1
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
3
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Tsai M, Rayner RE, Chafin L, Farkas D, Adair J, Mishan C, Mallampalli RK, Kim SH, Cormet-Boyaka E, Londino JD. Influenza virus reduces ubiquitin E3 ligase MARCH10 expression to decrease ciliary beat frequency. Am J Physiol Lung Cell Mol Physiol 2023; 324:L666-L676. [PMID: 36852930 PMCID: PMC10151042 DOI: 10.1152/ajplung.00191.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory viruses, such as influenza, decrease airway cilia function and expression, which leads to reduced mucociliary clearance and inhibited overall immune defense. Ubiquitination is a posttranslational modification using E3 ligases, which plays a role in the assembly and disassembly of cilia. We examined the role of membrane-associated RING-CH (MARCH) family of E3 ligases during influenza infection and determined that MARCH10, specifically expressed in ciliated epithelial cells, is significantly decreased during influenza infection in mice, human lung epithelial cells, and human lung tissue. Cellular depletion of MARCH10 in differentiated human bronchial epithelial cells (HBECs) using CRISPR/Cas9 showed a decrease in ciliary beat frequency. Furthermore, MARCH10 cellular knockdown in combination with influenza infection selectively decreased immunoreactive levels of the ciliary component, dynein axonemal intermediate chain 1. Cellular overexpression of MARCH10 significantly decreased influenza hemagglutinin protein levels in the differentiated HBECs and knockdown of MARCH10 increased IL-1β cytokine expression, whereas overexpression had the reciprocal effect. These findings suggest that MARCH10 may have a protective role in airway pulmonary host defense and innate immunity during influenza infection.
Collapse
Affiliation(s)
- MuChun Tsai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Lexie Chafin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Daniela Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jessica Adair
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Chelsea Mishan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rama K Mallampalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
5
|
Chiuso F, Delle Donne R, Giamundo G, Rinaldi L, Borzacchiello D, Moraca F, Intartaglia D, Iannucci R, Senatore E, Lignitto L, Garbi C, Conflitti P, Catalanotti B, Conte I, Feliciello A. Ubiquitylation of BBSome is required for ciliary assembly and signaling. EMBO Rep 2023; 24:e55571. [PMID: 36744302 PMCID: PMC10074118 DOI: 10.15252/embr.202255571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.
Collapse
Affiliation(s)
- Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.,Net4Science srl, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Paolo Conflitti
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Primary Cilia Restrain PI3K-AKT Signaling to Orchestrate Human Decidualization. Int J Mol Sci 2022; 23:ijms232415573. [PMID: 36555215 PMCID: PMC9779442 DOI: 10.3390/ijms232415573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFβ, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.
Collapse
|
7
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
8
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Yuan G, Yang ST, Yang S. Endothelial RGS12 governs angiogenesis in inflammatory arthritis by controlling cilia formation and elongation via MYCBP2 signaling. CELL INSIGHT 2022; 1:100055. [PMID: 37193553 PMCID: PMC10120324 DOI: 10.1016/j.cellin.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/18/2023]
Abstract
Angiogenesis is the formation of new capillaries that plays an essential role in the pathogenesis of inflammatory arthritis. However, the cellular and molecular mechanisms remain unclear. Here, we provide the first evidence that regulator of G-protein signaling 12 (RGS12) promotes angiogenesis in inflammatory arthritis through governing ciliogenesis and cilia elongation in endothelial cells. The knockout of RGS12 inhibits the development of inflammatory arthritis with the reduction in clinical score, paw swelling, and angiogenesis. Mechanistically, RGS12 overexpression (OE) in endothelial cells increases cilia number and length, and thereby promotes cell migration and tube-like structure formation. The knockout of cilia marker protein Intraflagellar transport (IFT) 80 blocked the increase in cilia number and length caused by RGS12 OE. Moreover, the results from LC/MS and IP analysis showed that RGS12 is associated with cilia-related protein MYC binding protein 2 (MYCBP2), which enhances the phosphorylation of MYCBP2 to promote ciliogenesis in endothelial cells. These findings demonstrate that upregulation of RGS12 by inflammation enhances angiogenesis by promoting cilia formation and elongation via activation of MYCBP2 signaling during inflammatory arthritis pathogenesis.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Shu-ting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
- Center for Innovation & Precision Dentistry, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA19104, USA
- The Penn Center for Musculoskeletal Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
10
|
Habeck G, Schweiggert J. Proteolytic control in ciliogenesis: Temporal restriction or early initiation? Bioessays 2022; 44:e2200087. [PMID: 35739619 DOI: 10.1002/bies.202200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022]
Abstract
Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia - antenna-like structures on the surface of most cells that act as integrative hubs for various extracellular signals. Over the last decade, many reports on ubiquitin-related events involved in the regulation of ciliogenesis have emerged. Very often, these processes are considered to be initiated ad hoc, that is, directly before its effect on cilia biogenesis becomes evident. While such a temporal restriction may hold true for the majority of events, there is evidence that some of them are initiated earlier during the cell cycle. Here, we provide an overview of ubiquitin-dependent processes in ciliogenesis and discuss available data that indicate such an early onset of proteolytic regulation within preceding cell cycle stages.
