1
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2024; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Noel S, Kapoor R, Rabb H. New approaches to acute kidney injury. Clin Kidney J 2024; 17:65-81. [PMID: 39583139 PMCID: PMC11581771 DOI: 10.1093/ckj/sfae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 11/26/2024] Open
Abstract
Acute kidney injury (AKI) is a common and serious clinical syndrome that involves complex interplay between different cellular, molecular, metabolic and immunologic mechanisms. Elucidating these pathophysiologic mechanisms is crucial to identify novel biomarkers and therapies. Recent innovative methodologies and the advancement of existing technologies has accelerated our understanding of AKI and led to unexpected new therapeutic candidates. The aim of this review is to introduce and update the reader about recent developments applying novel technologies in omics, imaging, nanomedicine and artificial intelligence to AKI research, plus to provide examples where this can be translated to improve patient care.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Radhika Kapoor
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Hu W. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction in lipopolysaccharide-induced tubular epithelial cells. Ren Fail 2024; 46:2369342. [PMID: 39230047 PMCID: PMC11376309 DOI: 10.1080/0886022x.2024.2369342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.
Collapse
Affiliation(s)
- Weike Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Guo S, Zhao J, Zhang Y, Qin Y, Yuan J, Yu Z, Xing Y, Zhang Y, Hui Y, Wang A, Han M, Zhao Y, Ning X, Sun S. Histone deacetylases: potential therapeutic targets in cisplatin-induced acute kidney injury. Ann Med 2024; 56:2418958. [PMID: 39450927 PMCID: PMC11514411 DOI: 10.1080/07853890.2024.2418958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Chemotherapy has been well shown to enhance life expectancy in patients with malignancy. However, conventional chemotherapy drugs, particularly cisplatin, are highly associated with nephrotoxicity, which limits therapeutic efficacy and impairs quality of life. Histone deacetylases (HDACs) are proteases that play significant roles in diseases by influencing protein post-translational modification and gene expression. Agents that inhibit HDAC enzymes have been developed and approved by the FDA as anticancer drugs. It is worth noting that in certain preclinical studies with tumour cell lines, the integration of HDAC modulators and cisplatin not only exerts synergistic or additive tumour-killing effects but also alleviates cisplatin nephrotoxicity. The aim of this review is to discuss the role of HDACs in cisplatin nephrotoxicity. Methods: After searching in PubMed and Web of Science databases using 'Histone deacetylase', 'nephrotoxicity', 'cisplatin', and 'onconpehrology' as keywords, studies related was compiled and examined. Results: HDAC inhibitors exert renal protective effects by inhibiting inflammation, apoptosis, oxidative stress, and promoting autophagy; whereas sirtuins play a renal protective role by regulating lipid metabolism, inhibiting inflammation and apoptosis, and protecting mitochondrial biosynthesis and mitochondrial dynamics. These potential interactions provide clues concerning targets for molecular treatment. Conclusion: This review encapsulates the function and molecular mechanisms of HDACs in cisplatin nephrotoxicity, providing the current view by which HDACs induce different biological signaling in the regulation of chemotherapy-associated renal injury. More importantly, this review exhaustively elucidates that HDACs could be targeted to develop a new therapeutic strategy in treating cisplatin nephrotoxicity, which will extend the knowledge of the biological impact and clinical implications of HDACs.
Collapse
Affiliation(s)
- Shuxian Guo
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhou Z, Wang Y, Xing Y, Pan S, Wang W, Yang J, Wu W, Zhou J, Huang L, Liang Q, Zhang D, Kong L. Magnolol Inhibits High Fructose-Induced Podocyte Inflammation via Downregulation of TKFC/Sp1/HDAC4/Notch1 Activation. Pharmaceuticals (Basel) 2024; 17:1416. [PMID: 39598328 PMCID: PMC11597211 DOI: 10.3390/ph17111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES High fructose has been implicated as an important trigger of kidney inflammation in patients and experimental models. Magnolol, isolated from Magnolia officinalis, has an anti-inflammatory effect, but its protective role in podocytes remains underexplored. This study explored the protective effects and underlying mechanism of magnolol against high fructose-induced podocyte inflammation. METHODS The effects of magnolol on high fructose-induced podocyte inflammation were assessed in male Sprague Dawley rats administered 10% (w/v) fructose water for 12 weeks and heat-sensitive human podocyte cell lines (HPCs) exposed to 5 mM fructose. Podocyte foot processes were examined using transmission electron microscopy. The expression levels of nephrin, podocin, tumor necrosis factor-α (TNF-α), Notch1 intracellular domain (NICD1), triokinase/FMN cyclase (TKFC), specificity protein 1 (Sp1) and histone deacetylase 4 (HDAC4) were determined by Western blot, immunofluorescence and real-time quantitative polymerase chain reaction (qRT-PCR). The chromatin immunoprecipitation (ChIP) assay was performed to evaluate the interaction between Sp1 and the promoter region of HDAC4. RESULTS Magnolol mitigated the impairment of glomerular filtration function in high fructose-fed rats. Besides, it significantly alleviated the inflammatory responses in glomeruli and HPCs, evidenced by decreased protein levels of TNF-α and NICD1. Increased protein levels of TKFC, Sp1 and HDAC4 were observed in high fructose-stimulated HPCs and rat glomeruli. TMP195, an HDAC4 inhibitor, reduced TNF-α and NICD1 protein levels in high fructose-exposed HPCs. The increased Sp1 was shown to associate with the promoter region of HDAC4, promoting HDAC4 protein expression in high fructose-exposed HPCs. The knockdown of TKFC in HPCs by TKFC siRNA decreased Sp1, HDAC4 and NICD1 protein levels, alleviating podocyte inflammatory response. Furthermore, magnolol inhibited TKFC/Sp1/HDAC4/Notch1 activation in vivo and in vitro. CONCLUSIONS Magnolol attenuated high fructose-induced podocyte inflammation possibly through the suppression of TKFC/Sp1/HDAC4/Notch1 activation, providing new evidence for its potential role in podocyte protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| |
