1
|
McCreery KP, Stubb A, Stephens R, Fursova NA, Cook A, Kruse K, Michelbach A, Biggs LC, Keikhosravi A, Nykänen S, Hydén-Granskog C, Zou J, Lackmann JW, Niessen CM, Vuoristo S, Miroshnikova YA, Wickström SA. Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611779. [PMID: 39372762 PMCID: PMC11451594 DOI: 10.1101/2024.09.07.611779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aki Stubb
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Rebecca Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda A. Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Andrew Cook
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anja Michelbach
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Leah C. Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Sonja Nykänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
| | - Christel Hydén-Granskog
- Helsinki University Hospital, Reproductive Medicine Unit, P.O. Box 150, 00029 HUS, Helsinki, Finland
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Yekaterina A. Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
2
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Mim MS, Kumar N, Levis M, Unger MF, Miranda G, Gazzo D, Robinett T, Zartman JJ. Piezo regulates epithelial topology and promotes precision in organ size control. Cell Rep 2024; 43:114398. [PMID: 38935502 DOI: 10.1016/j.celrep.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria F Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel Miranda
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trent Robinett
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Indana D, Zakharov A, Lim Y, Dunn AR, Bhutani N, Shenoy VB, Chaudhuri O. Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell 2024; 31:640-656.e8. [PMID: 38701758 PMCID: PMC11323070 DOI: 10.1016/j.stem.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.
Collapse
Affiliation(s)
- Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrei Zakharov
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youngbin Lim
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Rathore S, Mitra AT, Hyland-Brown R, Jester A, Layne JE, Benoit JB, Buschbeck EK. Osmosis as nature's method for establishing optical alignment. Curr Biol 2024; 34:1569-1575.e3. [PMID: 38513653 DOI: 10.1016/j.cub.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
For eyes to maintain optimal focus, precise coordination is required between lens optics and retina position, a mechanism that in vertebrates is governed by genetics, visual feedback, and possibly intraocular pressure (IOP).1 While the underlying processes have been intensely studied in vertebrates, they remain elusive in arthropods, though visual feedback may be unimportant.2 How do arthropod eyes remain functional while undergoing substantial growth? Here, we test whether a common physiological process, osmoregulation,3 could regulate growth in the sophisticated camera-type eyes of the predatory larvae of Thermonectus marmoratus diving beetles. Upon molting, their eye tubes elongate in less than an hour, and osmotic pressure measurements reveal that this growth is preceded by a transient increase in hemolymph osmotic pressure. Histological evaluation of support cells that determine the lens-to-retina spacing reveals swelling rather than the addition of new cells. In addition, as expected, treating larvae with hyperosmotic media post-molt leads to far-sighted (hyperopic) eyes due to a failure of proper lengthening of the eye tube and results in impaired hunting success. This study suggests that osmoregulation could be of ubiquitous importance for properly focused eyes.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Amartya T Mitra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ruby Hyland-Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Augusta Jester
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
7
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Kumar N, Rangel Ambriz J, Tsai K, Mim MS, Flores-Flores M, Chen W, Zartman JJ, Alber M. Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development. Nat Commun 2024; 15:2477. [PMID: 38509115 PMCID: PMC10954670 DOI: 10.1038/s41467-024-46698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jennifer Rangel Ambriz
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Marycruz Flores-Flores
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, USA.