Collapse
Affiliation(s)
- Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
11
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
12
|
Schweiggert J, Habeck G, Hess S, Mikus F, Beloshistov R, Meese K, Hata S, Knobeloch K, Melchior F. SCF Fbxw5 targets kinesin-13 proteins to facilitate ciliogenesis. EMBO J 2021; 40:e107735. [PMID: 34368969 PMCID: PMC8441365 DOI: 10.15252/embj.2021107735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5 targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.
Collapse
Affiliation(s)
- Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Sandra Hess
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Felix Mikus
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Roman Beloshistov
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Klaus Meese
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Shoji Hata
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | | | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| |
Collapse
|
13
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
14
|
Cullin 1 (CUL1) Promotes Primary Ciliogenesis through the Induction of Ubiquitin-Proteasome-Dependent Dvl2 Degradation. Int J Mol Sci 2021; 22:ijms22147572. [PMID: 34299191 PMCID: PMC8307194 DOI: 10.3390/ijms22147572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are nonmotile cellular signal-sensing antenna-like structures composed of microtubule-based structures that distinguish them from motile cilia in structure and function. Primary ciliogenesis is regulated by various cellular signals, such as Wnt, hedgehog (Hh), and platelet-derived growth factor (PDGF). The abnormal regulation of ciliogenesis is closely related to developing various human diseases, including ciliopathies and cancer. This study identified a novel primary ciliogenesis factor Cullin 1 (CUL1), a core component of Skp1-Cullin-F-box (SCF) E3 ubiquitin ligase complex, which regulates the proteolysis of dishevelled 2 (Dvl2) through the ubiquitin-proteasome system. Through immunoprecipitation-tandem mass spectrometry analysis, 176 Dvl2 interacting candidates were identified, of which CUL1 is a novel Dvl2 modulator that induces Dvl2 ubiquitination-dependent degradation. Neddylation-dependent CUL1 activity at the centrosomes was essential for centrosomal Dvl2 degradation and primary ciliogenesis. Therefore, this study provides a new mechanism of Dvl2 degradation by CUL1, which ultimately leads to primary ciliogenesis, and suggest a novel target for primary cilia-related human diseases.
