1
|
McAloon LM, Muller AG, Nay K, Lu EL, Smeuninx B, Means AR, Febbraio MA, Scott JW. CaMKK2: bridging the gap between Ca2+ signaling and energy-sensing. Essays Biochem 2024; 68:309-320. [PMID: 39268917 DOI: 10.1042/ebc20240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.
Collapse
Affiliation(s)
- Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Eudora L Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Benoit Smeuninx
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
2
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Wang D, Cai J, Pei Q, Yan Z, Zhu F, Zhao Z, Liu R, Guo X, Sun T, Liu J, Tian Y, Liu H, Shao X, Huang J, Hao X, Chang Q, Luo Z, Jing D. Gut microbial alterations in arginine metabolism determine bone mechanical adaptation. Cell Metab 2024; 36:1252-1268.e8. [PMID: 38718794 DOI: 10.1016/j.cmet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Although mechanical loading is essential for maintaining bone health and combating osteoporosis, its practical application is limited to a large extent by the high variability in bone mechanoresponsiveness. Here, we found that gut microbial depletion promoted a significant reduction in skeletal adaptation to mechanical loading. Among experimental mice, we observed differences between those with high and low responses to exercise with respect to the gut microbial composition, in which the differential abundance of Lachnospiraceae contributed to the differences in bone mechanoresponsiveness. Microbial production of L-citrulline and its conversion into L-arginine were identified as key regulators of bone mechanoadaptation, and administration of these metabolites enhanced bone mechanoresponsiveness in normal, aged, and ovariectomized mice. Mechanistically, L-arginine-mediated enhancement of bone mechanoadaptation was primarily attributable to the activation of a nitric-oxide-calcium positive feedback loop in osteocytes. This study identifies a promising anti-osteoporotic strategy for maximizing mechanical loading-induced skeletal benefits via the microbiota-metabolite axis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China; Faculty of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Qilin Pei
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhe Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruobing Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Xiangyang Guo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Sun
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Yulan Tian
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Hongbo Liu
- Department of Hematology, Affiliated Hospital of Northwest University Xi'an Third Hospital, Xi'an 710016, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxia Hao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Chang
- Department of Orthopaedics, The 989(th) Hospital of the People's Liberation Army Joint Service Support Force, Luoyang 471031, China.
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China; Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Guo L, Mao Q, He J, Liu X, Piao X, Luo L, Hao X, Yu H, Song Q, Xiao B, Fan D, Gao Z, Jia Y. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies. Cell Res 2023; 33:497-515. [PMID: 37142673 PMCID: PMC10313822 DOI: 10.1038/s41422-023-00798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.
Collapse
Affiliation(s)
- Liang Guo
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xuejiao Piao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Li Luo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Xiaoxu Hao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Hanzhi Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- School of Medicine, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China.
| |
Collapse
|
5
|
Yuile A, Wei JQ, Mohan AA, Hotchkiss KM, Khasraw M. Interdependencies of the Neuronal, Immune and Tumor Microenvironment in Gliomas. Cancers (Basel) 2023; 15:2856. [PMID: 37345193 PMCID: PMC10216320 DOI: 10.3390/cancers15102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Gliomas are the most common primary brain malignancy and are universally fatal. Despite significant breakthrough in understanding tumor biology, treatment breakthroughs have been limited. There is a growing appreciation that major limitations on effective treatment are related to the unique and highly complex glioma tumor microenvironment (TME). The TME consists of multiple different cell types, broadly categorized into tumoral, immune and non-tumoral, non-immune cells. Each group provides significant influence on the others, generating a pro-tumor dynamic with significant immunosuppression. In addition, glioma cells are highly heterogenous with various molecular distinctions on the cellular level. These variations, in turn, lead to their own unique influence on the TME. To develop future treatments, an understanding of this complex TME interplay is needed. To this end, we describe the TME in adult gliomas through interactions between its various components and through various glioma molecular phenotypes.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, 3 Westbourne Street, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joe Q. Wei
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aditya A. Mohan
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Kelly M. Hotchkiss
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Liu X, Yan Z, Cai J, Wang D, Yang Y, Ding Y, Shao X, Hao X, Luo E, Guo XE, Luo P, Shen L, Jing D. Glucose- and glutamine-dependent bioenergetics sensitize bone mechanoresponse after unloading by modulating osteocyte calcium dynamics. J Clin Invest 2023; 133:164508. [PMID: 36512405 PMCID: PMC9888392 DOI: 10.1172/jci164508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xiaoxia Hao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital
| | - Liangliang Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, and,Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
|
8
|
Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 2023; 613:179-186. [PMID: 36517594 DOI: 10.1038/s41586-022-05520-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.
