1
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
2
|
Ahn H, Kim JH, Lee KC, Park JA, Kim JY, Lee YJ, Lee YJ. Early Prediction of Radiation-Induced Pulmonary Fibrosis Using Gastrin-Releasing Peptide Receptor-Targeted PET Imaging. Mol Pharm 2023; 20:267-278. [PMID: 36542354 DOI: 10.1021/acs.molpharmaceut.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Early diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [64Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP. In this study, we evaluated the usefulness of [64Cu]Cu-NODAGA-galacto-BBN for the early prediction of RIPF. We prepared RIPF mice and acquired PET/CT images of [18F]F-FDG and [64Cu]Cu-NODAGA-galacto-BBN at 0, 2, 5, and 11 weeks after irradiation (n = 3-10). We confirmed that [64Cu]Cu-NODAGA-galacto-BBN targets GRPR in irradiated RAW 264.7 cells. In addition, we examined whether [64Cu]Cu-NODAGA-galacto-BBN monitors the therapeutic efficacy in RIPF mice (n = 4). As a result, the lung uptake ratio (irradiated-to-normal) of [64Cu]Cu-NODAGA-galacto-BBN was the highest at 2 weeks, followed by its decrease at 5 and 11 weeks after irradiation, which matched with the expression of GRPR and was more accurately predicted than [18F]F-FDG. These uptake results were also confirmed by the cell uptake assay. Furthermore, [64Cu]Cu-NODAGA-galacto-BBN could monitor the therapeutic efficacy of pirfenidone in RIPF mice. We conclude that [64Cu]Cu-NODAGA-galacto-BBN is a novel PET imaging probe for the early prediction of RIPF-targeting GRPR expressed during the inflammatory response.
Collapse
Affiliation(s)
- Heesu Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Ji-Hee Kim
- Division of Radiation Biomedical, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Yoon-Jin Lee
- Division of Radiation Biomedical, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| |
Collapse
|
3
|
Hughes RT, Ip EH, Urbanic JJ, Hu JJ, Weaver KE, Lively MO, Winkfield KM, Shaw EG, Diaz LB, Brown DR, Strasser J, Sears JD, Lesser GJ. Smoking and Radiation-induced Skin Injury: Analysis of a Multiracial, Multiethnic Prospective Clinical Trial. Clin Breast Cancer 2022; 22:762-770. [PMID: 36216768 PMCID: PMC10003823 DOI: 10.1016/j.clbc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Smoking during breast radiotherapy (RT) may be associated with radiation-induced skin injury (RISI). We aimed to determine if a urinary biomarker of tobacco smoke exposure is associated with increased rates of RISI during and after breast RT. PATIENTS AND METHODS Women with Stage 0-IIIA breast cancer treated with breast-conserving surgery or mastectomy followed by RT to the breast or chest wall with or without regional nodal irradiation were prospectively enrolled on a multicenter study assessing acute/late RISI. 980 patients with urinary cotinine (UCot) measurements (baseline and end-RT) were categorized into three groups. Acute and late RISI was assessed using the ONS Acute Skin Reaction scale and the LENT-SOMA Criteria. RESULTS Late Grade 2+ and Grade 3+ RISI occurred in 18.2% and 1.9% of patients, respectively-primarily fibrosis, pain, edema, and hyperpigmentation. Grade 2+ late RISI was associated with UCot group (P= 006). Multivariable analysis identified UCot-based light smoker/secondhand smoke exposure (HR 1.79, P= .10) and smoking (HR 1.60, p = .06) as non-significantly associated with an increased risk of late RISI. Hypofractionated breast RT was associated with decreased risk of late RISI (HR 0.51, P=.03). UCot was not associated with acute RISI, multivariable analysis identified race, obesity, RT site/fractionation, and bra size to be associated with acute RISI. CONCLUSIONS Tobacco exposure during breast RT may be associated with an increased risk of late RISI without an effect on acute toxicity. Smoking cessation should be encouraged prior to radiotherapy to minimize these and other ill effects of smoking.
Collapse
Affiliation(s)
- Ryan T Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - Edward H Ip
- Department of Biostatistics & Data Science, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States; Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - James J Urbanic
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, United States.
| | - Jennifer J Hu
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, 1600 NW 10th Ave #1140, Miami, FL 33136.
| | - Kathryn E Weaver
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | | | - Karen M Winkfield
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, 1005 Dr DB Todd Jr Blvd, Nashville, TN 37208, United States.
| | | | - Luis Baez Diaz
- Puerto Rico Minority Underserved NCI Community Oncology Research Program, 89 De Diego Avenue, PMB #711, Suite 105, San Juan, Puerto Rico 00927.
| | - Doris R Brown
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - Jon Strasser
- Helen F Graham Cancer Center, 4701 Ogletown Stanton Rd, Newark, DE 19713, United States.
| | - Judith D Sears
- Piedmont Radiation Oncology, 1010 Bethesda Court, Winston-Salem, NC 27103, United States.
| | - Glenn J Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine.