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Vian A, Pochitaloff M, Yen ST, Kim S, Pollock J, Liu Y, Sletten EM, Campàs O. In situ quantification of osmotic pressure within living embryonic tissues. Nat Commun 2023; 14:7023. [PMID: 37919265 PMCID: PMC10622550 DOI: 10.1038/s41467-023-42024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Mechanics is known to play a fundamental role in many cellular and developmental processes. Beyond active forces and material properties, osmotic pressure is believed to control essential cell and tissue characteristics. However, it remains very challenging to perform in situ and in vivo measurements of osmotic pressure. Here we introduce double emulsion droplet sensors that enable local measurements of osmotic pressure intra- and extra-cellularly within 3D multicellular systems, including living tissues. After generating and calibrating the sensors, we measure the osmotic pressure in blastomeres of early zebrafish embryos as well as in the interstitial fluid between the cells of the blastula by monitoring the size of droplets previously inserted in the embryo. Our results show a balance between intracellular and interstitial osmotic pressures, with values of approximately 0.7 MPa, but a large pressure imbalance between the inside and outside of the embryo. The ability to measure osmotic pressure in 3D multicellular systems, including developing embryos and organoids, will help improve our understanding of its role in fundamental biological processes.
Collapse
Affiliation(s)
- Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Marie Pochitaloff
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Shuo-Ting Yen
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Jennifer Pollock
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Niloy RA, Holcomb MC, Thomas JH, Blawzdziewicz J. The mechanics of cephalic furrow formation in the Drosophila embryo. Biophys J 2023; 122:3843-3859. [PMID: 37571824 PMCID: PMC10560681 DOI: 10.1016/j.bpj.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Cephalic furrow formation (CFF) is a major morphogenetic movement during gastrulation in Drosophila melanogaster embryos that gives rise to a deep, transitory epithelial invagination. Recent studies have identified the individual cell shape changes that drive the initiation and progression phases of CFF; however, the underlying mechanics are not yet well understood. During the progression phase, the furrow deepens as columnar cells from both the anterior and posterior directions fold inwards rotating by 90°. To analyze the mechanics of this process, we have developed an advanced two-dimensional lateral vertex model that includes multinode representation of cellular membranes and allows us to capture the membrane curvature associated with pressure variation. Our investigations reveal some key potential mechanical features of CFF, as follows. When cells begin to roll over the cephalic furrow cleft, they become wedge shaped as their apical cortices and overlying membranes expand, lateral cortices and overlying membranes release tension, internal pressures drop, and basal cortices and membranes contract. Then, cells reverse this process by shortening apical cortices and membranes, increasing lateral tension, and causing internal pressures to rise. Since the basal membranes expand, the cells recover their rotated columnar shape once in the furrow. Interestingly, our findings indicate that the basal membranes may be passively reactive throughout the progression phase. We also find that the smooth rolling of cells over the cephalic furrow cleft necessitates that internalized cells provide a solid base through high levels of membrane tension and internal pressure, which allows the transmission of tensile force that pulls new cells into the furrow. These results lead us to suggest that CFF helps to establish a baseline tension across the apical surface of the embryo to facilitate cellular coordination of other morphogenetic movements via mechanical stress feedback mechanisms.
Collapse
Affiliation(s)
- Redowan A Niloy
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Michael C Holcomb
- Department of Physics and Geosciences, Angelo State University, San Angelo, Texas
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas; Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
12
|
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. BIOSENSORS 2023; 13:905. [PMID: 37887098 PMCID: PMC10605946 DOI: 10.3390/bios13100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
The increasing popularity of 3D cell culture models is being driven by the demand for more in vivo-like conditions with which to study the biochemistry and biomechanics of numerous biological processes in health and disease. Spheroids and organoids are 3D culture platforms that self-assemble and regenerate from stem cells, tissue progenitor cells or cell lines, and that show great potential for studying tissue development and regeneration. Organ-on-a-chip approaches can be used to achieve spatiotemporal control over the biochemical and biomechanical signals that promote tissue growth and differentiation. These 3D model systems can be engineered to serve as disease models and used for drug screens. While culture methods have been developed to support these 3D structures, challenges remain to completely recapitulate the cell-cell and cell-matrix biomechanical interactions occurring in vivo. Understanding how forces influence the functions of cells in these 3D systems will require precise tools to measure such forces, as well as a better understanding of the mechanobiology of cell-cell and cell-matrix interactions. Biosensors will prove powerful for measuring forces in both of these contexts, thereby leading to a better understanding of how mechanical forces influence biological systems at the cellular and tissue levels. Here, we discussed how biosensors and mechanobiological research can be coupled to develop accurate, physiologically relevant 3D tissue models to study tissue development, function, malfunction in disease, and avenues for disease intervention.