Collapse
|
9
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Berra-Romani R, Vargaz-Guadarrama A, Sánchez-Gómez J, Coyotl-Santiago N, Hernández-Arambide E, Avelino-Cruz JE, García-Carrasco M, Savio M, Pellavio G, Laforenza U, Lagunas-Martínez A, Moccia F. Histamine activates an intracellular Ca 2+ signal in normal human lung fibroblast WI-38 cells. Front Cell Dev Biol 2022; 10:991659. [PMID: 36120576 PMCID: PMC9478493 DOI: 10.3389/fcell.2022.991659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Josué Sánchez-Gómez
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Efraín Hernández-Arambide
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Mario García-Carrasco
- Department of Immunology, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Monica Savio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Morelos, México
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Cheong JH, Qiu X, Liu Y, Al-Omari A, Griffith J, Schüttler HB, Mao L, Arnold J. The macroscopic limit to synchronization of cellular clocks in single cells of Neurospora crassa. Sci Rep 2022; 12:6750. [PMID: 35468928 PMCID: PMC9039089 DOI: 10.1038/s41598-022-10612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe determined the macroscopic limit for phase synchronization of cellular clocks in an artificial tissue created by a “big chamber” microfluidic device to be about 150,000 cells or less. The dimensions of the microfluidic chamber allowed us to calculate an upper limit on the radius of a hypothesized quorum sensing signal molecule of 13.05 nm using a diffusion approximation for signal travel within the device. The use of a second microwell microfluidic device allowed the refinement of the macroscopic limit to a cell density of 2166 cells per fixed area of the device for phase synchronization. The measurement of averages over single cell trajectories in the microwell device supported a deterministic quorum sensing model identified by ensemble methods for clock phase synchronization. A strong inference framework was used to test the communication mechanism in phase synchronization of quorum sensing versus cell-to-cell contact, suggesting support for quorum sensing. Further evidence came from showing phase synchronization was density-dependent.
Collapse
|
12
|
Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle. Cell Calcium 2022; 102:102540. [PMID: 35074688 PMCID: PMC9542431 DOI: 10.1016/j.ceca.2022.102540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022]
Abstract
The transition of stem cells from quiescence to proliferation enables tissues to self-repair. The signaling mechanisms driving these stem-cell-status decisions are still unclear. Ca2+ and the extracellular signal-regulated kinase (Erk1/2) are two signaling pathways that have the potential to coordinate multiple signals to promote a specific cellular response. They both play important roles during nervous system development but their roles during spinal cord and muscle regeneration are not fully deciphered. Here we show in Xenopus laevis larvae that both Ca2+ and Erk1/2 signaling pathways are activated after tail amputation. In response to injury, we find that Erk1/2 signaling is activated in neural and muscle stem cells and is necessary for spinal cord and skeletal muscle regeneration. Finally, we show in vivo that Erk1/2 activity is necessary for an injury-induced increase in intracellular store-dependent Ca2+ dynamics in skeletal muscle-associated tissues but that in spinal cord, injury increases Ca2+ influx-dependent Ca2+ activity independent of Erk1/2 signaling. This study suggests that precise temporal and tissue-specific activation of Ca2+ and Erk1/2 pathways is essential for regulating spinal cord and muscle regeneration.
Collapse
|
13
|
Bédécarrats A, Puygrenier L, Castro O'Byrne J, Lade Q, Simmers J, Nargeot R. Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia. eLife 2021; 10:68651. [PMID: 34190043 PMCID: PMC8263059 DOI: 10.7554/elife.68651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
The expression of motivated behaviors depends on both external and internally arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.
