1
|
Yuan W, Liu W, Huang H, Chen X, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Screening and identification of miRNAs negatively regulating FAM83A/Wnt/β-catenin signaling pathway in non-small cell lung cancer. Sci Rep 2024; 14:17394. [PMID: 39075121 PMCID: PMC11286843 DOI: 10.1038/s41598-024-67686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
The prevalence of non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers, with the Wnt/β-catenin signaling pathway exhibiting robust activation in this particular subtype. The expression of FAM83A (family with sequence similarity 83, member A) has been found to be significantly upregulated in lung cancer, leading to the stabilization of β-catenin and activation of the Wnt signaling pathway. In this study, we conducted a screening of down-regulated miRNAs in lung cancer with FAM83A as the target. Ultimately, we identified miR-1 as a negative regulator of FAM83A and confirmed that FAM83A is a direct target gene of miR-1 through dual luciferase reporter assays. The overexpression of miR-1 significantly attenuated the expression level of FAM83A and suppressed the Wnt signaling pathway, leading to a reduction in the expression levels of downstream target genes AXIN2, CyclinD1, and C-MYC. Additionally, it decreased the nuclear translocation of β-catenin. In addition, overexpression of miR-1 accelerated the degradation of β-catenin by inhibiting FAM83A, promoted the assembly of β-catenin degradation complex, and inhibited the proliferation, migration and invasion of NSCLC cells. In summary, miR-1 may be a potential candidate miRNA for the treatment of NSCLC.
Collapse
Affiliation(s)
- Wenbin Yuan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Wei Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Huili Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Xingyu Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hao Lyu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Shuai Xiao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Dong Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
| |
Collapse
|
2
|
Yuan W, Liu W, Huang H, Chen X, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Screening and identification of miRNAs negatively regulating FAM83A/Wnt/β-catenin signaling pathway in non-small cell lung cancer. Sci Rep 2024; 14:17394. [PMID: 39075121 DOI: 10.1038/s41598-024-67686-3.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/14/2024] Open
Abstract
The prevalence of non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers, with the Wnt/β-catenin signaling pathway exhibiting robust activation in this particular subtype. The expression of FAM83A (family with sequence similarity 83, member A) has been found to be significantly upregulated in lung cancer, leading to the stabilization of β-catenin and activation of the Wnt signaling pathway. In this study, we conducted a screening of down-regulated miRNAs in lung cancer with FAM83A as the target. Ultimately, we identified miR-1 as a negative regulator of FAM83A and confirmed that FAM83A is a direct target gene of miR-1 through dual luciferase reporter assays. The overexpression of miR-1 significantly attenuated the expression level of FAM83A and suppressed the Wnt signaling pathway, leading to a reduction in the expression levels of downstream target genes AXIN2, CyclinD1, and C-MYC. Additionally, it decreased the nuclear translocation of β-catenin. In addition, overexpression of miR-1 accelerated the degradation of β-catenin by inhibiting FAM83A, promoted the assembly of β-catenin degradation complex, and inhibited the proliferation, migration and invasion of NSCLC cells. In summary, miR-1 may be a potential candidate miRNA for the treatment of NSCLC.
Collapse
Affiliation(s)
- Wenbin Yuan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Wei Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Huili Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Xingyu Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hao Lyu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Shuai Xiao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Dong Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
| |
Collapse
|
3
|
Zhang Z, Huang H, Chen Z, Yan M, Lu C, Xu Z, Li Z. Helicobacter pylori promotes gastric cancer through CagA-mediated mitochondrial cholesterol accumulation by targeting CYP11A1 redistribution. Int J Biol Sci 2024; 20:4007-4028. [PMID: 39113698 PMCID: PMC11302876 DOI: 10.7150/ijbs.96425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol and Helicobacter pylori (H. pylori) are both risk factors for gastric cancer (GC). However, the relationship between cholesterol and H. pylori and their function in the progression of GC are controversial. In this study, we addressed that H. pylori could induce mitochondrial cholesterol accumulation and promote GC proliferation and protect GC cells against apoptosis via cholesterol. Metabolomic and transcriptomic sequencing were used to identify CYP11A1 responsible for H. pylori-induced cholesterol accumulation. In vitro and in vivo function experiments revealed that cholesterol could promote the proliferation of GC and inhibit apoptosis. Mechanically, the interaction of Cytotoxin-associated gene A (CagA) and CYP11A1 redistributed mitochondrial CYP11A1 outside the mitochondria and subsequently caused mitochondrial cholesterol accumulation. The CYP11A1-knockdown upregulated cholesterol accumulation and reproduced the effect of cholesterol on GC in a cholesterol-dependent manner. Moreover, CYP11A1-knockdown or H. pylori infection inhibited mitophagy and maintained the mitochondria homeostasis. H. pylori could contribute to the progression of GC through the CagA/CYP11A1-mitoCHO axis. This study demonstrates that H. pylori can contribute to the progression of GC via cholesterol, and eradicating H. pylori is still prognostically beneficial to GC patients.