| |
Collapse
|
4
|
Sharma AK, Prasad A, Kalonia A, Shaw P, Kumar R, Shukla SK. Combined radiation burn injuries: A note. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:043502. [PMID: 36317279 DOI: 10.1088/1361-6498/ac9e61] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Combined radiation injury occurs when radiation is accompanied by any other form of trauma. The past experiences of Hiroshima, Nagasaki, and Chernobyl have revealed that a large number of victims of such nuclear accidents or attacks suffer from combined radiation injuries. The possibility of a nuclear attack seems very far-fetched, but the destruction that would occur in such an event would be massive, with a huge lossof lives. Therefore, preparedness for the same should be done beforehand. The severity of combined radiation depends upon various factors, such as radiation dose, type, tissues affected, and traumas. The article focuses on combined radiation burn injury (CRBI) which may arise due to the combination of ionising radiation with thermal burns. CRBI can have varied effects on different organs like the hematopoietic, digestive, lymphatic, cardiovascular, and respiratory systems. Some of the most profound lethal effects are hematopoietic dysfunction, gastrointestinal leakage, bacterial translocation to other organ sites, pulmonary fibrosis, and pneumonitis. In this article, we have attempted to accumulate the knowledge of ongoing research on the functioning of different organ systems, which are affected due to CRBI and possible countermeasures to minimize the effects, thus improving survival.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Ayushi Prasad
- Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rishav Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
5
|
Li X, Yu Y, Chen Q, Lin J, Zhu X, Liu X, He L, Chen T, He W. Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer. J Nanobiotechnology 2022; 20:401. [PMID: 36064356 PMCID: PMC9446690 DOI: 10.1186/s12951-022-01593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer cell membrane-camouflaged nanotechnology for metal complex can enhance its biocompatibility and extend the effective circulation time in body. The ruthenium polypyridyl complex (RuPOP) has extensive antitumor activity, but it still has disadvantages such as poor biocompatibility, lack of targeting, and being easily metabolized by the organism. Cancer cell membranes retain a large number of surface antigens and tumor adhesion molecules CD47, which can be used to camouflage the metal complex and give it tumor homing ability and high biocompatibility. Results Therefore, this study provides an electrostatic adsorption method, which uses the electrostatic interaction of positive and negative charges between RuPOP and cell membranes to construct a cancer cell membrane-camouflaged nano-platform (RuPOP@CM). Interestingly, RuPOP@CM maintains the expression of surface antigens and tumor adhesion molecules, which can inhibit the phagocytosis of macrophage, reduce the clearance rate of RuPOP, and increase effective circulation time, thus enhancing the accumulation in tumor sites. Besides, RuPOP@CM can enhance the activity of cellular immune response and promote the production of inflammatory cytokines including TNF-α, IL-12 and IL-6, which is of great significance in treatment of tumor. On the other hand, RuPOP@MCM can produce intracellular ROS overproduction, thereby accelerating the apoptosis and cell cycle arrest of tumor cells to play an excellent antitumor effect in vitro and in vivo. Conclusion In brief, engineering cancer cell membrane-camouflaged metal complex is a potential strategy to improve its biocompatibility, biological safety and antitumor effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01593-5.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Qi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jiabao Lin
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Córdoba EE, Lacunza E, Güerci AM. Clinical factors affecting the determination of radiotherapy-induced skin toxicity in breast cancer. Radiat Oncol J 2022; 39:315-323. [PMID: 34986553 PMCID: PMC8743461 DOI: 10.3857/roj.2020.00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Radiotherapy is essential for the treatment of breast cancer (BC). However, adverse effects may occur in healthy tissue, during treatment and even after several months. Although it is known that this clinical radiosensitivity is multifactorial, the factors involved are unknown yet. In this study, we evaluated the effect of these factors on the development of radiodermatitis in patients undergoing radiotherapy. Materials and Methods Demographic and lifestyle data collected during face-to-face interviews of 122 BC patients and data from clinical records were investigated. Most patients underwent conventional three-dimensional radiotherapy treatment. A total dose of 50 Gy was administered (2 Gy/day), followed by a boost in a tumor bed with a total dose of 18 Gy (2 Gy/day). Radiotoxicity was evaluated weekly using the Radiation Therapy Oncology Group classification system (range, 0 to 4, according to the severity). Results In the present study, 75.4% of patients presented acute skin toxic effects with different degrees of severity. In 25% of cases, these effects manifested at the end of the fourth week at a cumulative dose of 40 Gy. The association of grade ≥2 acute skin reactions with body mass index (BMI) and breast size and between grade 3–4 and age was positive compared with controls. However, the role of the other factors could not be confirmed. Conclusion Analysis of the factors related to individual radiosensitivity suggests that age, BMI and breast size play an important role in the development of acute skin toxicity during treatment. Particular attention to patients who present these characteristics would help to control treatment effectiveness and therefore optimize their quality of life.
Collapse
Affiliation(s)
- Elisa Eugenia Córdoba
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| | - Ezequiel Lacunza
- Basic and Applied Immunological Research Center, School of Medicine, National University of La Plata, Argentina
| | - Alba Mabel Güerci
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| |
Collapse
|
7
|
Zhu J, Chen G, Niu K, Feng Y, Xie L, Qin S, Wang Z, Li J, Lang S, Zhuo W, Chen Z, Sun J. Efficacy and safety of recombinant human endostatin during peri-radiotherapy period in advanced non-small-cell lung cancer. Future Oncol 2022; 18:1077-1087. [PMID: 34986655 DOI: 10.2217/fon-2021-1239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: This study aimed to retrospectively investigate the efficacy and safety of recombinant human endostatin (Rh-endostatin) combined with radiotherapy in advanced non-small-cell lung cancer (NSCLC). Methods: Patients with unresectable stage III and IV NSCLC who treated with radiotherapy were enrolled. Patients who received Rh-endostatin infusion throughout the whole peri-radiotherapy period formed the Endostar group, and those who received no Rh-endostatin infusion were the control group. Results: The median progression-free survival was 8.0 and 4.4 months (hazard ratio: 0.53; 95% CI: 0.32-0.90; p = 0.019) and median overall survival was 40.0 and 13.1 months (hazard ratio: 0.53; 95% CI: 0.28-0.98; p = 0.045) for the Endostar and control groups, respectively. The Endostar group exhibited a numerically lower rate of radiation pneumonitis relapse, radiation pneumonitis death and pulmonary fibrosis. Conclusion: Rh-endostatin infusion throughout the peri-radiotherapy period enhanced radiosensitivity and showed better survival outcomes and a tendency toward fewer radiation-related pulmonary events in patients with NSCLC.
Collapse
Affiliation(s)
- Jianbo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Guangpeng Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Kai Niu
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Yongdong Feng
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Lijiao Xie
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Si Qin
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Zhongyu Wang
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Jixi Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Song Lang
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Wenlei Zhuo
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Zhengtang Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, PR China
| |
Collapse
|
8
|
Bannik K, Madas B, Jarke S, Sutter A, Siemeister G, Schatz C, Mumberg D, Zitzmann-Kolbe S. DNA repair inhibitors sensitize cells differently to high and low LET radiation. Sci Rep 2021; 11:23257. [PMID: 34853427 PMCID: PMC8636489 DOI: 10.1038/s41598-021-02719-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate effects of high LET α-radiation in combination with inhibitors of DDR (DNA-PK and ATM) and to compare the effect with the radiosensitizing effect of low LET X-ray radiation. The various cell lines were irradiated with α-radiation and with X-ray. Clonogenic survival, the formation of micronuclei and cell cycle distribution were studied after combining of radiation with DDR inhibitors. The inhibitors sensitized different cancer cell lines to radiation. DNA-PKi affected survival rates in combination with α-radiation in selected cell lines. The sensitization enhancement ratios were in the range of 1.6–1.85 in cancer cells. ATMi sensitized H460 cells and significantly increased the micronucleus frequency for both radiation qualities. ATMi in combination with α-radiation reduced survival of HEK293. A significantly elicited cell cycle arrest in G2/M phase after co-treatment of ATMi with α-radiation and X-ray. The most prominent treatment effect was observed in the HEK293 by combining α-radiation and inhibitions. ATMi preferentially sensitized cancer cells and normal HEK293 cells to α-radiation. DNA-PKi and ATMi can sensitize cancer cells to X-ray, but the effectiveness was dependent on cancer cells itself. α-radiation reduced proliferation in primary fibroblast without G2/M arrest.