Collapse
|
6
|
Nguyen H, Gales A, Monteiro-Pai S, Oliver AS, Harris N, Montgomery AD, Franzén S, Kasztan M, Hyndman KA. Histone deacetylase expression following cisplatin-induced acute kidney injury in male and female mice. Am J Physiol Renal Physiol 2024; 327:F623-F636. [PMID: 39116350 PMCID: PMC11483084 DOI: 10.1152/ajprenal.00132.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The chemotherapeutic agent cisplatin accumulates in the kidneys, leading to acute kidney injury (AKI). Preclinical and clinical studies have demonstrated sex-dependent outcomes of cisplatin-AKI. Deranged histone deacetylase (HDAC) activity is hypothesized to promote the pathogenesis of male murine cisplatin-AKI; however, it is unknown whether there are sex differences in the kidney HDACs. We hypothesized that there would be sex-specific Hdac expression, localization, or enzymatic activity, which may explain sexual dimorphic responses to cisplatin-AKI. In normal human kidney RNA samples, HDAC10 was significantly greater in the kidneys of women compared with men, whereas HDAC1, HDAC6, HDAC10, and HDAC11 were differentially expressed between the kidney cortex and medulla, regardless of sex. In a murine model of cisplatin-AKI (3 days after a 15 mg/kg injection), we found few sex- or cisplatin-related differences in Hdac kidney transcripts among the mice. Although Hdac9 was significantly greater in female mice compared with male mice, HDAC9 protein localization did not differ. Hdac7 transcripts were greater in the inner medulla of cisplatin-AKI mice, regardless of sex, and this agreed with a greater HDAC7 abundance. HDAC activity within the cortex, outer medulla, and inner medulla was significantly lower in cisplatin-AKI mice but did not differ between the sexes. In agreement with these findings, a class I HDAC inhibitor did not improve kidney injury or function. In conclusion, even though cisplatin-AKI was evident and there were transcript level differences among the different kidney regions in this model, there were few sex- or cisplatin-dependent effects on kidney HDAC localization or activity.NEW & NOTEWORTHY Kidney histone deacetylases (HDACs) are abundant in male and female mice, and the inner medulla has the greatest HDAC activity. A low dose of cisplatin caused acute kidney injury (AKI) in these mice, but there were few changes in kidney HDACs at the RNA/protein/activity level. A class I HDAC inhibitor failed to improve AKI outcomes. Defining the HDAC isoform, cellular source, and interventional timing is necessary to determine whether HDAC inhibition is a therapeutic strategy to prevent cisplatin-AKI in both sexes.
Collapse
Affiliation(s)
- Huy Nguyen
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anabelle Gales
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sureena Monteiro-Pai
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ariana S Oliver
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nicholas Harris
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna D Montgomery
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie Franzén
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Xu C, Wang Q, Du C, Chen L, Zhou Z, Zhang Z, Cai N, Li J, Huang C, Ma T. Histone deacetylase-mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy-induced PANoptosis. Br J Pharmacol 2024; 181:1452-1473. [PMID: 38073114 DOI: 10.1111/bph.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by using herbal medicines. Currently, no therapies are available to treat or prevent aristolochic acid nephropathy. Histone deacetylase (HDAC) plays a crucial role in the development and progression of renal disease. We tested whether HDAC inhibitors could prevent aristolochic acid nephropathy and determined the underlying mechanism. EXPERIMENTAL APPROACH HDACs expression in the aristolochic acid nephropathy model was examined. The activation of PANoptosis of mouse kidney and renal tubular epithelial cell were assessed after exposure to HDAC1 and HDAC2 blockade. Kidney-specific knock-in of proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) mice were used to investigate whether PSTPIP2 affected the production of PANoptosome. KEY RESULTS Aristolochic acid upregulated the expression of HDAC1 and HDAC2 in the kidneys. Notably, the HDAC1 and HDAC2 specific inhibitor, romidepsin (FK228, depsipeptide), suppressed aristolochic acid-induced kidney injury, epithelial cell pyroptosis, apoptosis and necroptosis (PANoptosis). Moreover, romidepsin upregulated PSTPIP2 in renal tubular epithelial cells, which was enhanced by aristolochic acid treatment. Conditional knock-in of PSTPIP2 in the kidney protected against aristolochic acid nephropathy. In contrast, the knockdown of PSTPIP2 expression in PSTPIP2-knock-in mice restored kidney damage and PANoptosis. PSTPIP2 function was determined in vitro using PSTPIP2 knockdown or overexpression in mouse renal tubular epithelial cells (mTECs). Additionally, PSTPIP2 was found to regulate caspase 8 in aristolochic acid nephropathy. CONCLUSION AND IMPLICATIONS HDAC-mediated silencing of PSTPIP2 may contribute to aristolochic acid nephropathy. Hence, HDAC1 and HDAC2 specific inhibitors or PSTPIP2 could be valuable therapeutic agents for preventing aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhongnan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
8
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
10
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
11
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
12
|