Collapse
Affiliation(s)
- Muhammad Sulaiman Yousafzai
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
14
|
Kato S, Inomata H. Blastopore gating mechanism to regulate extracellular fluid excretion. iScience 2023; 26:106585. [PMID: 37192977 PMCID: PMC10182286 DOI: 10.1016/j.isci.2023.106585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
Fluid uptake and efflux play roles in early embryogenesis as well as in adult homeostasis. Multicellular organisms have two main pathways for fluid movement: cellular-level, such as transcellular and paracellular pathways, and tissue-level, involving muscle contraction. Interestingly, early Xenopus embryos with immature functional muscles excrete archenteron fluid via a tissue-level mechanism that opens the blastopore through a gating mechanism that is unclear. Using microelectrodes, we show that the archenteron has a constant fluid pressure and as development progress the blastopore pressure resistance decreases. Combining physical perturbations and imaging analyses, we found that the pushing force exerted by the circumblastoporal collars (CBCs) at the slit periphery regulates pressure resistance. We show that apical constriction at the blastopore dorsoventral ends contributes to this pushing force, and relaxation of ventral constriction causes fluid excretion. These results indicate that actomyosin contraction mediates temporal control of tissue-level blastopore opening and fluid excretion in early Xenopus embryos.
Collapse
Affiliation(s)
- Soichiro Kato
- Laboratory for Axial Pattern Dynamics, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Developmental Morphogeometry, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Corresponding author
| | - Hidehiko Inomata
- Laboratory for Axial Pattern Dynamics, Center for Biosystems Dynamics Research, RIKEN, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Corresponding author
| |
Collapse
|
15
|
Mitchell SJ, Pardo-Pastor C, Zangle TA, Rosenblatt J. Voltage-dependent volume regulation controls epithelial cell extrusion and morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532421. [PMID: 36993671 PMCID: PMC10054995 DOI: 10.1101/2023.03.13.532421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Epithelial cells work collectively to provide a protective barrier, yet also turn over rapidly by cell death and division. If the number of dying cells does not match those dividing, the barrier would vanish, or tumors can form. Mechanical forces and the stretch-activated ion channel (SAC) Piezo1 link both processes; stretch promotes cell division and crowding triggers cell death by initiating live cell extrusion1,2. However, it was not clear how particular cells within a crowded region are selected for extrusion. Here, we show that individual cells transiently shrink via water loss before they extrude. Artificially inducing cell shrinkage by increasing extracellular osmolarity is sufficient to induce cell extrusion. Pre-extrusion cell shrinkage requires the voltage-gated potassium channels Kv1.1 and Kv1.2 and the chloride channel SWELL1, upstream of Piezo1. Activation of these voltage-gated channels requires the mechano-sensitive Epithelial Sodium Channel, ENaC, acting as the earliest crowd-sensing step. Imaging with a voltage dye indicated that epithelial cells lose membrane potential as they become crowded and smaller, yet those selected for extrusion are markedly more depolarized than their neighbours. Loss of any of these channels in crowded conditions causes epithelial buckling, highlighting an important role for voltage and water regulation in controlling epithelial shape as well as extrusion. Thus, ENaC causes cells with similar membrane potentials to slowly shrink with compression but those with reduced membrane potentials to be eliminated by extrusion, suggesting a chief driver of cell death stems from insufficient energy to maintain cell membrane potential.
Collapse
Affiliation(s)
- Saranne J Mitchell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Carlos Pardo-Pastor
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
16
|
Chan CJ. Luminogenesis and hydraulics in development. Semin Cell Dev Biol 2022; 131:108-109. [PMID: 35760730 DOI: 10.1016/j.semcdb.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Chii Jou Chan
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
18
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|