1
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
2
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
3
|
Mandigers PJJ, Santifort KM, Lowrie M, Garosi L. Canine paroxysmal dyskinesia-a review. Front Vet Sci 2024; 11:1441332. [PMID: 39119350 PMCID: PMC11308868 DOI: 10.3389/fvets.2024.1441332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Paroxysmal dyskinesias (PDs) are a group of involuntary, hyperkinetic movement disorders that recur episodically and may last seconds to hours. An important feature of PD is that there is no loss of consciousness during the episode. Using a clinical classification, three main types of PDs have been distinguished in canine PD: (1) paroxysmal kinesigenic dyskinesia (PKD) that commences after (sudden) movements, (2) paroxysmal non-kinesigenic dyskinesia (PNKD) not associated with exercise and can occur at rest, and (3) paroxysmal exertion-induced dyskinesia (PED) associated with fatigue. Canine PDs are diagnosed based on the clinical presentation, history, and phenomenology. For the latter, a video recording of the paroxysmal event is extremely useful. An etiological classification of canine PDs includes genetic (proven and suspected), reactive (drug-induced, toxic, metabolic, and dietary), structural (neoplasia, inflammatory, and other structural causes), and unknown causes. In this review, an overview of all reported canine PDs is provided with emphasis on phenotype, genotype, and, where possible, pathophysiology and treatment for each reported canine PD.
Collapse
Affiliation(s)
- Paul J. J. Mandigers
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
| | - Koen M. Santifort
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
- Evidensia Referral Hospital “Hart van Brabant”, Waalwijk, Netherlands
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, United Kingdom
| | | |
Collapse
|
4
|
Xu Y, Li Y, Richard SA, Sun Y, Zhu C. Genetic pathways in cerebral palsy: a review of the implications for precision diagnosis and understanding disease mechanisms. Neural Regen Res 2024; 19:1499-1508. [PMID: 38051892 PMCID: PMC10883492 DOI: 10.4103/1673-5374.385855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/02/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Cerebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture. Patients with cerebral palsy are often only capable of limited activity, resulting from non-progressive disturbances in the fetal or neonatal brain. These disturbances severely impact the child's daily life and impose a substantial economic burden on the family. Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes, the understanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity. This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development. It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development, which can be further influenced by environmental factors. Despite continuous research endeavors, the underlying factors contributing to cerebral palsy remain are still elusive. However, significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development. Moreover, these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping, including thrombosis, angiogenesis, mitochondrial and oxidative phosphorylation function, neuronal migration, and cellular autophagy. Furthermore, exploring targeted genotypes holds potential for precision treatment. In conclusion, advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy. These breakthroughs have the potential to pave the way for new treatments and therapies, consequently shaping the future of cerebral palsy research and its clinical management. The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies. By elucidating the underlying cellular mechanisms, we can develop targeted interventions to optimize outcomes. A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.
Collapse
Affiliation(s)
- Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan Province, China
| | - Yifei Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Seidu A Richard
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
6
|
Glotzbach K, Faissner A. Substrate-bound and soluble domains of tenascin-C regulate differentiation, proliferation and migration of neural stem and progenitor cells. Front Cell Neurosci 2024; 18:1357499. [PMID: 38425428 PMCID: PMC10902920 DOI: 10.3389/fncel.2024.1357499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The lack of regenerative capacity of the central nervous system is one of the major challenges nowadays. The knowledge of guidance cues that trigger differentiation, proliferation, and migration of neural stem and progenitor cells is one key element in regenerative medicine. The extracellular matrix protein tenascin-C (Tnc) is a promising candidate to regulate cell fate due to its expression in the developing central nervous system and in the adult neural stem cell niches. Of special interest are the alternatively spliced fibronectin type III (FnIII) domains of Tnc whose combinatorial diversity could theoretically generate up to 64 isoforms in the mouse. A total of 27 isoforms have already been discovered in the developing brain, among others the domain combinations A1D, CD, and A124BCD. Methods In the present study, these domains as well as the combination of the constitutively expressed FnIII domains 7 and 8 (78) were expressed in Chinese hamster ovary cells as pseudo-antibodies fused to the Fc-fragment of a human immunoglobulin G antibody. The fusion proteins were presented to primary mouse neural stem/progenitor cells (NSPCs) grown as neurospheres, either as coated culture substrates or as soluble additives in vitro. The influence of the domains on the differentiation, proliferation and migration of NSPCs was analyzed. Results We observed that the domain combination A124BCD promoted the differentiation of neurons and oligodendrocytes, whereas the domain A1D supported astrocyte differentiation. The constitutively expressed domain 78 had a proliferation and migration stimulating impact. Moreover, most effects were seen only in one of the presentation modes but not in both, suggesting different effects of the Tnc domains in two- and three-dimensional cultures. Discussion This knowledge about the different effect of the Tnc domains might be used to create artificial three-dimensional environments for cell transplantation. Hydrogels spiked with Tnc-domains might represent a promising tool in regenerative medicine.