Collapse
Affiliation(s)
- Zhijun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Hongxin Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Mengpei Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
- Institute for Gastric Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P. R. China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| |
Collapse
|
4
|
Chen T, Gu Y, Bai GH, Liu X, Chen B, Fan Q, Liu JG, Tian Y. MiR-1a-3p Inhibits Apoptosis in Fluoride-exposed LS8 Cells by Targeting Map3k1. Biol Trace Elem Res 2024; 202:2720-2729. [PMID: 37782397 PMCID: PMC11052812 DOI: 10.1007/s12011-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Dental fluorosis is a common chemical disease. It is currently unclear how fluorosis occurs at the molecular level. We used miRNA-seq to look at the differences between miRNAs in the cell line of ameloblasts LS8 that had been treated with 3.2 mmol/L NaF. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. miR-1a-3p levels were significantly lower in mouse LS8 cells treated with 3.2 mmol/L NaF, and miR-1a-3p-targeted genes were significantly enriched in the MAPK pathway. LS8 cells were divided into four groups: control, NaF, NaF+miR-1a-3p mimics, and NaF+miR-1a-3p mimics normal control groups. Cellular morphology was observed by an inverted microscope, and the proliferation activity of LS8 cells was assessed by Cell Counting Kit-8 (CCK-8). Using the real-time quantitative polymerase chain reaction (RT-qPCR), transcription levels of miR-1a-3p and Map3k1 were detected. The expressions of Bax, Bcl-2, Map3k1, p38MAPK, ERK1/2, p-p38MAPK, and p-ERK1/2 were measured by Western blot. After bioinformatics analysis, we used a luciferase reporter assay (LRA) to validate the target of miR-1a-3p, showing that miR-1a-3p could inhibit apoptosis while increasing proliferation in fluoride-exposed LS8 cells. Generally, miR-1a-3p might directly inhibit Map3k1, reduce MAPK signal pathway activation, and promote phosphorylation. Thus, our findings revealed that the interaction of miR-1a-3p with its target gene Map3k1 and MAPK signal pathway might decrease the apoptosis of LS8 cells treated with 3.2 mmol/L NaF.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
- Loudi Central Hospital, Loudi, China
| | - Yu Gu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Guo-Hui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Fan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jian-Guo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
5
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
7
|
Ghazaryan A, Wallace JA, Tang WW, Barba C, Lee SH, Bauer KM, Nelson MC, Kim CN, Stubben C, Voth WP, Rao DS, O’Connell RM. miRNA-1 promotes acute myeloid leukemia cell pathogenesis through metabolic regulation. Front Genet 2023; 14:1192799. [PMID: 37229187 PMCID: PMC10203238 DOI: 10.3389/fgene.2023.1192799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.
