1
|
Ruoff P. Background compensation revisited: Conserved phase response curves in frequency controlled homeostats with coherent feedback. PLoS One 2024; 19:e0305804. [PMID: 39231133 PMCID: PMC11373829 DOI: 10.1371/journal.pone.0305804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Background compensation is the ability of a controlled variable to respond to an applied perturbation in an unchanged manner and independent of different but constant background signals which act in parallel to the perturbation. Background compensation occurs by 'coherent feedback' mechanisms where additional control variables feed directly back to the controlled variable. This paper extends a previous study on background compensation to include phase responses in frequency controlled coherent feedback oscillators. While the frequency resetting amplitude in coherent feedback oscillators is found to be dependent on the inflow/outflow perturbation of the controlled variable and thereby become phase dependent, the frequency resetting itself and the corresponding phase response curves are found to be background compensated. It is speculated that this type of background compensation may be an additional way how ambient noise can be 'ignored' by organisms.
Collapse
Affiliation(s)
- Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
2
|
Lamberti ML, Spangler RK, Cerdeira V, Ares M, Rivollet L, Ashley GE, Coronado AR, Tripathi S, Spiousas I, Ward JD, Partch CL, Bénard CY, Goya ME, Golombek DA. Clock gene homologs lin-42 and kin-20 regulate circadian rhythms in C. elegans. Sci Rep 2024; 14:12936. [PMID: 38839826 PMCID: PMC11153552 DOI: 10.1038/s41598-024-62303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.
Collapse
Affiliation(s)
- Melisa L Lamberti
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Victoria Cerdeira
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Myriam Ares
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Lise Rivollet
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Guinevere E Ashley
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz, Santa Cruz, USA
| | - Andrea Ramos Coronado
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Ignacio Spiousas
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés/CONICET, Buenos Aires, Argentina
| | - Jordan D Ward
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz, Santa Cruz, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
- Center for Circadian Biology, UC San Diego, La Jolla, CA, USA
| | - Claire Y Bénard
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - M Eugenia Goya
- European Institute for the Biology of Aging, University Medical Center Groningen, Groningen, The Netherlands.
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina.
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Lyu J, Zhuang Y, Lin Y. Circadian regulation of translation. RNA Biol 2024; 21:14-24. [PMID: 39324589 PMCID: PMC11441039 DOI: 10.1080/15476286.2024.2408524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Most, if not all organisms exhibit robust rhythmicity of their biological functions, allowing a perpetual adaptation to external clues within the daily 24 hours-cycle. Studies on circadian rhythm regulation primarily focused on transcriptional level, considering mRNA levels to represent the primary determinant of oscillations of intracellular protein levels. However, a plethora of emerging evidence suggests that post-transcriptional regulation, particularly rhythmic mRNA translation, is not solely reliant on the oscillation of transcription. Instead, the circadian regulation of mRNA translation plays a critical role as well. A comprehensive understanding of these mechanisms underlying rhythmic translation and its regulation should bridge the gap in rhythm regulation beyond RNA fluctuations in research, and greatly enhance our comprehension of rhythm generation and maintenance. In this review, we summarize the major mechanisms of circadian regulation of translation, including regulation of translation initiation, elongation, and the alteration in rhythmic translation to external stresses, such as endoplasmic reticulum (ER) stress and ageing. We also illuminate the complex interplay between phase separation and mRNA translation. Together, we have summarized various facets of mRNA translation in circadian regulation, to set on forthcoming studies into the intricate regulatory mechanisms underpinning circadian rhythms and their implications for associated disorders.
Collapse
Affiliation(s)
- Jiali Lyu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanrong Zhuang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Lin
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Lamberti ML, Spangler RK, Cerdeira V, Ares M, Rivollet L, Ashley GE, Coronado AR, Tripathi S, Spiousas I, Ward JD, Partch CL, Bénard CY, Goya ME, Golombek DA. Regulation of the circadian clock in C. elegans by clock gene homologs kin-20 and lin-42. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536481. [PMID: 38105938 PMCID: PMC10723253 DOI: 10.1101/2023.04.13.536481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Circadian rhythms are endogenous oscillations present in nearly all organisms from prokaryotes to humans, allowing them to adapt to cyclical environments close to 24 hours. Circadian rhythms are regulated by a central clock, which is based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1 ε/δ (CK1 ε/δ ) phosphorylation. In the nematode Caenorhabditis elegans , period and casein kinase 1ε/δ are conserved as lin-42 and kin-20 , respectively. Here we studied the involvement of lin-42 and kin-20 in circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and seam cells, a population of epidermal stem cells in C. elegans that undergo multiple divisions during development. Depletion of LIN-42 and KIN-20 specifically in neuronal cells after development was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.