Collapse
Affiliation(s)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Dong Y, Zhao K, Qin X, Du G, Gao L. The mechanisms of perineuronal net abnormalities in contributing aging and neurological diseases. Ageing Res Rev 2023; 92:102092. [PMID: 37839757 DOI: 10.1016/j.arr.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The perineuronal net (PNN) is a highly latticed extracellular matrix in the central nervous system, which is composed of hyaluronic acid, proteoglycan, hyaluronan and proteoglycan link protein (Hapln), and tenascin. PNN is predominantly distributed in GABAergic interneurons expressing Parvalbumin (PV) and plays a critical role in synaptic function, learning and memory, oxidative stress, and inflammation. In addition, PNN's structure and function are also modulated by a variety of factors, including protein tyrosine phosphatase σ (PTPσ), orthodenticle homeo-box 2 (Otx2), and erb-b2 receptor tyrosine kinase 4 (ErbB4). Glycosaminoglycan (GAG), a component of proteoglycan, also influences PNN through its sulfate mode. PNN undergoes abnormal changes during aging and in various neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, autism spectrum disorder, and multiple sclerosis. Nevertheless, there is limited report on the relationship between PNN and aging or age-related neurological diseases. This review elaborates on the mechanisms governing PNN regulation and summarizes how PNN abnormalities contribute to aging and neurological diseases, offering insights for potential treatments.
Collapse
Affiliation(s)
- Yixiao Dong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Kunkun Zhao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
8
|
Li H, Ghorbani S, Zhang R, Ebacher V, Stephenson EL, Keough MB, Yong VW, Xue M. Prominent elevation of extracellular matrix molecules in intracerebral hemorrhage. Front Mol Neurosci 2023; 16:1251432. [PMID: 38025264 PMCID: PMC10658787 DOI: 10.3389/fnmol.2023.1251432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is the predominant type of hemorrhagic stroke with high mortality and disability. In other neurological conditions, the deposition of extracellular matrix (ECM) molecules is a prominent obstacle for regenerative processes and an enhancer of neuroinflammation. Whether ECM molecules alter in composition after ICH, and which ECM members may inhibit repair, remain largely unknown in hemorrhagic stroke. Methods The collagenase-induced ICH mouse model and an autopsied human ICH specimen were investigated for expression of ECM members by immunofluorescence microscopy. Confocal image z-stacks were analyzed with Imaris 3D to assess the association of immune cells and ECM molecules. Sections from a mouse model of multiple sclerosis were used as disease and staining controls. Tissue culture was employed to examine the roles of ECM members on oligodendrocyte precursor cells (OPCs). Results Among the lectican chondroitin sulfate proteoglycan (CSPG) members, neurocan but not aggrecan, versican-V1 and versican-V2 was prominently expressed in perihematomal tissue and lesion core compared to the contralateral area in murine ICH. Fibrinogen, fibronectin and heparan sulfate proteoglycan (HSPG) were also elevated after murine ICH while thrombospondin and tenascin-C was not. Confocal microscopy with Imaris 3D rendering co-localized neurocan, fibrinogen, fibronectin and HSPG molecules to Iba1+ microglia/macrophages or GFAP+ astrocytes. Marked differentiation from the multiple sclerosis model was observed, the latter with high versican-V1 and negligible neurocan. In culture, purified neurocan inhibited adhesion and process outgrowth of OPCs, which are early steps in myelination in vivo. The prominent expression of neurocan in murine ICH was corroborated in human ICH sections. Conclusion ICH caused distinct alterations in ECM molecules. Among CSPG members, neurocan was selectively upregulated in both murine and human ICH. In tissue culture, neurocan impeded the properties of oligodendrocyte lineage cells. Alterations to the ECM in ICH may adversely affect reparative outcomes after stroke.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Vincent Ebacher
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Erin L. Stephenson
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael B. Keough
- Division of Neurosurgery, University of Alberta, Edmonton, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Sharma A, Hill KE, Schwarzbauer JE. Extracellular matrix composition affects outgrowth of dendrites and dendritic spines on cortical neurons. Front Cell Neurosci 2023; 17:1177663. [PMID: 37388410 PMCID: PMC10300442 DOI: 10.3389/fncel.2023.1177663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
The composition of the extracellular matrix (ECM) in nervous tissue plays an important role in controlling neuronal outgrowth and synapse development. Changes in both protein and glycosaminoglycan components of the ECM occur with tissue injury and may affect neuron growth. To investigate neuron responses to alterations in fibronectin (FN), a major component of the wound ECM, we grew cortical neurons on cell-derived decellularized matrices composed of wild type FN (FN+/+) or of a mutant form of FN (FNΔ/+) from which the III13 heparin-binding site had been deleted by CRISPR-Cas 9 gene editing. The most significant effect of the mutant FN was a reduction in dendrite outgrowth. Not only were dendrites shorter on mutant FNΔ/+-collagen (COL) matrix than on wild type (FN+/+-COL) matrix, but the number of dendrites and dendritic spines per neuron and the spine densities were also dramatically reduced on FNΔ/+-COL matrices. Mass spectrometry and immunostaining identified a reduction in tenascin-C (TN-C) levels in the mutant matrix. TN-C is an ECM protein that binds to the III13 site of FN and modulates cell-matrix interactions and has been linked to dendrite development. We propose that TN-C binding to FN in the wound matrix supports dendrite and spine development during repair of damaged neural tissue. Overall, these results show that changes in ECM composition can dramatically affect elaboration of neurites and support the idea that the ECM microenvironment controls neuron morphology and connectivity.