Collapse
Affiliation(s)
- Kristina Bannik
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,, Berlin, Germany
| | | | - Sabrina Jarke
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,Nuvisan-ICB GmbH, Berlin, Germany
| | | | - Gerhard Siemeister
- Pharmaceuticals Division, Bayer AG, Berlin, Germany.,Nuvisan-ICB GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Rashed ER, Abdel-Rafei MK, Thabet NM. Roles of Simvastatin and Sildenafil in Modulation of Cranial Irradiation-Induced Bystander Multiple Organs Injury in Rats. Inflammation 2021; 44:2554-2579. [PMID: 34420155 DOI: 10.1007/s10753-021-01524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023]
Abstract
In radiobiology and radiation oncology fields, the observation of a phenomenon called radiation-induced bystander effect (RIBE) has introduced the prospect of remotely located tissues' affection. This phenomenon has been broadly developed to involve the concept of RIBE, which are relevant to the radiation-induced response of a distant tissue other than the irradiated one. The current study aimed at investigating each of the RIBE of cranial irradiation on oxidative and inflammatory status in different organs such as liver, kidney, heart, lung, and spleen. Being a vital target of the cholinergic anti-inflammatory response to an inflammatory stimulus, the splenic α-7-nicotinic acetylcholine receptor (α-7nAchR) was evaluated and the hepatic contents of thioredoxin, peroxisome proliferator-activated receptor-alpha and paraoxinase-1 (Trx/PPAR-α/PON) were also assessed as indicators for the liver oxidative stress and inflammatory responses. Being reported to act as antioxidant and anti-inflammatory agents, simvastatin (SV) and/or sildenafil (SD) were investigated for their effects against RIBE on these organs. These objectives were achieved via the biochemical assessments and the histopathological tissues examinations. Five experimental groups, one sham irradiated and four irradiated groups, were exposed to cranial irradiation at dose level of 25 Gy using an experimental irradiator with a Cobalt (Co60) source, RIBE, RIBE + SV (20 mg.(kg.bw)-1 day-1), RIBE + SD (75 mg.(kg.bw)-1 day-1), and RIBE + SV + SD. Cranial irradiation induced structural, biochemical, and functional dys-regulations in non-targeted organs. RIBE-induced organs' injuries have been significantly corrected by the administration of SV and/or SD. Our results suggest the possibility of a potentiated interaction between SV and SD in the modulation of the RIBE associated with head and neck radiotherapy.
Collapse
Affiliation(s)
- Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E, Sáez MA, Álvarez-Mon MA, García-Honduvilla N, Monserrat J, Álvarez-Mon M, Bujan J, Canals ML. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:864. [PMID: 34577787 PMCID: PMC8465921 DOI: 10.3390/medicina57090864] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) consists of using of pure oxygen at increased pressure (in general, 2-3 atmospheres) leading to augmented oxygen levels in the blood (Hyperoxemia) and tissue (Hyperoxia). The increased pressure and oxygen bioavailability might be related to a plethora of applications, particularly in hypoxic regions, also exerting antimicrobial, immunomodulatory and angiogenic properties, among others. In this review, we will discuss in detail the physiological relevance of oxygen and the therapeutical basis of HBOT, collecting current indications and underlying mechanisms. Furthermore, potential areas of research will also be examined, including inflammatory and systemic maladies, COVID-19 and cancer. Finally, the adverse effects and contraindications associated with this therapy and future directions of research will be considered. Overall, we encourage further research in this field to extend the possible uses of this procedure. The inclusion of HBOT in future clinical research could be an additional support in the clinical management of multiple pathologies.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Enrique Callejón-Peláez
- Underwater and Hyperbaric Medicine Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases—Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Canals
- ISM, IMHA Research Chair, Former of IMHA (International Maritime Health Association), 43001 Tarragona, Spain;
| |
Collapse
|
11
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
12
|
Kim IG, Cho H, Shin J, Cho JH, Cho SW, Chung EJ. Regeneration of irradiation-damaged esophagus by local delivery of mesenchymal stem-cell spheroids encapsulated in a hyaluronic-acid-based hydrogel. Biomater Sci 2021; 9:2197-2208. [PMID: 33506817 DOI: 10.1039/d0bm01655a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radiation therapy (RT) is a typical treatment for head and neck cancers. Generally, prolonged irradiation of the esophagus causes esophageal fibrosis due to increased reactive oxygen species and proinflammatory cytokines. This study was designed to determine whether catechol-functionalized hyaluronic acid (HA-CA) hydrogel-encapsulated human mesenchymal stem-cell spheroids (MSC-SPs) could ameliorate damage to the esophagus in a mouse model of radiation-induced esophageal fibrosis. MSC-SPs were cultured in concave microwells 600 μm in diameter at a cell density of 1 × 106 cells per mL. Most cells formed spheroids with a 100-300 μm size distribution in concave microwells. MSC-SPs were well maintained in the HA gel, and live-dead staining confirmed that most cells survived. The HA gel containing the MSC-SPs was then injected into the damaged esophageal layer. Inflammatory signs or adverse tissue reactions were not observed after esophageal injection of HA-gel-encapsulated MSC-SPs. Based on Masson's trichrome staining at 4 and 12 weeks postinjection, the inner esophageal layer (IEL) was significantly thinner in the MSC-SP + HA gel group compared to those in the other experimental groups. While the saline and HA gel treatments made the esophageal muscles loose and thick, the MSC-SP + HA gel group showed bundles of tightly packed esophageal muscles, as assayed by desmin immunostaining. qPCR analysis showed that epithelial genes tended to increase over time in the MSC-SP + HA gel group, and the expression of most fibrosis-related genes decreased. This study proposes the potential of using HA-CA-hydrogel-encapsulated MSC-SPs as a promising therapy against radiation-induced esophageal fibrosis.
