasha Dey
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Pampa Dey
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Bhavin Uttekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, India.
| |
Collapse
|
11
|
Du L, Sohr A, Li Y, Roy S. GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion. Nat Commun 2022; 13:3482. [PMID: 35710780 PMCID: PMC9203819 DOI: 10.1038/s41467-022-30417-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
How signaling proteins generate a multitude of information to organize tissue patterns is critical to understanding morphogenesis. In Drosophila, FGF produced in wing-disc cells regulates the development of the disc-associated air-sac-primordium (ASP). Here, we show that FGF is Glycosylphosphatidylinositol-anchored to the producing cell surface and that this modification both inhibits free FGF secretion and promotes target-specific cytoneme contacts and contact-dependent FGF release. FGF-source and ASP cells extend cytonemes that present FGF and FGFR on their surfaces and reciprocally recognize each other over distance by contacting through cell-adhesion-molecule (CAM)-like FGF-FGFR binding. Contact-mediated FGF-FGFR interactions induce bidirectional responses in ASP and source cells that, in turn, polarize FGF-sending and FGF-receiving cytonemes toward each other to reinforce signaling contacts. Subsequent un-anchoring of FGFR-bound-FGF from the source membrane dissociates cytoneme contacts and delivers FGF target-specifically to ASP cytonemes for paracrine functions. Thus, GPI-anchored FGF organizes both source and recipient cells and self-regulates its cytoneme-mediated tissue-specific dispersion. Cytonemes are signaling filopodia that mediate target-specific long-distance communications of signals like FGFs. Du et al. show that a Drosophila FGF is anchored to the FGF-producing cell surface, inhibiting free FGF secretion and activating contact-dependent bidirectional FGF-FGFR interactions, controlling target-specific cytoneme contacts and contact-dependent FGF release.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alex Sohr
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.,Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Yujia Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Sears KE, Gullapalli K, Trivedi D, Mihas A, Bukys MA, Jensen J. Controlling neural territory patterning from pluripotency using a systems developmental biology approach. iScience 2022; 25:104133. [PMID: 35434550 PMCID: PMC9010746 DOI: 10.1016/j.isci.2022.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/09/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Successful manufacture of specialized human cells requires process understanding of directed differentiation. Here, we apply high-dimensional Design of Experiments (HD-DoE) methodology to identify critical process parameters (CPPs) that govern neural territory patterning from pluripotency—the first stage toward specification of central nervous system (CNS) cell fates. Using computerized experimental design, 7 developmental signaling pathways were simultaneously perturbed in human pluripotent stem cell culture. Regionally specific genes spanning the anterior-posterior and dorsal-ventral axes of the developing embryo were measured after 3 days and mathematical models describing pathway control were developed using regression analysis. High-dimensional models revealed particular combinations of signaling inputs that induce expression profiles consistent with emerging CNS territories and defined CPPs for anterior and posterior neuroectoderm patterning. The results demonstrate the importance of combinatorial control during neural induction and challenge the use of generic neural induction strategies such as dual-SMAD inhibition, when seeking to specify particular lineages from pluripotency. Mathematical models describe pathway control of neuroectoderm marker expression Stage 1 media conditions optimized for regionally specific neuroectoderm in 3 days Optimized conditions are more consistent than dual-SMADi across hiPSC lines
Collapse
|
13
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
14
|
Makrides N, Wang Q, Tao C, Schwartz S, Zhang X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol 2022; 12:210265. [PMID: 35016551 PMCID: PMC8753161 DOI: 10.1098/rsob.210265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A central question in development biology is how a limited set of signalling pathways can instruct unlimited diversity of multicellular organisms. In this review, we use three ocular tissues as models of increasing complexity to present the astounding versatility of fibroblast growth factor (FGF) signalling. In the lacrimal gland, we highlight the specificity of FGF signalling in a one-dimensional model of budding morphogenesis. In the lens, we showcase the dynamics of FGF signalling in altering functional outcomes in a two-dimensional space. In the retina, we present the prolific utilization of FGF signalling from three-dimensional development to homeostasis. These examples not only shed light on the cellular basis for the perfection and complexity of ocular development, but also serve as paradigms for the diversity of FGF signalling.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Qian Wang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel Schwartz
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xin Zhang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
18
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
19
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
20
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
21
|
York HM, Coyle J, Arumugam S. To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 2020; 48:2051-2066. [PMID: 32915197 PMCID: PMC7609031 DOI: 10.1042/bst20200223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Living cells interpret a variety of signals in different contexts to elucidate functional responses. While the understanding of signalling molecules, their respective receptors and response at the gene transcription level have been relatively well-explored, how exactly does a single cell interpret a plethora of time-varying signals? Furthermore, how their subsequent responses at the single cell level manifest in the larger context of a developing tissue is unknown. At the same time, the biophysics and chemistry of how receptors are trafficked through the complex dynamic transport network between the plasma membrane-endosome-lysosome-Golgi-endoplasmic reticulum are much more well-studied. How the intracellular organisation of the cell and inter-organellar contacts aid in orchestrating trafficking, as well as signal interpretation and modulation by the cells are beginning to be uncovered. In this review, we highlight the significant developments that have strived to integrate endosomal trafficking, signal interpretation in the context of developmental biology and relevant open questions with a few chosen examples. Furthermore, we will discuss the imaging technologies that have been developed in the recent past that have the potential to tremendously accelerate knowledge gain in this direction while shedding light on some of the many challenges.