Collapse
Affiliation(s)
| | | | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
10
|
Christen M, Gutierrez-Quintana R, James M, Faller KME, Lowrie M, Rusbridge C, Bossens K, Mellersh C, Pettitt L, Heinonen T, Lohi H, Jagannathan V, Leeb T. A TNR Frameshift Variant in Weimaraner Dogs with an Exercise-Induced Paroxysmal Movement Disorder. Mov Disord 2023; 38:1094-1099. [PMID: 37023257 DOI: 10.1002/mds.29391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Some paroxysmal movement disorders remain without an identified genetic cause. OBJECTIVES The aim was to identify the causal genetic variant for a paroxysmal dystonia-ataxia syndrome in Weimaraner dogs. METHODS Clinical and diagnostic investigations were performed. Whole genome sequencing of one affected dog was used to identify private homozygous variants against 921 control genomes. RESULTS Four Weimaraners were presented for episodes of abnormal gait. Results of examinations and diagnostic investigations were unremarkable. Whole genome sequencing revealed a private frameshift variant in the TNR (tenascin-R) gene in an affected dog, XM_038542431.1:c.831dupC, which is predicted to truncate more than 75% of the open read frame. Genotypes in a cohort of 4 affected and 70 unaffected Weimaraners showed perfect association with the disease phenotype. CONCLUSIONS We report the association of a TNR variant with a paroxysmal dystonia-ataxia syndrome in Weimaraners. It might be relevant to include sequencing of this gene in diagnosing humans with unexplained paroxysmal movement disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- Small Animal Hospital, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kiterie M E Faller
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, United Kingdom
| | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Clare Rusbridge
- School of Veterinary Medicine, University of Surrey, Surrey, United Kingdom
| | - Kenny Bossens
- Nesto Veterinary Referral Center Orion, Herentals, Belgium
| | - Cathryn Mellersh
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Louise Pettitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Fu S, Peng C, Zeng YY, Qiu Y, Liu Y, Fei JF. Establishing an Efficient Electroporation-Based Method to Manipulate Target Gene Expression in the Axolotl Brain. Cell Transplant 2023; 32:9636897231200059. [PMID: 37724837 PMCID: PMC10510365 DOI: 10.1177/09636897231200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.
Collapse
Affiliation(s)
- Sulei Fu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Yun Zeng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanhui Qiu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Schäfer I, Bauch J, Wegrzyn D, Roll L, van Leeuwen S, Jarocki A, Faissner A. The guanine nucleotide exchange factor Vav3 intervenes in the migration pathway of oligodendrocyte precursor cells on tenascin-C. Front Cell Dev Biol 2022; 10:1042403. [PMID: 36531963 PMCID: PMC9748482 DOI: 10.3389/fcell.2022.1042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 10/22/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho subfamily. In general, the myelination process requires migration, proliferation and differentiation of OPCs. Presently, these processes are only partially understood. In this study, we analyzed the impact of the guanine nucleotide exchange factor (GEF) Vav3 on the migration behavior of OPCs. Vav3 is known to regulate RhoA, Rac1 and RhoG activity and is therefore a promising candidate with regard to a regulatory role concerning the rearrangement of the cytoskeleton. Our study focused on the Vav3 knockout mouse and revealed an enhanced migration capacity of Vav3 -/- OPCs on the extracellular matrix (ECM) glycoprotein tenascin-C (TnC). The migration behavior of individual OPCs on further ECM molecules such as laminin-1 (Ln1), laminin-2 (Ln2) and tenascin-R (TnR) was not affected by the elimination of Vav3. The migration process was further investigated with regard to intracellular signal transmission by pharmacological blockade of downstream pathways of specific Rho GTPases. Our data suggest that activation of RhoA GTPase signaling compromises migration, as inhibition of RhoA-signaling promoted migration behavior. This study provides novel insights into the control of OPC migration, which could be useful for further understanding of the complex differentiation and myelination process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
15
|
Wen S, Xu X, Kong J, Luo L, Yue P, Cao W, Zhang Y, Liu M, Fan Y, Chen J, Ma M, Tao L, Peng Y, Wang F, Dong Y, Li B, Luo S, Zhou G, Chen T, Li L, Liu A, Bao F. Comprehensive analyses of transcriptomes induced by Lyme spirochete infection to CNS model system. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105349. [PMID: 35964914 DOI: 10.1016/j.meegid.2022.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lyme disease is a zoonotic disease caused by infection with Borrelia burgdorferi (Bb), the involvement of the nervous system in Lyme disease is usually referred to as Lyme neuroborreliosis (LNB). LNB has diverse clinical manifestations, most commonly including meningitis, Bell's palsy, and encephalitis. However, the molecular pathogenesis of neuroborreliosis is still poorly understood. Comprehensive transcriptomic analysis following Bb infection could provide new insights into the pathogenesis of LNB and may identify novel biomarkers or therapeutic targets for LNB diagnosis and treatment. METHODS In the present study, we pooled transcriptomic dataset of Macaca mulatta (rhesus) from our laboratory and the human astrocyte dataset GSE85143 from the Gene Expression Omnibus database to screen common differentially expressed genes (DEGs) in the Bb infection group and the control group. Functional and enrichment analyses were applied for the DEGs. Protein-Protein Interaction network, and hub genes were identified using the Search Tool for the Retrieval of Interaction Genes database and the CytoHubba plugin. Finally, mRNA expression of hub genes was validated in vitro and ex vivo from Bb infected models and normal controls by quantitative reverse transcription PCR (qRT-PCR). RESULTS A total of 80 upregulated DEGs and 32 downregulated DEGs were identified. Among them, 11 hub genes were selected. The pathway enrichment analyses on 11 hub genes revealed that the PI3K-Akt signaling pathway was significantly enriched. The mRNA levels of ANGPT1, TLR6, SREBF1, LDLR, TNC, and ITGA2 in U251 cells and/or rhesus brain explants by exposure to Bb were validated by qRT-PCR. CONCLUSION Our study suggested that TLR6, ANGPT1, LDLR, SREBF1, TNC, and ITGA may be candidate mammal biomarkers for LNB, and the TLR6/PI3K-Akt signaling pathway may play an important role in LNB pathogenesis.