Gerhardt LM, Koppitch K, van Gestel J, Guo J, Cho S, Wu H, Kirita Y, Humphreys BD, McMahon AP. Lineage Tracing and Single-Nucleus Multiomics Reveal Novel Features of Adaptive and Maladaptive Repair after Acute Kidney Injury. J Am Soc Nephrol 2023; 34:554-571. [PMID: 36735940 PMCID: PMC10103206 DOI: 10.1681/asn.0000000000000057] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Understanding the mechanisms underlying adaptive and maladaptive renal repair after AKI and their long-term consequences is critical to kidney health. The authors used lineage tracing of cycling cells and single-nucleus multiomics (profiling transcriptome and chromatin accessibility) after AKI. They demonstrated that AKI triggers a cell-cycle response in most epithelial and nonepithelial kidney cell types. They also showed that maladaptive proinflammatory proximal tubule cells (PTCs) persist until 6 months post-AKI, although they decreased in abundance over time, in part, through cell death. Single-nucleus multiomics of lineage-traced cells revealed regulatory features of adaptive and maladaptive repair. These included activation of cell state-specific transcription factors and cis-regulatory elements, and effects in PTCs even after adaptive repair, weeks after the injury event. BACKGROUND AKI triggers a proliferative response as part of an intrinsic cellular repair program, which can lead to adaptive renal repair, restoring kidney structure and function, or maladaptive repair with the persistence of injured proximal tubule cells (PTCs) and an altered kidney structure. However, the cellular and molecular understanding of these repair programs is limited. METHODS To examine chromatin and transcriptional responses in the same cell upon ischemia-reperfusion injury (IRI), we combined genetic fate mapping of cycling ( Ki67+ ) cells labeled early after IRI with single-nucleus multiomics-profiling transcriptome and chromatin accessibility in the same nucleus-and generated a dataset of 83,315 nuclei. RESULTS AKI triggered a broad cell cycle response preceded by cell type-specific and global transcriptional changes in the nephron, the collecting and vascular systems, and stromal and immune cell types. We observed a heterogeneous population of maladaptive PTCs throughout proximal tubule segments 6 months post-AKI, with a marked loss of maladaptive cells from 4 weeks to 6 months. Gene expression and chromatin accessibility profiling in the same nuclei highlighted differences between adaptive and maladaptive PTCs in the activity of cis-regulatory elements and transcription factors, accompanied by corresponding changes in target gene expression. Adaptive repair was associated with reduced expression of genes encoding transmembrane transport proteins essential to kidney function. CONCLUSIONS Analysis of genome organization and gene activity with single-cell resolution using lineage tracing and single-nucleus multiomics offers new insight into the regulation of renal injury repair. Weeks to months after mild-to-moderate IRI, maladaptive PTCs persist with an aberrant epigenetic landscape, and PTCs exhibit an altered transcriptional profile even following adaptive repair.
Collapse
Affiliation(s)
- Louisa M.S. Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jordi van Gestel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sam Cho
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Zheng H, Liu X, Guo S. Aberrant expression of histone deacetylase 8 in endometriosis and its potential as a therapeutic target. Reprod Med Biol 2023; 22:e12531. [PMID: 37564680 PMCID: PMC10410010 DOI: 10.1002/rmb2.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose To screen Zn2+-dependent histone deacetylase (HDAC) 1-11 in endometriotic cells and then evaluated the HDACs identified from the screening in ovarian endometrioma (OE) and deep endometriotic (DE) lesions, and to evaluate the therapeutic potential of HDAC8 inhibition in mice. Methods Quantification of gene and protein expression levels of HDAC1-11 in endometriotic cells stimulated by TGF-β1, and immunohistochemistry analysis of Class I HDACs and HDAC6 in OE/DE lesion samples. The therapeutic potential of HDAC8 inhibition was evaluated by a mouse model of deep endometriosis. Results The screening identified Class I HDACs and HDAC6 as targets of interest. Immunohistochemistry analysis found a significant elevation in HDAC8 immunostaining in both OE and DE lesions, which was corroborated by gene and protein expression quantification. For other Class I HDACs and HDAC6, their lesional expression was more subtle and nuanced. HDAC1 and HDAC6 staining was significantly elevated in DE lesions while HDAC2 and HDAC3 staining was reduced in DE lesions. Treatment of mice with induced deep endometriosis with an HDAC8 inhibitor resulted in significantly longer hotplate latency, a reduction of lesion weight by nearly two-thirds, and significantly reduced lesional fibrosis. Conclusions These findings highlight the progression-dependent nature of specific HDAC aberrations in endometriosis, and demonstrate, for the first titme, the therapeutic potential of suppressing HDAC8.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Present address:
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Li Y, Li K, Zhao W, Wang H, Xue X, Chen X, Li W, Xu P, Wang K, Liu P, Tian X, Fu R. VPA improves ferroptosis in tubular epithelial cells after cisplatin-induced acute kidney injury. Front Pharmacol 2023; 14:1147772. [PMID: 37153759 PMCID: PMC10155836 DOI: 10.3389/fphar.2023.1147772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Background: As a novel non-apoptotic cell death, ferroptosis has been reported to play a crucial role in acute kidney injury (AKI), especially cisplatin-induced AKI. Valproic acid (VPA), an inhibitor of histone deacetylase (HDAC) 1 and 2, is used as an antiepileptic drug. Consistent with our data, a few studies have demonstrated that VPA protects against kidney injury in several models, but the detailed mechanism remains unclear. Results: In this study, we found that VPA prevents against cisplatin-induced renal injury via regulating glutathione peroxidase 4 (GPX4) and inhibiting ferroptosis. Our results mainly indicated that ferroptosis presented in tubular epithelial cells of AKI humans and cisplatin-induced AKI mice. VPA or ferrostatin-1 (ferroptosis inhibitor, Fer-1) reduced cisplatin-induced AKI functionally and pathologically, which was characterized by reduced serum creatinine, blood urea nitrogen, and tissue damage in mice. Meanwhile, VPA or Fer-1 treatment in both in vivo and in vitro models, decreased cell death, lipid peroxidation, and expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), reversing downregulation of GPX4. In addition, our study in vitro indicated that GPX4 inhibition by siRNA significantly weakened the protective effect of VPA after cisplatin treatment. Conclusion: Ferroptosis plays an essential role in cisplatin-induced AKI and inhibiting ferroptosis through VPA to protect against renal injury is a viable treatment in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ke Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haodong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaodong Xue