Collapse
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Kim N, Choi SH, Chang JS, Kim YT, Kim SW, Kim GM, Kim YB. Use of bevacizumab before or after radiotherapy increases the risk of fistula formation in patients with cervical cancer. Int J Gynecol Cancer 2020; 31:59-65. [PMID: 33273018 DOI: 10.1136/ijgc-2020-002031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Several reports have documented the risk of fistula formation after bevacizumab in patients previously treated with radiation therapy. The aim of this study was to investigate the risk of fistula formation with bevacizumab and radiotherapy compared with radiotherapy alone. METHODS We retrospectively analyzed patients with stage I-IV cervical cancer between January 2013 and December 2018. Patients who had a history of pelvic radiotherapy, who were treated with intracavitary brachytherapy alone, received radiotherapy at another hospital, received concurrent bevacizumab and radiotherapy, or had missing follow-up data or a short follow-up period (<6 months) were excluded. The fistula rates were compared between the groups using the Cox proportional hazards model and propensity score analyses. RESULTS A total of 302 patients were included in the study: 249 patients were treated with definitive or adjuvant radiotherapy, and 53 patients were treated with radiotherapy before or after bevacizumab. With a median follow-up of 35.9 (IQR 22.8-53.5) months, the 3 year cumulative fistula incidence rate was significantly higher in the radiotherapy + bevacizumab group than in the radiotherapy group (27.0% vs 3.0%, p<0.001). Bevacizumab administration was significantly associated with fistula formation in the multivariable adjusted model (HR 4.76, 95% CI 1.71 to 13.23) and three propensity score adjusted model (all p<0.05). Biologically equivalent dose in 2 Gy fractions for 2 cc of the rectum more than 76 Gy was also associated with fistula formation (HR 4.30, 95% CI 1.52 to 12.18). Additionally, a 10 month interval between radiotherapy and bevacizumab reduced the incidence of fistula formation in the radiotherapy + bevacizumab group (p=0.032). CONCLUSIONS In patients with cervical cancer treated with pelvic radiotherapy, the addition of bevacizumab substantially increased the risk of fistula formation. Physicians should perform pelvic radiotherapy in combination with bevacizumab with caution; moreover, close monitoring for fistula formation is warranted in these patients.
Collapse
Affiliation(s)
- Nalee Kim
- Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seo Hee Choi
- Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jee Suk Chang
- Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Young-Tae Kim
- Obstetrics and Gynecology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang Wun Kim
- Obstetrics and Gynecology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Gun Min Kim
- Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yong Bae Kim
- Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
14
|
Handa E, Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H. Recent advances in clinical studies of selenium supplementation in radiotherapy. J Trace Elem Med Biol 2020; 62:126653. [PMID: 32998101 DOI: 10.1016/j.jtemb.2020.126653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Radiotherapy is one of the most important and common therapies for cancer patients. Selenium has been shown to be capable of reducing the side effects of radiotherapy because selenoproteins have anti-oxidative functions against reactive oxygen species that are induced by the radiation. They also function in DNA-repair and cytokine control. PURPOSE We explored the benefits and risks of selenium supplementation in radiotherapy in our previous review to establish guidelines. In the current study, we expanded the search to cover recent advances in clinical studies of selenium supplementation in radiotherapy. METHODS We conducted an initial screening in the PubMed using the MeSH terms and keywords "selenium", "radiation", "therapy", and "radiotherapy" using the same methodology applied in our previous review. We identified 121 articles published between January 2013 and December 2019. We then identified eight articles (six studies) on selenium and radiotherapy by excluding 113 articles. RESULTS In selenium supplementation studies, selenium doses of 300-500 μg/day with duration of 10 days to 6 months were used. Selenium supplementation improved the selenium nutritional conditions of the patients and reduced the side effects of radiotherapy. Selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. CONCLUSION The results of our previous and current reviews showed that selenium supplementation offers specific benefits for several cancer types treated with radiotherapy. Here, we suggest a new guideline for selenium supplementation in radiotherapy. We recommend determining the selenium status of the patients before radiotherapy, and in cases of deficiency (<100 μg/L serum selenium level), selenium supplement can be beneficial.
Collapse
Affiliation(s)
- Emi Handa
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Irma M Puspitasari
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Chiho Yamazaki
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satomi Kameo
- Department of Nutrition, Koshien University, Takarazuka, Japan
| | - Takashi Nakano
- Quantum Medical Science Directorate, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Koyama
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
15
|
Park K, Dhupal M, Kim CS, Jung SH, Choi D, Qi XF, Kim SK, Lee JY. Ameliorating effect of CpG-ODN (oligodeoxynucleotide) against radiation-induced lung injury in mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:733-741. [PMID: 32914274 DOI: 10.1007/s00411-020-00871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
While radiation-induced lung injury (RILI) is known to be progressed by Th2 skewed, pro-inflammatory immune response, there have been few therapeutic attempts through Th1 immune modulation. We investigated whether the immunostimulant CpG-oligodeoxynucleotide (CpG-ODN) would be effective against RILI by way of measuring reactive oxygen species (ROS) and nitric oxides (NO), histopathology, micro-three-dimensional computer tomography (CT), and cytokine profiling. We found that KSK CpG-ODN (K-CpG) significantly reduced histopathological fibrosis when compared to the positive control (PC) group (p < 0.01). The levels of ROS production in serum and splenocyte of PC group were significantly higher than that of K-CpG group (p < 0.01). The production of nitric oxide (NO) in CpG-ODNs group was higher than that of PC group. Last, cytokine profiling illustrated that the protein concentrations of Th1-type cytokines such as IL-12 and TNF-α as well as Th2-type cytokine IL-5 in K-CpG group inclined to be significantly (p < 0.001 or p < 0.01) higher than those of in PC group. Collectively, our study clearly indicates that K-CpG is effective against RILI in mice by modulating the innate immune response. To our knowledge, this is the first note on anti-RILI effect of human type, K-CpG, clinically implying the potential of immunotherapy for RILI control.
Collapse
Affiliation(s)
- Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Madhusmita Dhupal
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea
| | - Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea
| | - Soon-Hee Jung
- Department of Pathology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Deahan Choi
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Xu-Feng Qi
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental and Regenerative Biology, Ji Nan University School of Life Science and Technology, Guangzhou, People's Republic of China
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea.
- Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
| | - Jong Yong Lee
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju-si, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
16
|
Nam JK, Kim AR, Choi SH, Kim JH, Han SC, Park S, Lee YJ, Kim J, Cho J, Lee HJ, Lee YJ. Pharmacologic Inhibition of HIF-1α Attenuates Radiation-Induced Pulmonary Fibrosis in a Preclinical Image Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 109:553-566. [PMID: 32942004 DOI: 10.1016/j.ijrobp.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a long-term side effect of thoracic radiation therapy. Hypoxia-induced vascular endothelial mesenchymal transition (EndMT) can occur during the development of RIPF. Here, we examined the direct contribution of endothelial HIF-1α (EC-HIF1α) on RIPF. METHODS AND MATERIALS An inducible Cre-lox-mediated endothelial Hif1a deletion mouse line was used to evaluate the potential of HIF-1α inhibition to suppress RIPF. To evaluate the effects of a pharmacologic HIF-1α inhibitor on RIPF after image guided radiation therapy (IGRT) for spontaneous lung adenocarcinoma, we generated conditional tdTomato; K-RasG12D; and p53 flox/flox mice to facilitate tracking of tumor cells expressing tdTomato. RESULTS We found that vascular endothelial-specific HIF-1α deletion shortly before radiation therapy inhibited the progression of RIPF along with reduced EndMT, whereas prolonged deletion of endothelial HIF-1α before irradiation did not. Moreover, we revealed that postirradiation treatment with the novel HIF-1α inhibitor, 2-methoxyestradiol (2-ME) could efficiently inhibit RIPF and EndMT. In addition, IGRT using primary mouse models of non-small cell lung cancer showed that combined treatment of 2-ME with ablative high-dose radiation therapy efficiently inhibited RIPF and the growth of both multifocal and single tumors, concomitantly reducing radiation-induced EndMT of normal as well as tumor regions. CONCLUSION These results suggest that a negative regulator of HIF-1α-mediated EndMT, such as 2-ME, may serve as a promising inhibitor of RIPF in radiation therapy.
Collapse
Affiliation(s)
- Jae-Kyung Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea; Division of Applied RI, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - A-Ram Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Seo-Hyun Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Ji-Hee Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea; Division of Applied RI, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Su Chul Han
- Comprehensive Radiation Irradiation Center, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Seungwoo Park
- Comprehensive Radiation Irradiation Center, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Yong Jin Lee
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Joon Kim
- Division of Applied RI, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiologic and Medical Sciences, Seoul, Korea.
| |
Collapse
|
17
|
Monitoring DNA Damage and Repair in Peripheral Blood Mononuclear Cells of Lung Cancer Radiotherapy Patients. Cancers (Basel) 2020; 12:cancers12092517. [PMID: 32899789 PMCID: PMC7563254 DOI: 10.3390/cancers12092517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Every patient responds to radiotherapy in individual manner. Some suffer severe side-effects because of normal tissue toxicity. Their radiosensitivity can be caused by inability of DNA repair system to fix radiation-induced damage. The γ-H2AX assay can detect such deficiency in untransformed primary cells (e.g., peripheral blood mononuclear cells, PBMC), over a period of only hours post ex-vivo irradiation. Earlier we have shown that the level and kinetics of decline (repair) of radiation-induced DNA damage detected by the assay is a measure of the cellular radiosensitivity. In this study, we applied the γ-H2AX assay to judge the radiosensitivity of lung cancer radiotherapy patients as normal or abnormal, based on kinetics of DNA damage repair. Considering the potential of the assay as a clinical biodosimeter, we also monitored DNA damage in serial samples of PBMC during the course of radiotherapy. This study opens an opportunity to monitor individual response to radiotherapy treatment. Abstract Thoracic radiotherapy (RT) is required for the curative management of inoperable lung cancer, however, treatment delivery is limited by normal tissue toxicity. Prior studies suggest that using radiation-induced DNA damage response (DDR) in peripheral blood mononuclear cells (PBMC) has potential to predict RT-associated toxicities. We collected PBMC from 38 patients enrolled on a prospective clinical trial who received definitive fractionated RT for non-small cell lung cancer. DDR was measured by automated counting of nuclear γ-H2AX foci in immunofluorescence images. Analysis of samples collected before, during and after RT demonstrated the induction of DNA damage in PBMC collected shortly after RT commenced, however, this damage repaired later. Radiation dose to the tumour and lung contributed to the in vivo induction of γ-H2AX foci. Aliquots of PBMC collected before treatment were also irradiated ex vivo, and γ-H2AX kinetics were analyzed. A trend for increasing of fraction of irreparable DNA damage in patients with higher toxicity grades was revealed. Slow DNA repair in three patients was associated with a combined dysphagia/cough toxicity and was confirmed by elevated in vivo RT-generated irreparable DNA damage. These results warrant inclusion of an assessment of DDR in PBMC in a panel of predictive biomarkers that would identify patients at a higher risk of toxicity.
Collapse
|
18
|
Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med 2020; 52:781-792. [PMID: 32467609 PMCID: PMC7272420 DOI: 10.1038/s12276-020-0439-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) involves the phenotypic conversion of endothelial-to-mesenchymal cells, and was first discovered in association with embryonic heart development. EndMT can regulate various processes, such as tissue fibrosis and cancer. Recent findings have shown that EndMT is related to resistance to cancer therapy, such as chemotherapy, antiangiogenic therapy, and radiation therapy. Based on the known effects of EndMT on the cardiac toxicity of anticancer therapy and tissue damage of radiation therapy, we propose that EndMT can be targeted as a strategy for overcoming tumor resistance while reducing complications, such as tissue damage. In this review, we discuss EndMT and its roles in damaging cardiac and lung tissues, as well as EndMT-related effects on tumor vasculature and resistance in anticancer therapy. Modulating EndMT in radioresistant tumors and radiation-induced tissue fibrosis can especially increase the efficacy of radiation therapy. In addition, we review the role of hypoxia and reactive oxygen species as the main stimulating factors of tissue damage due to vascular damage and EndMT. We consider drugs that may be clinically useful for regulating EndMT in various diseases. Finally, we argue the importance of EndMT as a therapeutic target in anticancer therapy for reducing tissue damage. A process of cellular conversion known as endothelial-to-mesenchymal transition (EndMT) may offer a valuable target for treating cancer and other diseases. In EndMT, the cells lining blood vessels undergo a striking change in shape and physiology, acquiring features of cells called fibroblasts. Fibroblasts form the body’s connective tissue, but also produce scar tissue that impairs organ function. Researchers led by Yoon-Jin Lee of the Korea Institute of Radiological & Medical Sciences in Seoul, South Korea, have reviewed the impact of this transformation on human disease. EndMT is seen as a prelude to heart failure, in lung tissue affected by pulmonary fibrosis, and within tumors, where the process recruits cells that further stimulate cancer progression. The authors highlight the potential of using drugs that target EndMT to bolster the efficacy and safety of tumor therapy.