Collapse
Affiliation(s)
| | - Laura Puygrenier
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | | | - Quentin Lade
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - John Simmers
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - Romuald Nargeot
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Cloete I, Corrêa-Velloso JC, Bartlett PJ, Kirk V, Thomas AP, Sneyd J. A Tale of two receptors. J Theor Biol 2021; 518:110629. [PMID: 33607144 DOI: 10.1016/j.jtbi.2021.110629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Calcium (Ca2+) oscillations in hepatocytes have a wide dynamic range. In particular, recent experimental evidence shows that agonist stimulation of the P2Y family of receptors leads to qualitatively diverse Ca2+ oscillations. We present a new model of Ca2+ oscillations in hepatocytes based on these experiments to investigate the mechanisms controlling P2Y-activated Ca2+ oscillations. The model accounts for Ca2+ regulation of the IP3 receptor (IP3R), the positive feedback from Ca2+ on phospholipase C (PLC) and the P2Y receptor phosphorylation by protein kinase C (PKC). Furthermore, PKC is shown to control multiple cellular substrates. Utilising the model, we suggest the activity and intensity of PLC and PKC necessary to explain the qualitatively diverse Ca2+ oscillations in response to P2Y receptor activation.
Collapse
Affiliation(s)
- Ielyaas Cloete
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Juliana C Corrêa-Velloso
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
15
|
IP3R Channels in Male Reproduction. Int J Mol Sci 2020; 21:ijms21239179. [PMID: 33276427 PMCID: PMC7730405 DOI: 10.3390/ijms21239179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
As a second messenger in cellular signal transduction, calcium signaling extensively participates in various physiological activities, including spermatogenesis and the regulation of sperm function. Abnormal calcium signaling is highly correlated with male infertility. Calcium signaling is mainly regulated by both extracellular calcium influx and the release of calcium stores. Inositol 1,4,5-trisphosphate receptor (IP3R) is a widely expressed channel for calcium stores. After being activated by inositol 1,4,5-trisphosphate (IP3) and calcium signaling at a lower concentration, IP3R can regulate the release of Ca2+ from stores into cytoplasm, and eventually trigger downstream events. The closure of the IP3R channel caused by a rise in intracellular calcium signals and the activation of the calcium pump jointly restores the calcium store to a normal level. In this review, we aim to discuss structural features of IP3R channels and the underlying mechanism of IP3R channel-mediated calcium signaling and further focus on the research progress of IP3R expression and function in the male reproductive system. Finally, we propose key directions and strategies for research of IP3R in spermatogenesis and the regulation of sperm function to provide more understanding of the function and mechanism of IP3R channel actions in male reproduction.
Collapse
|
16
|
Zhou A, Liu X, Zhang S, Huo B. Effects of store-operated and receptor-operated calcium channels on synchronization of calcium oscillations in astrocytes. Biosystems 2020; 198:104233. [PMID: 32858094 DOI: 10.1016/j.biosystems.2020.104233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Intercellular calcium signaling allows cells to communicate with each other and to interact with adjacent cells. Gap junction is the most common and important way for cellular communication. Recently, mathematical models have been widely used to gain a precise and quantitative understanding of the dynamics of intracellular calcium ions (Ca2+). In this paper, we establish a mathematical model considering the gap junction permeable to Ca2+ and to IP3 for describing the calcium oscillations in coupled astrocytes. Store-operated calcium entry (SOCE) is viewed as the main process which controls the non-excitable cells, hence, we focus on the effect of store-operated calcium channel (SOCC) and receptor-operated calcium channel (ROCC) on the intercellular synchronization, respectively. By employing bifurcation analysis on this model, the dynamic behaviors of the coupled system with different physiological state cells is obtained with changes in the maximum capacity of the SOCC and the ROCC. The synchronization boundaries for different conditions are gained in the two parameters space of the channel parameters and the coupling strength. The results suggest that the variation of the maximum flow for different calcium channels determines the stable oscillations of the coupled system, as well as for the frequency and amplitude of oscillations. The SOCC has an expected effect on the change of the oscillatory interval while the ROCC demonstrated the influence on the amplitude modulation. Furthermore, the coupling strength and channel parameters could induce 1:1 locking of intercellular Ca2+ oscillations and the synchronization region like Arnol'd tongue is found.