Collapse
Affiliation(s)
- Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jared A. Wallace
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - William W. Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Morgan C. Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Carissa N. Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Chris Stubben
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Warren P. Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Guo JG, Rao YF, Jiang J, Li X, Zhu SM. MicroRNA-155-5p inhibition alleviates irritable bowel syndrome by increasing claudin-1 and ZO-1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:34. [PMID: 36819593 PMCID: PMC9929797 DOI: 10.21037/atm-22-4859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Emerging studies have demonstrated that microRNAs (miRNAs) are commonly dysregulated in patients with IBS, and aberrant miRNAs are implicated in IBS occurrence. Although miR-155-5p participates in inflammatory bowel disease (IBD) and intestinal barrier dysfunction, the role of miR-155-5p in IBS is unclear. Methods In the present study, colon samples were obtained from IBS patients and IBS mice induced by trinitrobenzenesulfonic acid (TNBS), and the levels of miR-155-5p, claudin-1 (CLDN1), and zonula occludens-1 (ZO-1) were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analysis. The regulatory role of miR-155-5p in CLDN1 and ZO-1 expression was validated using dual luciferase reporter assay. Results We found that miR-155-5p levels were upregulated in colon samples of IBS patients and mice compared with healthy subjects and normal mice, respectively. Meanwhile, the levels of CLDN1 and ZO-1 were decreased in colon samples of IBS patients and mice. Importantly, forced expression of miR-155-5p inhibited CLDN1 and ZO-1 expression. In IBS mice, intraperitoneal injection with miR-155-5p inhibitor increased CLDN1 and ZO-1 expression in intestinal mucosal epithelium, enhanced visceral response thresholds, and decreased myeloperoxidase (MPO) activity. Conclusions In summary, these results suggested that miR-155-5p participated in the pathogenesis of IBS, at least in part by inhibiting CLDN1 and ZO-1 expression, indicating that miR-155-5p may be a potential therapeutic target for IBS.
Collapse
Affiliation(s)
- Jian-Guo Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Feng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Jiang
- Hangzhou Dunen Medical Laboratory Co., Ltd., Hangzhou, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Mei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Khan P, Siddiqui JA, Kshirsagar PG, Venkata RC, Maurya SK, Mirzapoiazova T, Perumal N, Chaudhary S, Kanchan RK, Fatima M, Khan MA, Rehman AU, Lakshmanan I, Mahapatra S, Talmon GA, Kulkarni P, Ganti AK, Jain M, Salgia R, Batra SK, Nasser MW. MicroRNA-1 attenuates the growth and metastasis of small cell lung cancer through CXCR4/FOXM1/RRM2 axis. Mol Cancer 2023; 22:1. [PMID: 36597126 PMCID: PMC9811802 DOI: 10.1186/s12943-022-01695-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prakash G Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Apar K Ganti
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Aas V, Øvstebø R, Brusletto BS, Aspelin T, Trøseid AMS, Qureshi S, Eid DSO, Olstad OK, Nyman TA, Haug KBF. Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation. Front Physiol 2023; 14:1143966. [PMID: 37064893 PMCID: PMC10098097 DOI: 10.3389/fphys.2023.1143966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Trude Aspelin
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Saba Qureshi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | | | | | - Tuula A. Nyman
- Department of Immunology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Bente Foss Haug
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| |
Collapse
|
11
|
Helicobacter pylori promotes gastric cancer progression through the tumor microenvironment. Appl Microbiol Biotechnol 2022; 106:4375-4385. [PMID: 35723694 DOI: 10.1007/s00253-022-12011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer (GC) is a leading type of cancer. Although immunotherapy has yielded important recent progress in the treatment of GC, the prognosis remains poor due to drug resistance and frequent recurrence and metastasis. There are multiple known risk factors for GC, and infection with Helicobacter pylori is one of the most significant. The mechanisms underlying the associations of H. pylori and GC remain unclear, but it is well known that infection can alter the tumor microenvironment (TME). The TME and the tumor itself constitute a complete ecosystem, and the TME plays critical roles in tumor progression, metastasis, and drug resistance. H. pylori infection can act synergistically with the TME to cause DNA damage and abnormal expression of multiple genes and activation of signaling pathways. It also modulates the host immune system in ways that enhance the proliferation and metastasis of tumor cells, promote epithelial-mesenchymal transition, inhibit apoptosis, and provide energy support for tumor growth. This review elaborates myriad ways that H. pylori infections promote the occurrence and progression of GC by influencing the TME, providing new directions for immunotherapy treatments for this important disease. KEY POINTS: • H. pylori infections cause DNA damage and affect the repair of the TME to DNA damage. • H. pylori infections regulate oncogenes or activate the oncogenic signaling pathways. • H. pylori infections modulate the immune system within the TME.
Collapse
|
12
|
Affiliation(s)
- Afsar Raza Naqvi
- College of Dentistry, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, United States.
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|