Collapse
Affiliation(s)
- Harrison M. York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Joanne Coyle
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
22
|
Lola Costa EV, Silva Araújo VFD, Pereira Santos AP, de Albuquerque Nogueira R. Morphometric evaluation of Japanese quail embryos and their extraembryonic vascular networks exposed to low-frequency magnetic field with two different intensities. Electromagn Biol Med 2020; 39:403-410. [PMID: 32954862 DOI: 10.1080/15368378.2020.1821708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Animals developed or in an embryonic stage, are constantly subjected to magnetic pollution generated by electrical and electronic devices. Several researches have used the bird embryo as an experimental model to evaluate the action of magnetic field (MF) and electromagnetic field (EMF). This study proposed to perform a morphometric evaluation in the embryos and in the blood vascular network of the yolk sac membranes (YSM) of Japanese quail (Coturnix japonica) exposed to the 60 Hz MF with two different intensities (0.16 and 0.65 mT). A total of 30 eggs were used, 10 eggs were used for each assay. Each assay formed a group (control group, group submitted to the MF of 0.16 mT and 0.65 mT). The images of the skeletonized vascular network of YSM were evaluated by two methods of fractal dimension: box-counting dimension (Dbc) and information dimension (Dinf). The embryos were evaluated by body mass, percentage cephalic length and body area. The fractal dimensions revealed no difference among groups. There were no significant differences in relation to embryonic body mass among groups. However, the embryos exposed to 0.65 mT MF presented a smaller embryonic body development (body area and percentage cephalic length). In conclusion, 0.16 mT and 0.65 mT magnetic fields were not able to generate significant effects on vasculogenesis and angiogenesis. However, the embryos exposed to 6 h of magnetic field with 0.65 mT intensity and 60 Hz frequency showed a decrease in embryonic body development.
