1
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
2
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Powell AE, Heyl A. The origin and early evolution of cytokinin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1142748. [PMID: 37457338 PMCID: PMC10338860 DOI: 10.3389/fpls.2023.1142748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Angiosperms, especially Arabidopsis and rice, have long been at the center of plant research. However, technological advances in sequencing have led to a dramatic increase in genome and transcriptome data availability across land plants and, more recently, among green algae. These data allowed for an in-depth study of the evolution of different protein families - including those involved in the metabolism and signaling of phytohormones. While most early studies on phytohormone evolution were phylogenetic, those studies have started to be complemented by genetic and biochemical studies in recent years. Examples of such functional analyses focused on ethylene, jasmonic acid, abscisic acid, and auxin. These data have been summarized recently. In this review, we will focus on the progress in our understanding of cytokinin biology. We will use these data to synthesize key points about the evolution of cytokinin metabolism and signaling, which might apply to the evolution of other phytohormones as well.
Collapse
Affiliation(s)
| | - Alexander Heyl
- Department of Research and Development, Garden City, NY, United States
| |
Collapse
|
4
|
Nguyen NH, Nguyen QT, Dang DH, Emery RJN. Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121094. [PMID: 36682616 DOI: 10.1016/j.envpol.2023.121094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Over the last decade, significant effort has been made to understand phytohormonal functions (e.g., cytokinins (CKs) and abscisic acid (ABA)) in metal stress responses of higher plants and algae. Despite the potential for these phytohormones to improve industrial remediation by Euglena gracilis (Euglenophyceae), no such roles have been elucidated for this highly adaptive species and its response to heavy metals. This study demonstrates that toxic metals (nickel, lead, cadmium) modify hormonal activity profiles (i.e., CK forms and their concentrations) in E. gracilis. Furthermore, exogenous ABA or CK (tZ) enabled higher metal uptake efficiency (i.e., 9.35% in lead and 9.2% in cadmium uptake with CK) and alleviated metal toxicity through the regulation of endogenous CKs (i.e., total CK, isoprenoid CK) and gibberellin (GAs, GA1 and GA3) levels. These responses suggest that E. gracilis regulates multiple phytohormone signals during metal stress acclimation. A deeper approach, using untargeted metabolomic analyses, gave more detailed insight into phytohormone-controlled pathways and associated modified metabolites, which were frequently related to metal accumulation and the physiological acclimation to metal presence. Significant changes in the levels of cellular metabolites, especially those involved in acclimation to metal stress, were under the influence of phytohormones in algal cells. When grown under metal stress conditions, the presence of exogenous ABA or CKs, caused changes in cellular metabolites which included those from: lipid pathways, riboflavin metabolism, the biosynthesis of cofactors/vitamins, and carbohydrate metabolism. Also, bioactive secondary metabolites (e.g., terpenoids, alkaloids, flavonoids, carotenoids) were modified in algal cells treated with phytohormones. Thus, the study gives a detailed view on the regulatory functions of ABA and CKs in algal metal bioremediation strategies, which are attributed to enhanced metal uptake and in the fine-tuning of plant hormone levels during metal stress response. The results can guide efforts to develop efficient, low-cost and environmentally friendly methods for bioremediation.
Collapse
Affiliation(s)
- Ngoc Hai Nguyen
- Trent University, Department of Biology, Peterborough, Canada.