Collapse
|
19
|
Li Y, Lin J, Xiao J, Li Z, Chen JS, Wei L, Wang X. Therapeutic effects of Co-Venenum Bufonis Oral Liquid on radiation-induced esophagitis in rats. Exp Anim 2020; 69:354-362. [PMID: 32281552 PMCID: PMC7445061 DOI: 10.1538/expanim.19-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the effects of Co-Venenum Bufonis Oral Liquid (cVBOL) on radiation-induced esophagitis in rats. Irradiation (30 Gy) with X-RAD 225 x-ray was applied to induce esophagitis in 64 Wistar rats and treated by different methods. The body weight of rats either in RT group, cVBOL+RT, or EM+RT group was significantly decreased when compared with that in normal group (P<0.0001). After irradiation, histopathological studies, immunohistochemistry, and MRI scanning on esophagus were performed. Serum TNF-α,IL-6 and IL-10 were also determined by ELISA at 7, 14, 21 and 28 days after radiation treatment. The results demonstrated that radiation caused esophageal injury and thickening of esophageal tissue layers. The esophageal tissues after radiation treatment showed typical pathological changes of esophagitis. Radiation also caused esophagus edema. Treatment of cVBOL reduced the severity of histological esophageal lesion, decreased the expression of bFGF and TGF-β1, and lowered serum levels of inflammatory cytokines including TNF-α, IL-6 and IL-10 over 28 days after radiation treatment. In conclusion, cVBOL treatment is effective to prevent radiation induced esophagitis and reduces radiation induced esophagitis may be mediated through its ant-inflammatory effects.
Collapse
Affiliation(s)
- Yang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong 250017, P.R.China
| | - Jiamao Lin
- Department of internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan 250017, Shandong 250017, P.R.China
| | - Jun Xiao
- Department of internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan 250017, Shandong 250017, P.R.China
| | - Zhenxiang Li
- Department of internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan 250017, Shandong 250017, P.R.China
| | - Jin-Song Chen
- Shanxi C&Y Pharmaceutical Group Co., Ltd, No. 53 Hubin Street, Economic and Technological Development Zone, Datong, Shanxi 037010, P.R.China
| | - Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong 250017, P.R.China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong 250017, P.R.China
| |
Collapse
|
20
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
21
|
Bosacki C, Vallard A, Jmour O, Ben Mrad M, Lahmamssi C, Bousarsar A, Vial N, Guillaume E, Daguenet E, Magné N. [Radiotherapy and immune suppression: A short review]. Bull Cancer 2019; 107:84-101. [PMID: 31866074 DOI: 10.1016/j.bulcan.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023]
Abstract
The management of patients undergoing immunosuppressive agents is really challenging. Based on precaution principle, it seems mandatory to stop immunosuppressive (or immunomodulating) agents during radiation. Yet, it is impossible in grafted patients. It is possible in patients with autoimmune disease, but in this case, the autoimmune disease might modify patient's radio-sensitivity. We provide a short review about the safety of radiotherapy in grafted/auto-immune patients. The literature is limited with data coming from outdated case-report or case-control studies. It seems that radiotherapy is feasible in grafted patients, but special dose-constraints limitations must probably be considered for the transplant and the other organs at risk. There is very little data about the safety of radiotherapy, when associated with immunomodulating agents. The most studied drug is the methotrexate but only its prescription as a chemotherapy (high doses for a short period of time) was reported. When used as an immunomodulator, it should probably be stopped 4 months before and after radiation. Apart from rheumatoid arthritis, it seems that collagen vascular diseases and especially systemic scleroderma and systemic lupus erythematous feature increased radio-sensitivity with increased severe late toxicities. Transplanted patients and collagen vascular disease patients should be informed that there is very little data about safety of radiation in their case.
Collapse
Affiliation(s)
- Claire Bosacki
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France.
| | - Alexis Vallard
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Omar Jmour
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Majed Ben Mrad
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Chaimaa Lahmamssi
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Amal Bousarsar
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Nicolas Vial
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Elodie Guillaume
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Elisabeth Daguenet
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Institut de cancérologie Lucien-Neuwirth, département universitaire de recherche et éducation, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Institut de cancérologie Lucien-Neuwirth, département universitaire de recherche et éducation, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| |
Collapse
|
22
|
van de Goor RMGE, Hardy JCA, van Hooren MRA, Kremer B, Kross KW. Detecting recurrent head and neck cancer using electronic nose technology: A feasibility study. Head Neck 2019; 41:2983-2990. [PMID: 31012533 PMCID: PMC6767436 DOI: 10.1002/hed.25787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/19/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this feasibility study was to assess the diagnostic performance of an electronic nose (e-nose) as a noninvasive diagnostic tool in detecting locoregional recurrent and/or second (or third) primary head and neck squamous cell carcinoma (HNSCC) after curative treatment. METHODS Using an e-nose (Aeonose, The eNose Company, Zutphen, The Netherlands), breath samples were collected from patients after curative treatment of an HNSCC with a locoregional recurrence or second (or third) primary tumor (N = 20) and from patients without evidence of recurrent disease (N = 20). Analyses were performed utilizing artificial neural networking based on patterns of volatile organic compounds. RESULTS A diagnostic accuracy of 83% was observed in differentiating follow-up patients with locoregional recurrent or second (or third) primary HNSCC from those without evidence of disease. CONCLUSION This study has demonstrated the feasibility of using an e-nose to detect locoregional recurrent and/or second (or third) primary HNSCC.