- School of Computer Science, National University of Singapore, Singapore, Singapore
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wantao Li
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peihao Xu
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kexin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Rongguo Fu, ; Xuefei Tian,
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Rongguo Fu, ; Xuefei Tian,
| |
Collapse
|
15
|
Shi L, Song Z, Li C, Deng F, Xia Y, Huang J, Wu X, Zhu J. HDAC6 Inhibition Alleviates Ischemia- and Cisplatin-Induced Acute Kidney Injury by Promoting Autophagy. Cells 2022; 11:cells11243951. [PMID: 36552715 PMCID: PMC9776591 DOI: 10.3390/cells11243951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in renal disorders, including UUO-induced fibrotic kidneys and rhabdomyolysis-induced nephropathy. However, the role of HDAC6 in ischemic acute kidney injury (AKI) and the mechanism by which HDAC6 inhibition protects tubular cells after AKI remain unclear. In the present study, we observed that HDAC6 was markedly activated in kidneys subjected to ischemia- and cisplatin (cis)-induced AKI treatment. Pharmacological inhibition of HDAC6 alleviated renal impairment and renal tubular damage after ischemia and cisplatin treatment. HDAC6 dysfunction was associated with decreased acetylation of α-tubulin at the residue of lysine 40 and autophagy. HDAC6 inhibition preserved acetyl-α-tubulin-enhanced autophagy flux in AKI and cultured tubular cells. Genetic ablation of the renal tubular (RT) Atg7 gene or pharmacological inhibition of autophagy suppressed the protective effects of HDAC6. Taken together, our study indicates that HDAC6 contributes to ischemia- and cisplatin-induced AKI by inhibiting autophagy and the acetylation of α-tubulin. These results suggest that HDAC6 could be a potential target for ischemic and nephrotoxic AKI.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People’s Hospital of Yichang, Yichang 443000, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Fangjing Deng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People’s Hospital of Yichang, Yichang 443000, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
- Correspondence: (X.W.); (J.Z.)
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430064, China
- Correspondence: (X.W.); (J.Z.)
| |
Collapse
|
16
|
Li J, Yu C, Shen F, Cui B, Liu N, Zhuang S. Class IIa histone deacetylase inhibition ameliorates acute kidney injury by suppressing renal tubular cell apoptosis and enhancing autophagy and proliferation. Front Pharmacol 2022; 13:946192. [PMID: 35935816 PMCID: PMC9354984 DOI: 10.3389/fphar.2022.946192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Expression and function of histone deacetylases (HDACs) vary with cell types and pathological conditions. Our recent studies showed that pharmacological targeting class IIa HDACs attenuated renal fibrosis, but the effect of class IIa HDAC inhibition on acute kidney injury (AKI) remains unknown. In this study, we found that four class IIa HDACs (4, 5, 7, 9) were highly expressed in the kidney of folic acid (FA) and ischemia/reperfusion (I/R)-induced AKI in mice. Administration of TMP269, a potent and selective class IIa HDAC inhibitor, improved renal function and reduced tubular cell injury and apoptosis, with concomitant suppression of HDAC4 and elevation of acetyl-histone H3. Mechanistical studies showed that TMP269 treatment inhibited FA and I/R-induced caspase-3 cleavage, Bax expression and p53 phosphorylation. Conversely, TMP269 administration preserved expression of E-cadherin, BMP7, Klotho and Bcl-2 in injured kidneys. Moreover, TMP269 was effective in promoting cellular autophagy as indicated by increased expression of Atg7, beclin-1, and LC3II, and promoted renal tubular cell proliferation as shown by increased number of proliferating cell nuclear antigen-positive cells and expression of cyclin E. Finally, blocking class IIa HDACs inhibited FA-and I/R-induced phosphorylation of extracellular signal-regulated kinases 1 and 2, and p38, two signaling pathways associated with the pathogenesis of AKI. Collectively, these results suggest that pharmacological inhibition of class IIa HDACs protects against AKI through ameliorating apoptosis, enhancing autophagy and promoting proliferation of renal tubular cells by targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
COUP-TFII in Kidneys, from Embryos to Sick Adults. Diagnostics (Basel) 2022; 12:diagnostics12051181. [PMID: 35626336 PMCID: PMC9139597 DOI: 10.3390/diagnostics12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear hormone receptor of unknown ligands. This molecule has two interesting features: (1) it is a developmental gene, and (2) it is a potential hormone receptor. Here, we describe the possible roles of COUP-TFII in the organogenesis of the kidneys and protection from adult renal diseases, primarily in mouse models. COUP-TFII is highly expressed in embryos, including primordial kidneys, and is essential for the formation of metanephric mesenchyme and the survival of renal precursor cells. Although the expression levels of COUP-TFII are low and its functions are unknown in healthy adults, it serves as a reno-protectant molecule against acute kidney injury. These are good examples of how developmental genes exhibit novel functions in the etiology of adult diseases. We also discuss the ongoing research on the roles of COUP-TFII in podocyte development and diabetic kidney disease. In addition, the identification of potential ligands suggests that COUP-TFII might be a novel therapeutic target for renal diseases in the future.