| | | | - Duc Huy Dang
- Trent University, School of the Environment and Chemistry Department, Peterborough, Canada
| | - R J Neil Emery
- Trent University, Department of Biology, Peterborough, Canada
| |
Collapse
|
5
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Woudenberg S, Renema J, Tomescu AMF, De Rybel B, Weijers D. Deep origin and gradual evolution of transporting tissues: Perspectives from across the land plants. PLANT PHYSIOLOGY 2022; 190:85-99. [PMID: 35904762 PMCID: PMC9434249 DOI: 10.1093/plphys/kiac304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/08/2022] [Indexed: 05/31/2023]
Abstract
The evolution of transporting tissues was an important innovation in terrestrial plants that allowed them to adapt to almost all nonaquatic environments. These tissues consist of water-conducting cells and food-conducting cells and bridge plant-soil and plant-air interfaces over long distances. The largest group of land plants, representing about 95% of all known plant species, is associated with morphologically complex transporting tissue in plants with a range of additional traits. Therefore, this entire clade was named tracheophytes, or vascular plants. However, some nonvascular plants possess conductive tissues that closely resemble vascular tissue in their organization, structure, and function. Recent molecular studies also point to a highly conserved toolbox of molecular regulators for transporting tissues. Here, we reflect on the distinguishing features of conductive and vascular tissues and their evolutionary history. Rather than sudden emergence of complex, vascular tissues, plant transporting tissues likely evolved gradually, building on pre-existing developmental mechanisms and genetic components. Improved knowledge of the intimate structure and developmental regulation of transporting tissues across the entire taxonomic breadth of extant plant lineages, combined with more comprehensive documentation of the fossil record of transporting tissues, is required for a full understanding of the evolutionary trajectory of transporting tissues.
Collapse
Affiliation(s)
| | | | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University–Humboldt, Arcata, California 95521, USA
| | | | | |
Collapse
|
9
|
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z. Genetic and molecular factors in determining grain number per panicle of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:964246. [PMID: 35991390 PMCID: PMC9386260 DOI: 10.3389/fpls.2022.964246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Diurnal control of intracellular distributions of PAS-Histidine kinase 1 and its interactions with partner proteins in the moss Physcomitrium patens. Biochem Biophys Res Commun 2022; 616:1-7. [DOI: 10.1016/j.bbrc.2022.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
|
11
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
12
|
Gunadi A, Li F, Van Eck J. Accelerating gametophytic growth in the model hornwort Anthoceros agrestis. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11460. [PMID: 35495194 PMCID: PMC9039800 DOI: 10.1002/aps3.11460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/22/2021] [Indexed: 05/25/2023]
Abstract
PREMISE Hornworts belong to a unique lineage of bryophytes with critical traits for elucidating the evolution of land plants; however, the development of functional genetic tools for hornworts has been hampered by their relatively slow gametophytic growth. METHODS To identify the external factors that influence the development of hornwort gametophytes and potentially augment their growth, we evaluated the contributions of several culture medium components on the axenic gametophytic growth of Anthoceros agrestis, a model hornwort. A streamlined growth assay utilizing semiautomated image analysis was developed to rapidly quantify and compare tissue development spanning four weeks of culture on solidified medium. RESULTS The addition of sucrose, ammonium nitrate, activated charcoal, pH buffering, and growth regulators (2,4-dichlorophenoxyacetic acid, 6-benzylaminopurine, and thidiazuron) affected gametophyte tissue survival, growth patterns, and the rate of thalli growth. Subsequently, an optimized medium composition and growth regimen for accelerating A. agrestis gametophytic growth were formulated, which at four weeks of culture increased the tissue wet weight by 2.1- to 8.5-fold compared with other previously utilized hornwort growth media. DISCUSSION Our protocol for generating vigorous starting material and accelerated tissue regeneration is pertinent for advancing gene function characterization and genome editing in hornworts.