Collapse
|
5
|
Kelliher CM, Stevenson EL, Loros JJ, Dunlap JC. Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability. PLoS Biol 2023; 21:e3001961. [PMID: 36603054 PMCID: PMC9848017 DOI: 10.1371/journal.pbio.3001961] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/18/2023] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Compensation is a defining principle of a true circadian clock, where its approximately 24-hour period length is relatively unchanged across environmental conditions. Known compensation effectors directly regulate core clock factors to buffer the oscillator's period length from variables in the environment. Temperature Compensation mechanisms have been experimentally addressed across circadian model systems, but much less is known about the related process of Nutritional Compensation, where circadian period length is maintained across physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we performed a genetic screen under glucose and amino acid starvation conditions to identify new regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied outside of Neurospora. To test for conservation in cultured human cells, we selected top hits from our fungal genetic screen, performed siRNA knockdown experiments of the mammalian orthologs, and characterized the cell lines with respect to compensation. We find that the wild-type mammalian clock is also compensated across a large range of external glucose concentrations, as observed in Neurospora, and that knocking down the mammalian orthologs of the Neurospora compensation-associated genes CPSF6 or SETD2 in human cells also results in nutrient-dependent period length changes. We conclude that, like Temperature Compensation, Nutritional Compensation is a conserved circadian process in fungal and mammalian clocks and that it may share common molecular determinants.
Collapse
Affiliation(s)
- Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
6
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
7
|
Rasmussen ES, Takahashi JS, Green CB. Time to target the circadian clock for drug discovery. Trends Biochem Sci 2022; 47:745-758. [PMID: 35577675 PMCID: PMC9378619 DOI: 10.1016/j.tibs.2022.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.
Collapse
Affiliation(s)
- Emil Sjulstok Rasmussen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
An Y, Yuan B, Xie P, Gu Y, Liu Z, Wang T, Li Z, Xu Y, Liu Y. Decoupling PER phosphorylation, stability and rhythmic expression from circadian clock function by abolishing PER-CK1 interaction. Nat Commun 2022; 13:3991. [PMID: 35810166 PMCID: PMC9271041 DOI: 10.1038/s41467-022-31715-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Robust rhythms of abundances and phosphorylation profiles of PERIOD proteins were thought be the master rhythms that drive mammalian circadian clock functions. PER stability was proposed to be a major determinant of period length. In mammals, CK1 forms stable complexes with PER. Here we identify the PER residues essential for PER-CK1 interaction. In cells and in mice, their mutation abolishes PER phosphorylation and CLOCK hyperphosphorylation, resulting in PER stabilization, arrhythmic PER abundance and impaired negative feedback process, indicating that PER acts as the CK1 scaffold in circadian feedback mechanism. Surprisingly, the mutant mice exhibit robust short period locomotor activity and other physiological rhythms but low amplitude molecular rhythms. PER-CK1 interaction has two opposing roles in regulating CLOCK-BMAL1 activity. These results indicate that the circadian clock can function independently of PER phosphorylation and abundance rhythms due to another PER-CRY-dependent feedback mechanism and that period length can be uncoupled from PER stability.
Collapse
Affiliation(s)
- Yang An
- Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, 210061, China.,Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Baoshi Yuan
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pancheng Xie
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Liu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhihao Li
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Stangherlin A, Seinkmane E, O'Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:None. [PMID: 34950808 PMCID: PMC8660647 DOI: 10.1016/j.coisb.2021.100391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are ∼24 h cycles of organismal and cellular activity ubiquitous to mammalian physiology. A prevailing paradigm suggests that timing information flows linearly from rhythmic transcription via protein abundance changes to drive circadian regulation of cellular function. Challenging this view, recent evidence indicates daily variation in many cellular functions arises through rhythmic post-translational regulation of protein activity. We suggest cellular circadian timing primarily functions to maintain proteome homeostasis rather than perturb it. Indeed, although relevant to timekeeping mechanism, daily rhythms of clock protein abundance may be the exception, not the rule. Informed by insights from yeast and mammalian models, we propose that optimal bioenergetic efficiency results from coupled rhythms in mammalian target of rapamycin complex activity, protein synthesis/turnover, ion transport and protein sequestration, which drive facilitatory rhythms in metabolic flux and substrate utilisation. Such daily consolidation of proteome renewal would account for many aspects of circadian cell biology whilst maintaining osmotic homeostasis.
Collapse
|
10
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|