Collapse
Affiliation(s)
- Rens M G E van de Goor
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Joey C A Hardy
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michel R A van Hooren
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kenneth W Kross
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
23
|
Jones JW, Alloush J, Sellamuthu R, Chua HL, MacVittie TJ, Orschell CM, Kane MA. Effect of Sex on Biomarker Response in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2019; 116:484-502. [PMID: 30681425 PMCID: PMC6384137 DOI: 10.1097/hp.0000000000000961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jenna Alloush
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
24
|
Wiesemann A, Ketteler J, Slama A, Wirsdörfer F, Hager T, Röck K, Engel DR, Fischer JW, Aigner C, Jendrossek V, Klein D. Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxid Redox Signal 2019; 30:213-231. [PMID: 29463096 DOI: 10.1089/ars.2017.7458] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Radiation-induced normal tissue toxicity often precludes the application of curative radiation doses. Here we investigated the therapeutic potential of chemokine C-C motif ligand 2 (Ccl2) signaling inhibition to protect normal lung tissue from radiotherapy (RT)-induced injury. Results: RT-induced vascular dysfunction and associated adverse effects can be efficiently antagonized by inhibition of Ccl2 signaling using either the selective Ccl2 inhibitor bindarit (BIN) or mice deficient for the main Ccl2 receptor CCR2 (KO). BIN-treatment efficiently counteracted the RT-induced expression of Ccl2, normalized endothelial cell (EC) morphology and vascular function, and limited lung inflammation and metastasis early after irradiation (acute effects). A similar protection of the vascular compartment was detected by loss of Ccl2 signaling in lungs of CCR2-KO mice. Long-term Ccl2 signaling inhibition also significantly limited EC loss and accompanied fibrosis progression as adverse late effect. With respect to the human situation, we further confirmed that Ccl2 secreted by RT-induced senescent epithelial cells resulted in the activation of normally quiescent but DNA-damaged EC finally leading to EC loss in ex vivo cultured human normal lung tissue. Innovation: Abrogation of certain aspects of the secretome of irradiated resident lung cells, in particular signaling inhibition of the senescence-associated secretory phenotype-factor Ccl2 secreted predominantly by RT-induced senescent epithelial cells, resulted in protection of the endothelial compartment. Conclusions: Radioprotection of the normal tissue via Ccl2 signaling inhibition without simultaneous protection or preferable radiosensitization of tumor tissue might improve local tumor control and survival, because higher doses of radiation could be used.
Collapse
Affiliation(s)
- Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Julia Ketteler
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Alexis Slama
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Thomas Hager
- 3 Institute of Pathology, University Clinic Essen, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Daniel R Engel
- 5 Department Immunodynamics, Institute of Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital Essen , Essen, Germany
| | - Jens W Fischer
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Clemens Aigner
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| |
Collapse
|
25
|
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression.
Collapse
|
26
|
Takeda A, Tsurugai Y, Sanuki N, Enomoto T, Shinkai M, Mizuno T, Aoki Y, Oku Y, Akiba T, Hara Y, Kunieda E. Clarithromycin mitigates radiation pneumonitis in patients with lung cancer treated with stereotactic body radiotherapy. J Thorac Dis 2018; 10:247-261. [PMID: 29600055 DOI: 10.21037/jtd.2017.12.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Radiation pneumonitis is a critical pulmonary toxicity after irradiation of the lung. Macrolides including clarithromycin (CAM) are antibiotics. They also have immunomodulatory properties and are used to treat respiratory inflammatory diseases. Radiation pneumonitis has similar pathology to them. Adverse reactions to macrolides are few and self-limited. We thus administered CAM to patients with high-risk factors for radiation pneumonitis, and retrospectively investigated whether CAM mitigated radiation pneumonitis following stereotactic body radiotherapy (SBRT). Methods Among consecutive patients treated with SBRT, we retrospectively examined lung cancer patients treated with a total dose of 40-60 Gy in 5-10 fractions and followed ≥6 months. Since January 2014, CAM has been administered in patients with pretreatment predictable radiation pneumonitis high-risk factors, including idiopathic interstitial pneumonias (IIPs), and elevated Krebs von den Lungen-6 (KL-6) and/or surfactant protein D (SP-D), and in patients developing early onset radiation pneumonitis. Results Five hundred and eighty eligible patients were identified and divided into 445 patients during the non-CAM-administration era (non-CAM-era) (before December 2013) and 136 patients during the CAM-administration era (CAM-era) (after January 2014). Median follow-up durations were 38.0 and 13.9 months, respectively. The rates of radiation pneumonitis ≥ grade 2 and ≥ grade 3 were significantly lower in CAM-era (grade ≥2, 16% vs. 9.6%, P=0.047; grade ≥3, 3.8% vs. 0.73%, P=0.037). For patients with the pretreatment predictable high-risk factors, the rate of radiation pneumonitis ≥ grade 3 was significantly lower, and that of grade ≥2 had a lower tendency (grade ≥3, 7.2% vs. 0%, P=0.011; grade ≥2, 21% vs. 9.6%, P=0.061). For patients developing early onset radiation pneumonitis, the rate of radiation pneumonitis ≥ grade 3 was also significantly lower (23% vs. 0%, P<0.05). Multivariate analysis revealed that dose-volumetric factor, the pretreatment predictable high-risk factors and non-CAM-administration era were significantly associated with or trended toward radiation pneumonitis ≥ grade 2 and ≥ grade 3. Conclusions CAM mitigated radiation pneumonitis following SBRT. The efficacy of CAM should be confirmed in prospective studies.