Collapse
Affiliation(s)
- Andika Gunadi
- Boyce Thompson Institute533 Tower RoadIthacaNew York14853USA
- Present address:
Simplot Plant SciencesJ.R. Simplot Company5369 W Irving StreetBoiseIdaho83706USA
| | - Fay‐Wei Li
- Boyce Thompson Institute533 Tower RoadIthacaNew York14853USA
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew York14853USA
| | - Joyce Van Eck
- Boyce Thompson Institute533 Tower RoadIthacaNew York14853USA
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew York14853USA
| |
Collapse
|
13
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
14
|
Méndez-Gómez M, Castro-Mercado E, López-Bucio J, García-Pineda E. Azospirillum brasilense Sp245 triggers cytokinin signaling in root tips and improves biomass accumulation in Arabidopsis through canonical cytokinin receptors. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1639-1649. [PMID: 34539107 PMCID: PMC8405788 DOI: 10.1007/s12298-021-01036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/12/2023]
Abstract
The plant growth promoting rhizobacterium Azospirillum brasilense Sp245 enhances biomass production in cereals and horticultural species and is an interesting model to study the physiology of the phytostimulation program. Although auxin production by Azospirillum appears to be critical for root architectural readjustments, the role of cytokinins in the growth promoting effects of Azospirillum remains unclear. Here, Arabidopsis thaliana seedlings were co-cultivated in vitro with A. brasilense Sp245 to assess whether direct contact of roots with bacterial colonies or exposure to the bacterial volatiles using divided Petri plates would affect biomass production and root organogenesis. Both interaction types increased root and shoot fresh weight but had contrasting effects on primary root length, lateral root formation and root hair development. Cell proliferation in root meristems analyzed with the CYCB1;1::GUS reporter decreased over time with direct contact, but was augmented by plant exposure to volatiles. Noteworthy, the expression of the cytokinin-inducible reporters TCS::GFP and ARR5::GUS increased in root tips in response to bacterial contact, without being affected by the volatiles. In A. thaliana having single (cre1-12, ahk2-2, ahk3-3), double (cre1-12/ahk2-2, cre1-12/ahk3-3, ahk2-2/ahk3-3) or triple (cre1-12/ahk2-2/ahk3-3) mutations in canonical cytokinin receptors, only the triple mutant had a marked effect on plant growth in response to A. brasilense. These results show that different mechanisms are elicited by A. brasilense, which influence the cytokinin-signaling pathway.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| |
Collapse
|
15
|
Anami S, Yamashino T, Suzuki R, Nakai K, Sato K, Wu B, Ryo M, Sugita M, Aoki S. Red light-regulated interaction of Per-Arnt-Sim histidine kinases with partner histidine-containing phosphotransfer proteins in Physcomitrium patens. Genes Cells 2021; 26:698-713. [PMID: 34086383 DOI: 10.1111/gtc.12878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Multi-step phosphorelay (MSP) is a broadly distributed signaling system in organisms. In MSP, histidine kinases (HKs) receive various environmental signals and transmit them by autophosphorylation followed by phosphotransfer to partner histidine-containing phosphotransfer proteins (HPts). Previously, we reported that Per-Arnt-Sim (PAS) domain-containing HK1 (PHK1) and PHK2 of the moss Physcomitrium (Physcomitrella) patens repressed red light-induced protonema branching, a critical step in the moss life cycle. In plants, PHK homolog-encoding genes are conserved only in early-diverging lineages such as bryophytes and lycophytes. PHKs-mediated signaling machineries attract attention especially from an evolutionary viewpoint, but they remain uninvestigated. Here, we studied the P. patens PHKs focusing on their subcellular patterns of localization and interaction with HPts. Yeast two-hybrid analysis, a localization assay with a green fluorescent protein, and a bimolecular fluorescence complementation analysis together showed that PHKs are localized and interact with partner HPts mostly in the nucleus, as unprecedented features for plant HKs. Additionally, red light triggered the interactions between PHKs and HPts in the cytoplasm, and light co-repressed the expression of PHK1 and PHK2 as well as genes encoding their partner HPts. Our results emphasize the uniqueness of PHKs-mediated signaling machineries, and functional implications of this uniqueness are discussed.
Collapse
Affiliation(s)
- Shu Anami
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kota Nakai
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kensuke Sato
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Bowen Wu
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masashi Ryo
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
| | - Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
16
|
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells 2020; 9:cells9112526. [PMID: 33238457 PMCID: PMC7700396 DOI: 10.3390/cells9112526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.
Collapse
|