Collapse
|
18
|
Long K, Vaughn Z, McDaniels MD, Joyasawal S, Przepiorski A, Parasky E, Sander V, Close D, Johnston PA, Davidson AJ, de Caestecker M, Hukriede NA, Huryn DM. Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury. ACS Pharmacol Transl Sci 2022; 5:207-215. [PMID: 35434532 PMCID: PMC9003639 DOI: 10.1021/acsptsci.1c00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI), a sudden loss of kidney function, is a common and serious condition for which there are no approved specific therapies. While there are multiple approaches to treat the underlying causes of AKI, no targets have been clinically validated. Here, we assessed a series of potent, selective competitive inhibitors of histone deacetylase 8 (HDAC8), a promising therapeutic target in an AKI setting. Using biochemical assays, zebrafish AKI phenotypic assays, and human kidney organoid assays, we show that selective HDAC8 inhibitors can lead to efficacy in increasingly stringent models. One of these, PCI-34051, was efficacious in a rodent model of AKI, further supporting the potential for HDAC8 inhibitors and, in particular, this scaffold as a therapeutic approach to AKI.
Collapse
Affiliation(s)
- Keith Long
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zoe Vaughn
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael David McDaniels
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sipak Joyasawal
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aneta Przepiorski
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Parasky
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand 1010
| | - David Close
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand 1010
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Neil A Hukriede
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
19
|
Xu L, Xie H, Hu S, Zhao X, Han M, Liu Q, Feng P, Wang W, Li C. HDAC3 inhibition improves urinary-concentrating defect in hypokalaemia by promoting AQP2 transcription. Acta Physiol (Oxf) 2022; 234:e13802. [PMID: 35178888 DOI: 10.1111/apha.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
AIM This study investigated whether enhanced histone acetylation, achieved by inhibiting histone deacetylases (HDACs), could prevent decreased aquaporin-2 (AQP2) expression during hypokalaemia. METHODS Male Wistar rats were fed a potassium-free diet with or without 4-phenylbutyric acid (4-PBA) or the selective HDAC3 inhibitor RGFP966 for 4 days. Primary renal inner medullary collecting duct (IMCD) cells and immortalized mouse cortical collecting duct (mpkCCD) cells were cultured in potassium-deprivation medium with or without HDAC inhibitors. RESULTS 4-PBA increased the levels of AQP2 mRNA and protein in the kidney inner medullae in hypokalaemic (HK) rats, which was associated with decreased urine output and increased urinary osmolality. The level of acetylated H3K27 (H3K27ac) protein was decreased in the inner medullae of HK rat kidneys; this decrease was mitigated by 4-PBA. The H3K27ac levels were decreased in IMCD and mpkCCD cells cultured in potassium-deprivation medium. Decreased H3K27ac in the Aqp2 promoter region was associated with reduced Aqp2 mRNA levels. HDAC3 protein expression was upregulated in mpkCCD and IMCD cells in response to potassium deprivation, and the binding of HDAC3 to the Aqp2 promoter was also increased. RGFP966 increased the levels of H3K27ac and AQP2 proteins and enhanced binding between H3K27ac and AQP2 in mpkCCD cells. Furthermore, RGFP966 reversed the hypokalaemia-induced downregulation of AQP2 and H3K27ac and alleviated polyuria in rats. RGFP966 increased interstitial osmolality in the kidney inner medullae of HK rats but did not affect urinary cAMP levels. CONCLUSION HDAC inhibitors prevented the downregulation of AQP2 induced by potassium deprivation, probably by enhancing H3K27 acetylation.