Collapse
Affiliation(s)
- Anqi Zhou
- Department of Mechanics, Tianjin University, Tianjin, 300354, PR China
| | - Xijun Liu
- Department of Mechanics, Tianjin University, Tianjin, 300354, PR China
| | - Suxia Zhang
- Department of Mechanics, Tianjin University, Tianjin, 300354, PR China.
| | - Bing Huo
- College of Mechanical Engineering, Tianjin University of Science & Technology, Tianjin, 300222, PR China
| |
Collapse
|
17
|
Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: a Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization? Reprod Sci 2020; 28:639-648. [PMID: 32813196 DOI: 10.1007/s43032-020-00293-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
This paper reviews the effects of calcium oscillatory patterns in oocytes and early embryo development. Total fertilization failure (TFF) is the failure of fertilization in all oocytes in a human IVF cycle, even after treatment with intracytoplasmic sperm injection (ICSI). It is not well understood and currently attributed to oocyte activation deficiency. Calcium signaling is important in oocyte activation events. Calcium oscillations, in particular, have been reported in animal and human oocytes after fertilization. Abnormal calcium oscillations after fertilization may be the principal mechanism for TFF. While studies also establish strong associations between abnormal calcium oscillatory patterns and suboptimal developmental outcomes, critical basic parameters and their mechanism of action have yet to be identified. Empirical use of artificial oocyte activation (AOA) methods has shown initial success in helping patients overcome TFF. The AOA methods attempt to raise calcium levels after fertilization, but the efficacy and safety of these AOA methods are still in early stages of addressing TFF. Additional information about calcium oscillatory patterns and the effects of AOA in human ART may allow the prevention of TFF or allow treatment of TFF patients effectively and safely.
Collapse
|
18
|
Poberezhnyi V, Marchuk O, Katilov O, Shvydiuk O, Lohvinov O. Basic concepts and physical-chemical phenomena, that have conceptual meaning for the formation of systemic clinical thinking and formalization of the knowledge of systemic structural-functional organization of the human’s organism. PAIN MEDICINE 2020. [DOI: 10.31636/pmjua.v5i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
From the point of view of perception and generalization processes there are complex, logic and conceptual forms of thinking. Its conceptual form is the highest result of interaction between thinking and speech. While realizing it, human uses the concept, which are logically formed thoughts, that are the meaning of representation in thinking of unity of meaningful features, relations of subjects or phenomena of objective reality. Special concepts, that are used in the science and technique are called terms. They perform a function of corresponding, special, precise marking of subjects and phenomena, their features and interactions. Scientific knowledge are in that way an objective representation of material duality in our consciousness. Certain complex of terms forms a terminological system, that lies in the basis of corresponding sphere of scientific knowledge and conditions a corresponding form and way of thinking. Clinical thinking is a conceptual form, that manifests and represents by the specialized internal speech with gnostic motivation lying in its basis. Its structural elements are corresponding definitions, terms and concepts. Cardinal features of clinical systems are consistency, criticality, justification and substantiation. Principles of perception and main concepts are represented in the article along with short descriptions of physical and chemical phenomena, that have conceptual meaning for the formation of systematic clinical thinking and formalization of systemic structural-functional organization of the human’s organism
Collapse
|
19
|
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases. Pharmacol Res 2020; 156:104758. [PMID: 32200027 DOI: 10.1016/j.phrs.2020.104758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular system cell biology is tightly regulated and mitochondria play a relevant role in maintaining heart function. In recent decades, associations between such organelles and the sarco/endoplasmic reticulum (SR) have been raised great interest. Formally identified as mitochondria-associated SR membranes (MAMs), these structures regulate different cellular functions, including calcium management, lipid metabolism, autophagy, oxidative stress, and management of unfolded proteins. In this review, we highlight MAMs' alterations mainly in cardiomyocytes, linked with cardiovascular diseases, such as cardiac ischemia-reperfusion, heart failure, and dilated cardiomyopathy. We also describe proteins that are part of the MAMs' machinery, as the FUN14 domain containing 1 (FUNDC1), the sigma 1 receptor (Sig-1R) and others, which might be new molecular targets to preserve the function and structure of the heart in such diseases. Understanding the machinery of MAMs and its function demands our attention, as such knowledge might contribute to strengthen the role of these relative novel structures in heart diseases.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico.
| |
Collapse
|