Collapse
Affiliation(s)
- Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Department of Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Xin Xu
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Jing Kong
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Peng Yue
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Wenjing Cao
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Yu Zhang
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Meixiao Liu
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yuxin Fan
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Jingjing Chen
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Mingbiao Ma
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China
| | - Lvyan Tao
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China
| | - Yun Peng
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Feng Wang
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yan Dong
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Bingxue Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Suyi Luo
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China; The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China; Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China.
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China; The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China; Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China.
| |
Collapse
|
16
|
Abi-Ghanem C, Jonnalagadda D, Chun J, Kihara Y, Ranscht B. CAQK, a peptide associating with extracellular matrix components targets sites of demyelinating injuries. Front Cell Neurosci 2022; 16:908401. [PMID: 36072569 PMCID: PMC9441496 DOI: 10.3389/fncel.2022.908401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The destruction of the myelin sheath that encircles axons leads to impairments of nerve conduction and neuronal dysfunctions. A major demyelinating disorder is multiple sclerosis (MS), a progressively disabling disease in which immune cells attack the myelin. To date, there are no therapies to target selectively myelin lesions, repair the myelin or stop MS progression. Small peptides recognizing epitopes selectively exposed at sites of injury show promise for targeting therapeutics in various pathologies. Here we show the selective homing of the four amino acid peptide, cysteine-alanine-lysine glutamine (CAQK), to sites of demyelinating injuries in three different mouse models. Homing was assessed by administering fluorescein amine (FAM)-labeled peptides into the bloodstream of mice and analyzing sites of demyelination in comparison with healthy brain or spinal cord tissue. FAM-CAQK selectively targeted demyelinating areas in all three models and was absent from healthy tissue. At lesion sites, the peptide was primarily associated with the fibrous extracellular matrix (ECM) deposited in interstitial spaces proximal to reactive astrocytes. Association of FAM-CAQK was detected with tenascin-C although tenascin depositions made up only a minor portion of the examined lesion sites. In mice on a 6-week cuprizone diet, FAM-CAQK peptide crossed the nearly intact blood-brain barrier and homed to demyelinating fiber tracts. These results demonstrate the selective targeting of CAQK to demyelinating injuries under multiple conditions and confirm the previously reported association with the ECM. This work sets the stage for further developing CAQK peptide targeting for diagnostic and therapeutic applications aimed at localized myelin repair.
Collapse
|
17
|
The Extracellular Matrix Proteins Tenascin-C and Tenascin-R Retard Oligodendrocyte Precursor Maturation and Myelin Regeneration in a Cuprizone-Induced Long-Term Demyelination Animal Model. Cells 2022; 11:cells11111773. [PMID: 35681468 PMCID: PMC9179356 DOI: 10.3390/cells11111773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. The physiological importance of oligodendrocytes is highlighted by diseases such as multiple sclerosis, in which the myelin sheaths are degraded and the axonal signal transmission is compromised. In a healthy brain, spontaneous remyelination is rare, and newly formed myelin sheaths are thinner and shorter than the former ones. The myelination process requires the migration, proliferation, and differentiation of oligodendrocyte precursor cells (OPCs) and is influenced by proteins of the extracellular matrix (ECM), which consists of a network of glycoproteins and proteoglycans. In particular, the glycoprotein tenascin-C (Tnc) has an inhibitory effect on the differentiation of OPCs and the remyelination efficiency of oligodendrocytes. The structurally similar tenascin-R (Tnr) exerts an inhibitory influence on the formation of myelin membranes in vitro. When Tnc knockout oligodendrocytes were applied to an in vitro myelination assay using artificial fibers, a higher number of sheaths per single cell were obtained compared to the wild-type control. This effect was enhanced by adding brain-derived neurotrophic factor (BDNF) to the culture system. Tnr−/− oligodendrocytes behaved differently in that the number of formed sheaths per single cell was decreased, indicating that Tnr supports the differentiation of OPCs. In order to study the functions of tenascin proteins in vivo Tnc−/− and Tnr−/− mice were exposed to Cuprizone-induced demyelination for a period of 10 weeks. Both Tnc−/− and Tnr−/− mouse knockout lines displayed a significant increase in the regenerating myelin sheath thickness after Cuprizone treatment. Furthermore, in the absence of either tenascin, the number of OPCs was increased. These results suggest that the fine-tuning of myelin regeneration is regulated by the major tenascin proteins of the CNS.
Collapse
|
18
|
Bauch J, Ort SV, Ulc A, Faissner A. Tenascins Interfere With Remyelination in an Ex Vivo Cerebellar Explant Model of Demyelination. Front Cell Dev Biol 2022; 10:819967. [PMID: 35372366 PMCID: PMC8965512 DOI: 10.3389/fcell.2022.819967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Oligodendrocytes form myelin membranes and thereby secure the insulation of axons and the rapid conduction of action potentials. Diseases such as multiple sclerosis highlight the importance of this glial cell population for brain function. In the adult brain, efficient remyelination following the damage to oligodendrocytes is compromised. Myelination is characterized by proliferation, migration, and proper integration of oligodendrocyte precursor cells (OPCs). These processes are among others controlled by proteins of the extracellular matrix (ECM). As a prominent representative ECM molecule, tenascin-C (Tnc) exerts an inhibitory effect on the migration and differentiation of OPCs. The structurally similar paralogue tenascin-R (Tnr) is known to promote the differentiation of oligodendrocytes. The model of lysolecithin-induced demyelination of cerebellar slice cultures represents an important tool for the analysis of the remyelination process. Ex vivo cerebellar explant cultures of Tnc−/− and Tnr−/− mouse lines displayed enhanced remyelination by forming thicker myelin membranes upon exposure to lysolecithin. The inhibitory effect of tenascins on remyelination could be confirmed when demyelinated wildtype control cultures were exposed to purified Tnc or Tnr protein. In that approach, the remyelination efficiency decreased in a dose-dependent manner with increasing concentrations of ECM molecules added. In order to examine potential roles in a complex in vivo environment, we successfully established cuprizone-based acute demyelination to analyze the remyelination behavior after cuprizone withdrawal in SV129, Tnc−/−, and Tnr−/− mice. In addition, we documented by immunohistochemistry in the cuprizone model the expression of chondroitin sulfate proteoglycans that are inhibitory for the differentiation of OPCs. In conclusion, inhibitory properties of Tnc and Tnr for myelin membrane formation could be demonstrated by using an ex vivo approach.