Collapse
Affiliation(s)
- Long Xu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Haixia Xie
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Shan Hu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- The School of Basic Medicine Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaoduo Zhao
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Mengke Han
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Qiaojuan Liu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Pinning Feng
- Department of Clinical Laboratory The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Weidong Wang
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Nephrology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chunling Li
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
Lin F, Han S, Yu W, Rao T, Ruan Y, Yuan R, Li H, Ning J, Xia Y, Xie J, Qi Y, Zhou X, Cheng F. microRNA‐486‐5p is implicated in the cisplatin‐induced apoptosis and acute inflammation response of renal tubular epithelial cells by targeting HAT1. J Biochem Mol Toxicol 2022; 36:e23039. [PMID: 35279909 DOI: 10.1002/jbt.23039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fang‐You Lin
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Shang‐Ting Han
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wei‐Min Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Ting Rao
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yuan Ruan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Run Yuan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hao‐Yong Li
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Zhuo Ning
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Qi Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Na Xie
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Cheng Qi
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xiang‐Jun Zhou
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Fan Cheng
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
21
|
Hyndman KA, Crossman DK. Kidney cell type-specific changes in the chromatin and transcriptome landscapes following epithelial Hdac1 and Hdac2 knockdown. Physiol Genomics 2022; 54:45-57. [PMID: 34890513 PMCID: PMC8791845 DOI: 10.1152/physiolgenomics.00102.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Recent studies have identified at least 20 different kidney cell types based upon chromatin structure and gene expression. Histone deacetylases (HDACs) are epigenetic transcriptional repressors via deacetylation of histone lysines resulting in inaccessible chromatin. We reported that kidney epithelial HDAC1 and HDAC2 activity is critical for maintaining a healthy kidney and preventing fluid-electrolyte abnormalities. However, to what extent does Hdac1/Hdac2 knockdown affect chromatin structure and subsequent transcript expression in the kidney? To answer this question, we used single nucleus assay for transposase-accessible chromatin-sequencing (snATAC-seq) and snRNA-seq to profile kidney nuclei from male and female, control, and littermate kidney epithelial Hdac1/Hdac2 knockdown mice. Hdac1/Hdac2 knockdown resulted in significant changes in the chromatin structure predominantly within the promoter region of gene loci involved in fluid-electrolyte balance such as the aquaporins, with both increased and decreased accessibility captured. Moreover, Hdac1/Hdac2 knockdown resulted different gene loci being accessible with a corresponding increased transcript number in the kidney, but among all mice only 24%-30% of chromatin accessibility agreed with transcript expression (e.g., open chromatin and increased transcript). To conclude, although chromatin structure does affect transcription, ∼70% of the differentially expressed genes cannot be explained by changes in chromatin accessibility and HDAC1/HDAC2 had a minimal effect on these global patterns. Yet, the genes that are targets of HDAC1 and HDAC2 are critically important for maintaining kidney function.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- The UAB Genomics Core Facility, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
22
|
Xiang X, Dong G, Zhu J, Zhang G, Dong Z. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction. Clin Sci (Lond) 2022; 136:45-60. [PMID: 34918039 DOI: 10.1042/cs20210823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Cold storage/rewarming is an inevitable process for kidney transplantation from deceased donors, which correlates closely with renal ischemia-reperfusion injury (IRI) and the occurrence of delayed graft function. Histone deacetylases (HDAC) are important epigenetic regulators, but their involvement in cold storage/rewarming injury in kidney transplantation is unclear. In the present study, we showed a dynamic change of HDAC3 in a mouse model of kidney cold storage followed by transplantation. We then demonstrated that the selective HDAC3 inhibitor RGFP966 could reduce acute tubular injury and cell death after prolonged cold storage with transplantation. RGFP966 also improved renal function, kidney repair and tubular integrity when the transplanted kidney became the sole life-supporting graft in the recipient mouse. In vitro, cold storage of proximal tubular cells followed by rewarming induced remarkable cell death, which was suppressed by RGFP966 or knockdown of HDAC3 with shRNA. Inhibition of HDAC3 decreased the mitochondrial pathway of apoptosis and preserved mitochondrial membrane potential. Collectively, HDAC3 plays a pathogenic role in cold storage/rewarming injury in kidney transplantation, and its inhibition may be a therapeutic option.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
23
|
Hu L, Yang K, Mai X, Wei J, Ma C. Depleted HDAC3 attenuates hyperuricemia-induced renal interstitial fibrosis via miR-19b-3p/SF3B3 axis. Cell Cycle 2022; 21:450-461. [PMID: 35025700 PMCID: PMC8942505 DOI: 10.1080/15384101.2021.1989899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dysfunctional histone deacetylases (HDACs) elicit unrestrained fibrosis and damage to organs. With regard to the link between HDACs and fibrosis, this research is practiced to decipher the concrete mechanism of HDAC3 in hyperuricemia (HN)-induced renal interstitial fibrosis (RIF) from microRNA-19b-3p/splicing factor 3b subunit 3 (miR-19b-3p/SF3B3) axis.The HN model was established on rats to induce RIF by oral administration of adenine and potassium oxalate. HN rats were injected with miR-19b-3p- or HDAC3-related vectors to figure out their effects on RIF through detecting 24-h urine protein, uric acid (UA), blood urea nitrogen (BUN) and serum creatinine (Scr) contents and α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and fibronectin (FN) contents in renal tissues and observing pathological damages and RIF index of renal tissues. HDAC3, miR-19b-3p and SF3B3 expression in renal tissues were tested, along with their interactions.Elevated HDAC3 and SF3B3 and reduced miR-19b-3p were displayed in renal tissues of HN rats. Suppressed HDAC3 or promoted miR-19b-3p relieved HN-induced RIF, as reflected by their inhibitory effects on 24 h urine protein, UA, BUN, Scr, α-SMA, TGF-β1, and FN contents and RIF index and their ameliorated effects on pathological damages of renal tissues. HDAC3 bound to the promoter of miR-19b-3p to regulate SF3B3. MiR-19b-3p depletion abrogated down-regulated HDAC3-induced effects on HN-induced RIF.It is delineated that depressed HDAC3 relives HN-induced RIF through restoring miR-19b-3p and knocking down SF3B3, replenishing the references for RIF curing.