Collapse
Affiliation(s)
- Edbhergue Ventura Lola Costa
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| | - Victor Felipe da Silva Araújo
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| | | | - Romildo de Albuquerque Nogueira
- Laboratory of Theoretical-Experimental and Computational Biophysics, Rural Federal University of Pernambuco (UFRPE) , Recife, Brazil
| |
Collapse
|
23
|
Naidich TP, Schefflein J, Cedillo MA, Deutsch JP, Murthy S, Fowkes M. The Distal Spine. Neuroimaging Clin N Am 2019; 29:385-409. [DOI: 10.1016/j.nic.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Heparan Sulfate Sulfation by Hs2st Restricts Astroglial Precursor Somal Translocation in Developing Mouse Forebrain by a Non-Cell-Autonomous Mechanism. J Neurosci 2019; 39:1386-1404. [PMID: 30617207 PMCID: PMC6381258 DOI: 10.1523/jneurosci.1747-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Heparan sulfate (HS) is a cell surface and extracellular matrix carbohydrate extensively modified by differential sulfation. HS interacts physically with canonical fibroblast growth factor (FGF) proteins that signal through the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) pathway. At the embryonic mouse telencephalic midline, FGF/ERK signaling drives astroglial precursor somal translocation from the ventricular zone of the corticoseptal boundary (CSB) to the induseum griseum (IG), producing a focus of Slit2-expressing astroglial guidepost cells essential for interhemispheric corpus callosum (CC) axon navigation. Here, we investigated the cell and molecular function of a specific form of HS sulfation, 2-O HS sulfation catalyzed by the enzyme Hs2st, in midline astroglial development and in regulating FGF protein levels and interaction with HS. Hs2st−/− embryos of either sex exhibit a grossly enlarged IG due to precocious astroglial translocation and conditional Hs2st mutagenesis and ex vivo culture experiments show that Hs2st is not required cell autonomously by CC axons or by the IG astroglial cell lineage, but rather acts non-cell autonomously to suppress the transmission of translocation signals to astroglial precursors. Rescue of the Hs2st−/− astroglial translocation phenotype by pharmacologically inhibiting FGF signaling shows that the normal role of Hs2st is to suppress FGF-mediated astroglial translocation. We demonstrate a selective action of Hs2st on FGF protein by showing that Hs2st (but not Hs6st1) normally suppresses the levels of Fgf17 protein in the CSB region in vivo and use a biochemical assay to show that Hs2st (but not Hs6st1) facilitates a physical interaction between the Fgf17 protein and HS. SIGNIFICANCE STATEMENT We report a novel non-cell-autonomous mechanism regulating cell signaling in developing brain. Using the developing mouse telencephalic midline as an exemplar, we show that the specific sulfation modification of the cell surface and extracellular carbohydrate heparan sulfate (HS) performed by Hs2st suppresses the supply of translocation signals to astroglial precursors by a non-cell-autonomous mechanism. We further show that Hs2st modification selectively facilitates a physical interaction between Fgf17 and HS and suppresses Fgf17 protein levels in vivo, strongly suggesting that Hs2st acts selectively on Fgf17 signaling. HS interacts with many signaling proteins potentially encoding numerous selective interactions important in development and disease, so this class of mechanism may apply more broadly to other biological systems.
Collapse
|
25
|
Zamai M, Trullo A, Giordano M, Corti V, Arza Cuesta E, Francavilla C, Cavallaro U, Caiolfa VR. Number and brightness analysis reveals that NCAM and FGF2 elicit different assembly and dynamics of FGFR1 in live cells. J Cell Sci 2019; 132:jcs.220624. [PMID: 30478195 DOI: 10.1242/jcs.220624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
Both fibroblast growth factor-2 (FGF2) and neural cell adhesion molecule (NCAM) trigger FGF receptor 1 (FGFR1) signaling; however, they induce remarkably distinct receptor trafficking and cellular responses. The molecular basis of such a dichotomy and the role of distinct types of ligand-receptor interaction remain elusive. Number of molecules and brightness (N&B) analysis revealed that FGF2 and NCAM promote different FGFR1 assembly and dynamics at the plasma membrane. NCAM stimulation elicits long-lasting cycles of short-lived FGFR1 monomers and multimers, a behavior that might reflect a rapid FGFR1 internalization and recycling. FGF2, instead, induces stable dimerization at the dose that stimulates cell proliferation. Reducing the occupancy of FGFR1 in response to low FGF2 doses causes a switch towards cyclically exposed and unstable receptor dimers, consistently with previously reported biphasic response to FGF2 and with the divergent signaling elicited by different ligand concentrations. Similar instability was observed upon altering the endocytic pathway. Thus, FGF2 and NCAM induce differential FGFR1 clustering at the cell surface, which might account for the distinct intracellular fate of the receptor and, hence, for the different signaling cascades and cellular responses.
Collapse
Affiliation(s)
- Moreno Zamai
- Centro di Imaging Sperimentale (CIS), Ospedale San Raffaele, IRCCS, Milan 20132, Italy.,Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Antonio Trullo
- Centro di Imaging Sperimentale (CIS), Ospedale San Raffaele, IRCCS, Milan 20132, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Valeria Corti
- Centro di Imaging Sperimentale (CIS), Ospedale San Raffaele, IRCCS, Milan 20132, Italy
| | - Elvira Arza Cuesta
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Chiara Francavilla
- Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Valeria R Caiolfa
- Centro di Imaging Sperimentale (CIS), Ospedale San Raffaele, IRCCS, Milan 20132, Italy .,Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
26
|
Schliermann A, Nickel J. Unraveling the Connection between Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling. Int J Mol Sci 2018; 19:ijms19103220. [PMID: 30340367 PMCID: PMC6214098 DOI: 10.3390/ijms19103220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.