Collapse
|
19
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
20
|
Nicaise AM, D'Angelo A, Ionescu RB, Krzak G, Willis CM, Pluchino S. The role of neural stem cells in regulating glial scar formation and repair. Cell Tissue Res 2021; 387:399-414. [PMID: 34820704 PMCID: PMC8975756 DOI: 10.1007/s00441-021-03554-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Glial scars are a common pathological occurrence in a variety of central nervous system (CNS) diseases and injuries. They are caused after severe damage and consist of reactive glia that form a barrier around the damaged tissue that leads to a non-permissive microenvironment which prevents proper endogenous regeneration. While there are a number of therapies that are able to address some components of disease, there are none that provide regenerative properties. Within the past decade, neural stem cells (NSCs) have been heavily studied due to their potent anti-inflammatory and reparative capabilities in disease and injury. Exogenously applied NSCs have been found to aid in glial scar healing by reducing inflammation and providing cell replacement. However, endogenous NSCs have also been found to contribute to the reactive environment by different means. Further understanding how NSCs can be leveraged to aid in the resolution of the glial scar is imperative in the use of these cells as regenerative therapies. To do so, humanised 3D model systems have been developed to study the development and maintenance of the glial scar. Herein, we explore the current work on endogenous and exogenous NSCs in the glial scar as well as the novel 3D stem cell–based technologies being used to model this pathology in a dish.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Andrea D'Angelo
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 2021; 72:9-23. [PMID: 34727324 DOI: 10.1007/s12031-021-01933-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 616476515.
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Pasamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
22
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
23
|
Molina-Holgado E, Paniagua-Torija B, Arevalo-Martin A, Moreno-Luna R, Esteban PF, Le MQU, Del Cerro MDM, Garcia-Ovejero D. Cannabinoid Receptor 1 associates to different molecular complexes during GABAergic neuron maturation. J Neurochem 2021; 158:640-656. [PMID: 33942314 DOI: 10.1111/jnc.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Minh Quynh Uyen Le
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
24
|
Wiemann S, Yousf A, Joachim SC, Peters C, Mueller-Buehl AM, Wagner N, Reinhard J. Knock-Out of Tenascin-C Ameliorates Ischemia-Induced Rod-Photoreceptor Degeneration and Retinal Dysfunction. Front Neurosci 2021; 15:642176. [PMID: 34093110 PMCID: PMC8172977 DOI: 10.3389/fnins.2021.642176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal ischemia is a common pathomechanism in various eye diseases. Recently, evidence accumulated suggesting that the extracellular matrix (ECM) glycoprotein tenascin-C (Tnc) plays a key role in ischemic degeneration. However, the possible functional role of Tnc in retinal ischemia is not yet known. The aim of our study was to explore retinal function and rod-bipolar/photoreceptor cell degeneration in wild type (WT) and Tnc knock-out (KO) mice after ischemia/reperfusion (I/R) injury. Therefore, I/R was induced by increasing intraocular pressure in the right eye of wild type (WT I/R) and Tnc KO (KO I/R) mice. The left eye served as untreated control (WT CO and KO CO). Scotopic electroretinogram (ERG) recordings were performed to examine rod-bipolar and rod-photoreceptor cell function. Changes of Tnc, rod-bipolar cells, photoreceptors, retinal structure and apoptotic and synaptic alterations were analyzed by immunohistochemistry, Hematoxylin and Eosin staining, Western blot, and quantitative real time PCR. We found increased Tnc protein levels 3 days after ischemia, while Tnc immunoreactivity decreased after 7 days. Tnc mRNA expression was comparable in the ischemic retina. ERG measurements after 7 days showed lower a-/b-wave amplitudes in both ischemic groups. Nevertheless, the amplitudes in the KO I/R group were higher than in the WT I/R group. We observed retinal thinning in WT I/R mice after 3 and 7 days. Although compared to the KO CO group, retinal thinning was not observed in the KO I/R group until 7 days. The number of PKCα+ rod-bipolar cells, recoverin+ photoreceptor staining and Prkca and Rcvrn expression were comparable in all groups. However, reduced rhodopsin protein as well as Rho and Gnat1 mRNA expression levels of rod-photoreceptors were found in the WT I/R, but not in the KO I/R retina. Additionally, a lower number of activated caspase 3+ cells was observed in the KO I/R group. Finally, both ischemic groups displayed enhanced vesicular glutamate transporter 1 (vGlut1) levels. Collectively, KO mice showed diminished rod-photoreceptor degeneration and retinal dysfunction after I/R. Elevated vGlut1 levels after ischemia could be related to an impaired glutamatergic photoreceptor-bipolar cell signaling and excitotoxicity. Our study provides novel evidence that Tnc reinforces ischemic retinal degeneration, possibly by synaptic remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Aisha Yousf
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carolin Peters
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Tucić M, Stamenković V, Andjus P. The Extracellular Matrix Glycoprotein Tenascin C and Adult Neurogenesis. Front Cell Dev Biol 2021; 9:674199. [PMID: 33996833 PMCID: PMC8117239 DOI: 10.3389/fcell.2021.674199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.