Collapse
Affiliation(s)
- Langtao Hu
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Kai Yang
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xing Mai
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Chunyang Ma
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
24
|
Gerhardt LMS, McMahon AP. Multi-omic approaches to acute kidney injury and repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100344. [PMID: 35005326 PMCID: PMC8740908 DOI: 10.1016/j.cobme.2021.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The kidney has a remarkable regenerative capacity. In response to ischemic or toxic injury, proximal tubule cells can proliferate to rebuild damaged tubules and restore kidney function. However, severe acute kidney injury (AKI) or recurrent AKI events can lead to maladaptive repair and disease progression from AKI to chronic kidney disease (CKD). The application of single cell technologies has identified injured proximal tubule cell states weeks after AKI, distinguished by a pro-inflammatory senescent molecular signature. Epigenetic studies highlighted dynamic changes in the chromatin landscape of the kidney following AKI and described key transcription factors linked to the AKI response. The integration of multi-omic technologies opens new possibilities to improve our understanding of AKI and the driving forces behind the AKI-to-CKD transition, with the ultimate goal of designing tailored diagnostic and therapeutic strategies to improve AKI outcomes and prevent kidney disease progression.
Collapse
Affiliation(s)
- Louisa M. S. Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
25
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
26
|
Zhou X, Chen H, Shi Y, Ma X, Zhuang S, Liu N. The Role and Mechanism of Histone Deacetylases in Acute Kidney Injury. Front Pharmacol 2021; 12:695237. [PMID: 34220520 PMCID: PMC8242167 DOI: 10.3389/fphar.2021.695237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical complication with an incidence of up to 8-18% in hospitalized patients. AKI is also a complication of COVID-19 patients and is associated with an increased risk of death. In recent years, numerous studies have suggested that epigenetic regulation is critically involved in the pathophysiological process and prognosis of AKI. Histone acetylation, one of the epigenetic regulations, is negatively regulated by histone deacetylases (HDACs). Increasing evidence indicates that HDACs play an important role in the pathophysiological development of AKI by regulation of apoptosis, inflammation, oxidative stress, fibrosis, cell survival, autophagy, ATP production, and mitochondrial biogenesis (MB). In this review, we summarize and discuss the role and mechanism of HDACs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation. Pharmacol Res 2021; 170:105629. [PMID: 34089864 DOI: 10.1016/j.phrs.2021.105629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated phenotypic switching of vascular smooth muscle cells (VSMCs) is key to vascular calcification (VC) in patients with chronic kidney disease (CKD). Studies have shown that activation/upregulation of SIRT1 has a protective effect on CKD-VC. Meanwhile, although terpinen-4-ol has been shown to exert a protective effect against cardiovascular disease, its role and underlying mechanism in VC remain unclear. Herein, we explored whether terpinen-4-ol alleviates ER stress-mediated VC through sirtuin 1 (SIRT1) and elucidated its mechanism to provide evidence for its application in the clinical prevention and treatment of VC. To this end, a CKD-related VC animal model and β-glycerophosphate (β-GP)-induced VSMC calcification model were established to investigate the role of terpinen-4-ol in ER stress-induced VC, in vitro and in vivo. Additionally, to evaluate the involvement of SIRT1, mouse and VSMC Sirt1-knockdown models were established. Results show that terpinen-4-ol inhibits calcium deposition, phenotypic switching, and ER stress in VSMCs in vitro and in vivo. Furthermore, pre-incubation of VSMCs with terpinen-4-ol or a SIRT1 agonist, decreased β-GP-induced calcium salt deposition, increased SIRT1 protein level, and inhibited PERK-eIF2α-ATF4 pathway activation, thus, alleviating VC. Similar results were observed in VSMCs induced to overexpress SIRT1 via lentivirus transcription. Meanwhile, the opposite results were obtained in SIRT1-knockdown models. Further, results suggest that SIRT1 physically interacts with, and deacetylates PERK. Specifically, mass spectrometry analysis identified lysine K889 as the acetylation site of SIRT1, which regulates PERK. Finally, inhibition of SIRT1 reduced the effect of terpinen-4-ol on the deacetylation of PERK in vitro and in vivo and weakened the inhibitory effect of terpinen-4-ol against ER stress-mediated VC. Cumulatively, terpinen-4-ol was found to inhibit post-translational modification of PERK at the K889 acetylation site by upregulating SIRT1 expression, thereby ameliorating VC by regulating ER stress. This study provides insights into the underlying molecular mechanism of terpinen-4-ol, supporting its development as a promising therapeutic agent for CKD-VC.