Collapse
|
15
|
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci 2021; 78:4955-4972. [PMID: 33860332 PMCID: PMC8233288 DOI: 10.1007/s00018-021-03827-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
Collapse
Affiliation(s)
- Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Nishimura Y, Inagaki M. [Targeting the ubiquitin system for treatment of cilia-related diseases]. Nihon Yakurigaku Zasshi 2021; 156:4-8. [PMID: 33390480 DOI: 10.1254/fpj.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ubiquitin system regulates a wide variety of cellular functions. Not surprisingly, dysregulation of the ubiquitin system is associated with various disorders. Therefore, drugs that can modulate the functions of the ubiquitin system have been actively developed to treat these disorders. Chemical knockdown of pathogenic proteins using the ubiquitin-proteasome system is also a promising approach. The ubiquitin system regulates the assemble and disassemble of primary cilia through balanced control over the ubiquitination and deubiquitination of ciliary proteins. Primary cilia are antenna-like structures present in many vertebrate cells that sense and transduce extracellular cues to control cellular processes such as proliferation and differentiation. Impairment of primary cilia is associated with many diseases, including cancer and ciliopathy, a group of multisystem developmental disorders. In this review, we focus on the role of the ubiquitin system on cilia-related disorders and discuss the possibility of the ubiquitin system as therapeutic targets for these diseases through regulation of primary cilia formation.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine.,Glocal Center for Advanced Medical Research, Mie University
| | - Masaki Inagaki
- Glocal Center for Advanced Medical Research, Mie University.,Department of Physiology, Mie University Graduate School of Medicine
| |
Collapse
|
17
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
18
|
Toulis V, Marfany G. By the Tips of Your Cilia: Ciliogenesis in the Retina and the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:303-310. [PMID: 32274763 DOI: 10.1007/978-3-030-38266-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Primary cilia are microtubule-based sensory organelles that are involved in the organization of numerous key signals during development and in differentiated tissue homeostasis. In fact, the formation and resorption of cilia highly depends on the cell cycle phase in replicative cells, and the ubiquitin proteasome pathway (UPS) proteins, such as E3 ligases and deubiquitinating enzymes, promote microtubule assembly and disassembly by regulating the degradation/availability of ciliary regulatory proteins. Also, many differentiated tissues display cilia, and mutations in genes encoding ciliary proteins are associated with several human pathologies, named ciliopathies, which are multi-organ rare diseases. The retina is one of the organs most affected by ciliary gene mutations because photoreceptors are ciliated cells. Photoreception and phototransduction occur in the outer segment, a highly specialized neurosensory cilium. In this review, we focus on the function of UPS proteins in ciliogenesis and cilia length control in replicative cells and compare it with the scanty data on the identified UPS genes that cause syndromic and non-syndromic inherited retinal disorders. Clearly, further work using animal models and gene-edited mutants of ciliary genes in cells and organoids will widen the landscape of UPS involvement in ciliogenesis and cilia homeostasis.
Collapse
Affiliation(s)
- Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain. .,CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain. .,Institut de Biomedicina (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Barrio R, Sutherland JD. Proteostasis: The network behind the networks. Semin Cell Dev Biol 2019; 93:97-99. [PMID: 31004754 DOI: 10.1016/j.semcdb.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1. Protein Cell 2019; 10:726-744. [PMID: 30850948 PMCID: PMC6776484 DOI: 10.1007/s13238-019-0614-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022] Open
Abstract
The primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly. This is mainly mediated by MLN4924-induced phosphorylation of AKT1 at Ser473 under serum-starved, ciliary-promoting conditions. Indeed, pharmaceutical inhibition (by MK2206) or genetic depletion (via siRNA) of AKT1 rescues MLN4924 effect, indicating its causal role. Interestingly, pAKT1-Ser473 activity regulates both ciliary synthesis/assembly and disassembly in a MLN4924 dependent manner, whereas pAKT-Thr308 determines the ciliary length in MLN4924-independent but VHL-dependent manner. Finally, MLN4924 inhibits mouse hair regrowth, a process requires ciliogenesis. Collectively, our study demonstrates an unexpected role of a neddylation inhibitor in regulation of ciliogenesis via AKT1, and provides a proof-of-concept for potential utility of MLN4924 in the treatment of human diseases associated with abnormal ciliogenesis.
Collapse
|
21
|
Abstract
Acetylation is among the most prevalent posttranslational modifications in cells and regulates a number of physiological processes such as gene transcription, cell metabolism, and cell signaling. Although initially discovered on nuclear histones, many non-nuclear proteins have subsequently been found to be acetylated as well. The centrosome is the major microtubule-organizing center in most metazoans. Recent proteomic data indicate that a number of proteins in this subcellular compartment are acetylated. This review gives an overview of our current knowledge on protein acetylation at the centrosome and its functional relevance in organelle biology.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada. .,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Pathology and Cell Biology, Universite de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|