Collapse
Affiliation(s)
- Milena Tucić
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenković
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Extracellular Matrix Remodeling in the Retina and Optic Nerve of a Novel Glaucoma Mouse Model. BIOLOGY 2021; 10:biology10030169. [PMID: 33668263 PMCID: PMC7996343 DOI: 10.3390/biology10030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Glaucoma is a leading cause of blindness worldwide, and increased age and intraocular pressure (IOP) are the major risk factors. Glaucoma is characterized by the death of nerve cells and the loss of optic nerve fibers. Recently, evidence has accumulated indicating that proteins in the environment of nerve cells, called the extracellular matrix (ECM), play an important role in glaucomatous neurodegeneration. Depending on its constitution, the ECM can influence either the survival or the death of nerve cells. Thus, the aim of our study was to comparatively explore alterations of various ECM molecules in the retina and optic nerve of aged control and glaucomatous mice with chronic IOP elevation. Interestingly, we observed elevated levels of blood vessel and glial cell-associated ECM components in the glaucomatous retina and optic nerve, which could be responsible for various pathological processes. A better understanding of the underlying signaling mechanisms may help to develop new diagnostic and therapeutic strategies for glaucoma patients. Abstract Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, β2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPβ/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.
Collapse
|
27
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
28
|
Su M, Soomro SH, Jie J, Fu H. Effects of the extracellular matrix on myelin development and regeneration in the central nervous system. Tissue Cell 2021; 69:101444. [PMID: 33450651 DOI: 10.1016/j.tice.2020.101444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a collection of extracellular molecules secreted by cells, providing structural and biochemical support for surrounding tissues. The ECM exerts biological effects by interacting with growth factors, signal receptors or adhesion molecules. In the case of myelin formation and regeneration, the combination of ECM and its receptors (for example, integrins) modulates signaling pathways such as PI3K, MAPK, etc., which in turn induces complex biological effects throughout various stages of myelination and regeneration. Studies have also found that myelin injury would cause changes in ECM composition and thus affecting the myelin regeneration process. Research on the ECM will provide a better understanding of how myelin is formed and regenerated, which will help to develop new therapies for demyelinating diseases. Future progress in this field will provide important information on how to modify the ECM to promote proliferation and differentiation of oligodendrocyte precursor cells (OPC), thereby stimulating myelin formation and regeneration and restoring normal neural function.
Collapse
Affiliation(s)
- Min Su
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| | | | - Jifu Jie
- Health School of Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang, China.
| | - Hui Fu
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| |
Collapse
|
29
|
Ren F, Guo R. Synaptic Microenvironment in Depressive Disorder: Insights from Synaptic Plasticity. Neuropsychiatr Dis Treat 2021; 17:157-165. [PMID: 33519203 PMCID: PMC7838013 DOI: 10.2147/ndt.s268012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a major disease that can affect both mental and physical health, limits psychosocial functioning and diminishes the quality of life. But its complex pathogenesis remains poorly understood. The dynamic changes of synaptic structure and function, known as synaptic plasticity, occur with the changes of different cellular microenvironment and are closely related to learning and memory function. Accumulating evidence implies that synaptic plasticity is integrally involved in the pathological changes of mood disorders, especially in depressive disorder. However, the complex dynamic process of synaptic plasticity is influenced by many factors. Here, we reviewed and discussed various factors affecting synaptic plasticity in depression, and proposed a specific framework named synaptic microenvironment, which may be critical for synaptic plasticity under pathological conditions. Based on this concept, we will show how we understand the balance between the synaptic microenvironment and the synaptic plasticity network in depression. Finally, we point out the clinical significance of the synaptic microenvironment in depression.