Collapse
|
28
|
Sedaka R, Hyndman KA, Mironova E, Stockand JD, Pollock JS. High salt intake induces collecting duct HDAC1-dependent NO signaling. Am J Physiol Renal Physiol 2021; 320:F297-F307. [PMID: 33356953 PMCID: PMC7988806 DOI: 10.1152/ajprenal.00323.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1β (NOS1β)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1β signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James D Stockand
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Zhang W, Sun X, Ba G, Tang R, Lin H. RGFP966, a selective HDAC3 inhibitor, ameliorates allergic and inflammatory responses in an OVA-induced allergic rhinitis mouse model. Int Immunopharmacol 2021; 93:107400. [PMID: 33529911 DOI: 10.1016/j.intimp.2021.107400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
RGFP966 is a selective inhibitor of histone deacetylase 3 (HDAC3) playing crucial roles in triggering allergic and inflammatory responses. Whereas, its role in allergic rhinitis (AR) remains uncertain. This study sought to illustrate the role and mechanism of HDAC3 inhibitor RGFP966 on allergic and inflammatory responses in murine AR. RGFP966 administration was applied on murine AR. HE staining, PAS staining, toluidine blue staining, immunohistochemistry staining and real-time PCR methods were used to assess eosinophils, goblet cells, mast cells, HDAC3 positive cells and mRNA levels in nasal tissues of mice. HDAC3 activities in nasal tissues were quantified with HDAC3 Activity Assay Kit. We collected blood and nasal lavage fluid (NLF) of mice for assaying IgE, inflammatory cytokines and inflammatory cells. Results indicated that RGFP966 intervention attenuated sneezing, nose rubbing, IgE, inflammatory cytokines, eosinophils, goblet cells, mast cells, inflammatory cells, HDAC3 levles and activities in RGFP966 treated mice. In conclusion, RGFP966 might reduce HDAC3 expression and HDAC3 activities, and then eosinophils and mast cells recruitment, goblet cells proliferation and inflammatory cytokines levels are decreased, resulting in the alleviation of allergic and inflammatory responses in AR mice.
Collapse
Affiliation(s)
- Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, PR China.
| |
Collapse
|
30
|
Chen X, Yu C, Hou X, Li J, Li T, Qiu A, Liu N, Zhuang S. Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-β and EGFR signaling pathways in obstructive nephropathy. Am J Physiol Renal Physiol 2020; 319:F1003-F1014. [PMID: 33103445 DOI: 10.1152/ajprenal.00261.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that histone deacetylase 6 (HDAC6) is critically involved in the pathogenesis of acute kidney injury. Its role in renal fibrosis, however, remains unclear. In this study, we examined the effect of ricolinostat (ACY-1215), a selective inhibitor of HDAC6, on the development of renal fibrosis in a murine model induced by unilateral ureteral obstruction (UUO). HDAC6 was highly expressed in the kidney following UUO injury, which was coincident with deposition of collagen fibrils and expression of α-smooth muscle actin, fibronectin, and collagen type III. Administration of ACY-1215 reduced these fibrotic changes and inhibited UUO-induced expression of transforming growth factor-β1 and phosphorylation of Smad3 while increasing expression of Smad7. ACY-1215 treatment also suppressed phosphorylation of epidermal growth factor receptor (EGFR) and several signaling molecules associated with renal fibrogenesis, including AKT, STAT3, and NF-κB in the injured kidney. Furthermore, ACY-1215 was effective in inhibiting dedifferentiation of renal fibroblasts to myofibroblasts and the fibrotic change of renal tubular epithelial cells in culture. Collectively, these results indicate that HDAC6 inhibition can attenuate development of renal fibrosis by suppression of transforming growth factor-β1 and EGFR signaling and suggest that HDAC6 would be a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xingying Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
31
|
Hyndman KA, Speed JS, Mendoza LD, Allan JM, Colson J, Sedaka R, Jin C, Jung HJ, El-Dahr S, Pollock DM, Pollock JS. Fluid-electrolyte homeostasis requires histone deacetylase function. JCI Insight 2020; 5:137792. [PMID: 32673289 PMCID: PMC7455138 DOI: 10.1172/jci.insight.137792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylase (HDAC) enzymes regulate transcription through epigenetic modification of chromatin structure, but their specific functions in the kidney remain elusive. We discovered that the human kidney expresses class I HDACs. Kidney medulla-specific inhibition of class I HDACs in the rat during high-salt feeding results in hypertension, polyuria, hypokalemia, and nitric oxide deficiency. Three new inducible murine models were used to determine that HDAC1 and HDAC2 in the kidney epithelium are necessary for maintaining epithelial integrity and maintaining fluid-electrolyte balance during increased dietary sodium intake. Moreover, single-nucleus RNA-sequencing determined that epithelial HDAC1 and HDAC2 are necessary for expression of many sodium or water transporters and channels. In performing a systematic review and meta-analysis of serious adverse events associated with clinical HDAC inhibitor use, we found that HDAC inhibitors increased the odds ratio of experiencing fluid-electrolyte disorders, such as hypokalemia. This study provides insight on the mechanisms of potential serious adverse events with HDAC inhibitors, which may be fatal to critically ill patients. In conclusion, kidney tubular HDACs provide a link between the environment, such as consumption of high-salt diets, and regulation of homeostatic mechanisms to remain in fluid-electrolyte balance.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Luciano D Mendoza
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John M Allan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jackson Colson
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samir El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|