Collapse
Affiliation(s)
- Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
- Fraunhofer Institut für Silicatforschung, Translationszentrum TLZ-RT, Röntgenring 11, 97222 Würzburg, Germany.
| |
Collapse
|
27
|
Liu X, Li N, Zhang H, Liu J, Zhou N, Ran C, Chen X, Lu Y, Wang X, Qin C, Xiao J, Liu C. Inactivation of Fam20b in the neural crest-derived mesenchyme of mouse causes multiple craniofacial defects. Eur J Oral Sci 2018; 126:433-436. [PMID: 30105814 DOI: 10.1111/eos.12563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
The glycosaminoglycan (GAG) chains attached to the core proteins of proteoglycans exert multiple roles, such as enriching signal molecules and regulating the binding of ligands to the corresponding receptors. A newly identified kinase - family with sequence similarity 20 member B (FAM20B) - is essential for the formation of GAG chains. The FAM20B protein phosphorylates the initial xylose on the side chain of a serine residue in the protein. Although the GAG chains of proteoglycans are believed to be indispensable during craniofacial development, there are few reports on their exact functions in craniofacial organogenesis. In this study, by mating Wnt1-cre mice with Fam20b-floxed mice (Fam20bflox/flox), we created Wnt1-Cre;Fam20bflox/flox mice in which Fam20b is ablated in the neural crest-derived mesenchyme. The Wnt1-Cre;Fam20bflox/flox mice died immediately after birth because of complete cleft palates. In addition to cleft palate, Wnt1-Cre;Fam20bflox/flox mice also manifested tongue elevation, micrognathia, microcephaly, suture widening, and reduced mineralization in the calvaria, facial bones, and temporomandibular joint. These findings indicate that the proteoglycans formed through the catalysis of FAM20B are essential for the morphogenesis and mineralization of the craniofacial complex.
Collapse
Affiliation(s)
- Xuena Liu
- Department of Radiology, The 2nd Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Nan Li
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Jing Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Nan Zhou
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoyan Chen
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Jing Xiao
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Chao Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
28
|
A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc Natl Acad Sci U S A 2018; 115:E6020-E6029. [PMID: 29899144 DOI: 10.1073/pnas.1806774115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.
Collapse
|
29
|
Huang M, He H, Belenkaya T, Lin X. Multiple roles of epithelial heparan sulfate in stomach morphogenesis. J Cell Sci 2018; 131:jcs.210781. [PMID: 29700203 DOI: 10.1242/jcs.210781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate various developmental processes. However, the function of heparan sulfate (HS) during the development of mammalian stomach has not been characterized yet. Here, we investigate the role of epithelial HS in embryonic stomach by examining mice deficient in the glycosyltransferase gene Ext1 We show that HS exhibits a specific and dynamic expression pattern in mouse embryonic stomach. Depletion of the epithelial HS leads to stomach hypoplasia, with phenotypic differences in the gastric mucosa between the forestomach and hindstomach. In the posterior stomach, HS depletion disrupts glandular stomach patterning and cytodifferentiation via attenuation of Fgf signaling activity. Inhibition of Fgf signaling in vitro recapitulates the patterning defect. Ligand and carbohydrate engagement assay (LACE) reveals a diminished assembly of Fgf10 and Fgfr2b in the mutant. In the anterior stomach, loss of epithelial HS leads to stratification and differentiation defects of the multilayered squamous epithelium, along with reduced Hh and Bmp signaling activity. Our data demonstrate that epithelial HS plays multiple roles in regulating mammalian stomach morphogenesis in a regional-specific manner.
Collapse
Affiliation(s)
- Meina Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tatyana Belenkaya
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
Garg A, Zhang X. Lacrimal gland development: From signaling interactions to regenerative medicine. Dev Dyn 2017; 246:970-980. [PMID: 28710815 DOI: 10.1002/dvdy.24551] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease. Developmental Dynamics 246:970-980, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
31
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
32
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
33
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|