Collapse
Affiliation(s)
- Feifei Ren
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| |
Collapse
|
30
|
Sáenz-Farret M, Munhoz RP, Fasano A, Zúñiga-Ramírez C. TNR Gene Mutation in Familial Parkinson's Disease: Possible Implications for Essential Tremor. J Mov Disord 2020; 14:170-172. [PMID: 33278868 PMCID: PMC8175815 DOI: 10.14802/jmd.20057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Affiliation(s)
- Michel Sáenz-Farret
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, University Health Network, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Renato Puppi Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, University Health Network, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, University Health Network, Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada
| | - Carlos Zúñiga-Ramírez
- Movement Disorders and Neurodegenerative Diseases Unit, Hospital Civil de Guadalajara "Fray Antonio Alcalde," Guadalajara, Mexico
| |
Collapse
|
31
|
Extracellular Matrix in Neural Plasticity and Regeneration. Cell Mol Neurobiol 2020; 42:647-664. [PMID: 33128689 DOI: 10.1007/s10571-020-00986-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
Collapse
|
32
|
Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol 2020; 11:566279. [PMID: 33162981 PMCID: PMC7581917 DOI: 10.3389/fimmu.2020.566279] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (EAG) mouse model to examine the role of the ECM glycoprotein tenascin-C (Tnc). Wild type (WT ONA) and Tnc knockout (KO ONA) mice were immunized with an optic nerve antigen (ONA) homogenate and control groups (CO) obtained sodium chloride (WT CO, KO CO). IOP was measured weekly and electroretinographies were recorded at the end of the study. Ten weeks after immunization, we analyzed retinal ganglion cells (RGCs), glial cells, and the expression of different cytokines in retina and optic nerve tissue in all four groups. IOP and retinal function were comparable in all groups. Although RGC loss was less severe in KO ONA, WT as well as KO mice displayed a significant cell loss after immunization. Compared to KO ONA, less βIII-tubulin+ axons, and downregulated oligodendrocyte markers were noted in WT ONA optic nerves. In retina and optic nerve, we found an enhanced GFAP+ staining area of astrocytes in immunized WT. A significantly higher number of retinal Iba1+ microglia was found in WT ONA, while a lower number of Iba1+ cells was observed in KO ONA. Furthermore, an increased expression of the glial markers Gfap, Iba1, Nos2, and Cd68 was detected in retinal and optic nerve tissue of WT ONA, whereas comparable levels were observed in KO ONA. In addition, pro-inflammatory Tnfa expression was upregulated in WT ONA, but downregulated in KO ONA. Vice versa, a significantly increased anti-inflammatory Tgfb1 expression was measured in KO ONA animals. We conclude that Tnc plays an important role in glial and inflammatory response during retinal neurodegeneration. Our results provide evidence that Tnc is involved in glaucomatous damage by regulating retinal glial activation and cytokine release. Thus, this transgenic EAG mouse model for the first time offers the possibility to investigate IOP-independent glaucomatous damage in direct relation to ECM remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Zülal Cibir
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Adewuyi EO, Mehta D, Sapkota Y, Auta A, Yoshihara K, Nyegaard M, Griffiths LR, Montgomery GW, Chasman DI, Nyholt DR. Genetic analysis of endometriosis and depression identifies shared loci and implicates causal links with gastric mucosa abnormality. Hum Genet 2020; 140:529-552. [PMID: 32959083 DOI: 10.1007/s00439-020-02223-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Evidence from observational studies indicates that endometriosis and depression often co-occur. However, conflicting evidence exists, and the etiology as well as biological mechanisms underlying their comorbidity remain unknown. Utilizing genome-wide association study (GWAS) data, we comprehensively assessed the relationship between endometriosis and depression. Single nucleotide polymorphism effect concordance analysis (SECA) found a significant genetic overlap between endometriosis and depression (PFsig-permuted = 9.99 × 10-4). Linkage disequilibrium score regression (LDSC) analysis estimated a positive and highly significant genetic correlation between the two traits (rG = 0.27, P = 8.85 × 10-27). A meta-analysis of endometriosis and depression GWAS (sample size = 709,111), identified 20 independent genome-wide significant loci (P < 5 × 10-8), of which eight are novel. Mendelian randomization analysis (MR) suggests a causal effect of depression on endometriosis. Combining gene-based association results across endometriosis and depression GWAS, we identified 22 genes with a genome-wide significant Fisher's combined P value (FCPgene < 2.75 × 10-6). Genes with a nominal gene-based association (Pgene < 0.05) were significantly enriched across endometriosis and depression (Pbinomial-test = 2.90 × 10-4). Also, genes overlapping the two traits at Pgene < 0.1 (Pbinomial-test = 1.31 × 10-5) were significantly enriched for the biological pathways 'cell-cell adhesion', 'inositol phosphate metabolism', 'Hippo-Merlin signaling dysregulation' and 'gastric mucosa abnormality'. These results reveal a shared genetic etiology for endometriosis and depression. Indeed, additional analyses found evidence of a causal association between each of endometriosis and depression and at least one abnormal condition of gastric mucosa. Our study confirms the comorbidity of endometriosis and depression, implicates links with gastric mucosa abnormalities in their causal pathways and reveals potential therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O Adewuyi
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - Divya Mehta
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Yadav Sapkota
- Department of Epidemiology And Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | | | - Asa Auta
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kosuke Yoshihara
- Department of Obstetrics And Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-2181, Japan
| | - Mette Nyegaard
- Department of Biomedicine - Human Genetics, Aarhus University, 8000, Aarhus,, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 2100, Copenhagen, Denmark
| | - Lyn R Griffiths
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel I Chasman
- Divisions of Preventive Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
34
|
Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S. Evaluation of the Serum Dkk-1, Tenascin-C, Oxidative Stress Markers Levels and Wnt Signaling Pathway Genes Expression in Patients with Alzheimer's Disease. J Mol Neurosci 2020; 71:879-887. [PMID: 32935274 DOI: 10.1007/s12031-020-01710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Early diagnosis of Alzheimer's disease (AD) using potential biomarkers may help with implementing early therapeutic interventions, monitoring, and ultimately disease treatment. The current study aimed to evaluate serum levels of DKK-1, TNC, and oxidative stress markers, as well as analyzing the expression of LRP6, GSK3A, and GSK3B genes in patients with AD. Serum levels of DKK-1, TNC, TOS, TAC, and MDA were measured in 40 AD patients and 40 healthy individuals. Additionally, the relative expressions of LRP6, GSK3A, and GSK3B genes in whole blood were evaluated. Receiver operating characteristic (ROC) analysis was used to investigate the incremental diagnostic value of each factor in the study groups. Mean serum levels of DKK-1, TNC, TOS, TAC, and MDA were significantly higher in the AD group compared to the healthy group (p < 0.001). Moreover, a significant difference was observed in the expression of LRP6 and GSK3A genes (p < 0.001) between patients and healthy groups. However, the expression of GSK3B did not significantly differ between the two groups (p > 0.05). With considerable sensitivity and specificity, ROC analysis demonstrated the diagnostic efficacy of DKK-1 and TNC serum levels in AD within an area under the ROC curve of ≥ 0.98 (p ˂ 0.001). The results showed that evaluating serum levels of DKK-1 and TNC, as well as assessing the expression of LRP6, could be utilized for diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Zahra Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayeh Sadrirad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Roll L, Eysel UT, Faissner A. Laser Lesion in the Mouse Visual Cortex Induces a Stem Cell Niche-Like Extracellular Matrix, Produced by Immature Astrocytes. Front Cell Neurosci 2020; 14:102. [PMID: 32508592 PMCID: PMC7253582 DOI: 10.3389/fncel.2020.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
The mammalian central nervous system (CNS) is characterized by a severely limited regeneration capacity. Comparison with lower species like amphibians, which are able to restore even complex tissues after damage, indicates the presence of an inhibitory environment that restricts the cellular response in mammals. In this context, signals provided by the extracellular matrix (ECM) are important regulators of events like cell survival, proliferation, migration, differentiation or neurite outgrowth. Therefore, knowledge of the post-lesional ECM and of cells that produce these factors might support development of new treatment strategies for patients suffering from traumatic brain injury and other types of CNS damage. In the present study, we analyzed the surround of focal infrared laser lesions of the adult mouse visual cortex. This lesion paradigm avoids direct contact with the brain, as the laser beam passes the intact bone. Cell type-specific markers revealed a distinct spatial distribution of different astroglial subtypes in the penumbra after injury. Glial fibrillary acidic protein (GFAP) as marker for reactive astrocytes was found broadly up-regulated, whereas the more immature markers vimentin and nestin were only expressed by a subset of cells. Dividing astrocytes could be identified via the proliferation marker Ki-67. Different ECM molecules, among others the neural stem cell-associated glycoprotein tenascin-C and the DSD-1 chondroitin sulfate epitope, were found on astrocytes in the penumbra. Wisteria floribunda agglutinin (WFA) and aggrecan as markers for perineuronal nets, a specialized ECM limiting synaptic plasticity, appeared normal in the vicinity of the necrotic lesion core. In sum, expression of progenitor markers by astrocyte subpopulations and the identification of proliferating astrocytes in combination with an ECM that contains components typically associated with neural stem/progenitor cells suggest that an immature cell fate is facilitated as response to the injury.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Ulf T Eysel
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.,Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Glotzbach K, Stamm N, Weberskirch R, Faissner A. Hydrogels Derivatized With Cationic Moieties or Functional Peptides as Efficient Supports for Neural Stem Cells. Front Neurosci 2020; 14:475. [PMID: 32508574 PMCID: PMC7251306 DOI: 10.3389/fnins.2020.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The increasing incidence of neurodegenerative diseases such as Alzheimer's or Parkinson's disease represents a significant burden for patients and national health systems. The conditions are primarily caused by the death of neurons and other neural cell types. One important aim of current stem cell research is to find a way to replace the lost cells. In this perspective, neural stem cells (NSCs) have been considered as a promising tool in the field of regenerative medicine. The behavior of NSCs is modulated by environmental influences, for example hormones, growth factors, cytokines, and extracellular matrix molecules or biomechanics. These factors can be studied by using well-defined hydrogels, which are polymeric networks of synthetic or natural origin with the ability to swell in water. These gels can be modified with a variety of molecules and optimized with regard to their mechanical properties to mimic the natural extracellular environment. In particular modifications applying distinct units such as functional domains and peptides can modulate the development of NSCs with regard to proliferation, differentiation and migration. One well-known peptide sequence that affects the behavior of NSCs is the integrin recognition sequence RGD that has originally been derived from fibronectin. In the present review we provide an overview concerning the applications of modified hydrogels with an emphasis on synthetic hydrogels based on poly(acrylamides), as modified with either cationic moieties or the peptide sequence RGD. This knowledge might be used in tissue engineering and regenerative medicine for the therapy of spinal cord injuries, neurodegenerative diseases and traumata.
Collapse
Affiliation(s)
- Kristin Glotzbach
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
38
|
Kjell J, Götz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci 2020; 14:32. [PMID: 32153367 PMCID: PMC7050652 DOI: 10.3389/fncel.2020.00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
Central nervous system (CNS) injury results in chronic scar formation that interferes with function and inhibits repair. Extracellular matrix (ECM) is prominent in the scar and potently regulates cell behavior. However, comprehensive information about the ECM proteome is largely lacking, and region- as well as injury-specific differences are often not taken into account. These aspects are the focus of our perspective on injury and scar formation. To highlight the importance of such comprehensive proteome analysis we include data obtained with novel analysis tools of the ECM composition in the scar and show the contribution of monocytes to the ECM composition after traumatic brain injury (TBI). Monocyte invasion was reduced using the CCR2-/- mouse line and step-wise de-cellularization and proteomics allowed determining monocyte-dependent ECM composition and architecture of the glial scar. We find significant reduction in the ECM proteins Tgm1, Itih (1,2, and 3), and Ftl in the absence of monocyte invasion. We also describe the scar ECM comprising zones with distinctive composition and show a subacute signature upon comparison to proteome obtained at earlier times after TBI. These results are discussed in light of injury-, region- and time-specific regulation of scar formation highlighting the urgent need to differentiate injury conditions and CNS-regions using comprehensive ECM analysis.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.,Departments of Neurology and Neurosurgery, Karolinska University Hospital, Solna, Sweden
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| |
Collapse
|
39
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|