Collapse
Affiliation(s)
- Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Naoko Sanuki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Tatsuji Enomoto
- Department of Respiratory Medicine, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Masaharu Shinkai
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Tomikazu Mizuno
- Department of Diagnostic Radiology, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yousuke Aoki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yohei Oku
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Takeshi Akiba
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan.,Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yu Hara
- Department of Respiratory Medicine, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan.,Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Etsuo Kunieda
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
27
|
Sørensen BS, Bassler N, Nielsen S, Horsman MR, Grzanka L, Spejlborg H, Swakoń J, Olko P, Overgaard J. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo. Acta Oncol 2017; 56:1387-1391. [PMID: 28830292 DOI: 10.1080/0284186x.2017.1351621] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The aim of the present study was to examine the RBE for early damage in an in vivo mouse model, and the effect of the increased linear energy transfer (LET) towards the distal edge of the spread-out Bragg peak (SOBP). METHOD The lower part of the right hind limb of CDF1 mice was irradiated with single fractions of either 6 MV photons, 240 kV photons or scanning beam protons and graded doses were applied. For the proton irradiation, the leg was either placed in the middle of a 30-mm SOBP, or to assess the effect in different positions, irradiated in 4 mm intervals from the middle of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS The MDD50 values with 95% confidence intervals were 36.1 (34.2-38.1) Gy for protons in the middle of the SOBP for score 3.5. For 6 MV photons, it was 35.9 (34.5-37.5) Gy and 32.6 (30.7-34.7) Gy for 240 kV photons for score 3.5. The corresponding RBE was 1.00 (0.94-1.05), relative to 6 MV photons and 0.9 (0.85-0.97) relative to 240 kV photons. In the mice group positioned at the SOBP distal dose fall-off, 25% of the mice developed early skin damage compared with 0-8% in other groups. LETd,z = 1 was 8.4 keV/μm at the distal dose fall-off and the physical dose delivered was 7% lower than in the central SOBP position, where LETd,z =1 was 3.3 keV/μm. CONCLUSIONS Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Harald Spejlborg
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Swakoń
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Kunte C, Letulé V, Gehl J, Dahlstroem K, Curatolo P, Rotunno R, Muir T, Occhini A, Bertino G, Powell B, Saxinger W, Lechner G, Liew SH, Pritchard-Jones R, Rutkowski P, Zdzienicki M, Mowatt D, Sykes A, Orlando A, Mitsala G, Rossi C, Campana L, Brizio M, de Terlizzi F, Quaglino P, Odili J. Electrochemotherapy in the treatment of metastatic malignant melanoma: a prospective cohort study by InspECT. Br J Dermatol 2017; 176:1475-1485. [DOI: 10.1111/bjd.15340] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Affiliation(s)
- C. Kunte
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - V. Letulé
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| | - J. Gehl
- Center for Experimental Drug and Gene Electrotransfer; Department of Oncology; Copenhagen University Hospital Herlev; Herlev Denmark
| | - K. Dahlstroem
- Department of Plastic Surgery; Copenhagen University Hospital Herlev; Denmark
| | - P. Curatolo
- Department of Dermatology and Plastic Surgery; Dermatologic Clinic; University of Rome ‘La Sapienza’; Rome Italy
| | - R. Rotunno
- Department of Dermatology and Plastic Surgery; Dermatologic Clinic; University of Rome ‘La Sapienza’; Rome Italy
| | - T. Muir
- Department of Reconstructive Plastic Surgery; James Cook University Hospital; Middlesbrough U.K
| | - A. Occhini
- Department of Otolaryngology Head & Neck Surgery; University of Pavia; IRCCS Policlinico San Matteo Foundation; Pavia Italy
| | - G. Bertino
- Department of Otolaryngology Head & Neck Surgery; University of Pavia; IRCCS Policlinico San Matteo Foundation; Pavia Italy
| | - B. Powell
- Department of Plastic Surgery; St George's Hospital; London U.K
| | - W. Saxinger
- Department of Dermatology; Klinikum Wels-Grieskirchen; Wels Austria
| | - G. Lechner
- Department of Dermatology; Klinikum Wels-Grieskirchen; Wels Austria
| | - S.-H. Liew
- Department of Plastic Surgery; Whiston Hospital; Prescot Merseyside U.K
| | | | - P. Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology; Warsaw Poland
| | - M. Zdzienicki
- Department of Soft Tissue/Bone Sarcoma and Melanoma; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology; Warsaw Poland
| | | | - A.J. Sykes
- Department of Clinical Oncology; Christie Hospital; NHS Foundation Trust; Manchester U.K
| | - A. Orlando
- Department of Plastic and Reconstructive Surgery; Southmead Hospital; North Bristol NHS Trust; Bristol U.K
| | - G. Mitsala
- Department of Plastic and Reconstructive Surgery; Southmead Hospital; North Bristol NHS Trust; Bristol U.K
| | - C.R. Rossi
- Veneto Institute of Oncology IOV-IRCCS; Padova Italy
- Department of Surgery, Oncology and Gastroenterology; University of Padova; Padova Italy
| | - L. Campana
- Veneto Institute of Oncology IOV-IRCCS; Padova Italy
- Department of Surgery, Oncology and Gastroenterology; University of Padova; Padova Italy
| | - M. Brizio
- Department of Medical Sciences; Dermatologic Clinic; University of Torino; Torino Italy
| | - F. de Terlizzi
- Scientific and Medical Department; IGEA S.p.A.; Carpi Italy
| | - P. Quaglino
- Department of Medical Sciences; Dermatologic Clinic; University of Torino; Torino Italy
| | - J. Odili
- Department of Plastic Surgery; St George's Hospital; London U.K
| | | |
Collapse
|
29
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9:139-148. [PMID: 28510090 PMCID: PMC5425818 DOI: 10.1007/s12551-017-0256-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy has a key role in cancer treatment in more than half of patients with cancer. The management of severe side effects of this treatment modality is a limiting factor to appropriate treatment. Immune system responses play a pivotal role in many of the early and late side effects of radiation. Moreover, immune cells have a significant role in tumor response to radiotherapy, such as angiogenesis and tumor growth. Melatonin as a potent antioxidant has shown appropriate immune regulatory properties that may ameliorate toxicity induced by radiation in various organs. These effects are mediated through various modulatory effects of melatonin in different levels of tissue reaction to ionizing radiation. The effects on the DNA repair system, antioxidant enzymes, immune cells, cytokines secretion, transcription factors, and protein kinases are most important. Moreover, anti-cancer properties of melatonin may increase the therapeutic ratio of radiotherapy. Clinical applications of this agent for the management of malignancies such as breast cancer have shown promising results. It seems anti-proliferative, anti-angiogenesis, and stimulation or suppression of some immune cell responses are the main anti-tumor effects of melatonin that may help to improve response of the tumor to radiotherapy. In this review, the effects of melatonin on the modulation of immune responses in both normal and tumor tissues will be discussed.
Collapse
Affiliation(s)
- M Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gh Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Norouzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Heidari
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - S Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
31
|
Zhang M, Deng W, Cao X, Shi X, Zhao H, Duan Z, Lv B, Liu B. Concurrent apatinib and local radiation therapy for advanced gastric cancer: A case report and review of the literature. Medicine (Baltimore) 2017; 96:e6241. [PMID: 28248891 PMCID: PMC5340464 DOI: 10.1097/md.0000000000006241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Apatinib is a novel anti-angiogenic agent targeting vascular endothelial growth factor receptor-2, which is effective in patients with chemotherapy-refractory gastric cancer. There are no reports of concurrent apatinib with local radiation therapy in elderly patients with advanced gastric cancer. PATIENT CONCERNS AND DIAGNOSES:: we present the first published report of a 70-year-old male patient with advanced gastric cancer who received concurrent apatinib and local radiation therapy after failure of oxaliplatin and S-1 chemotherapy. INTERVENTIONS AND OUTCOMES The patient received concurrent apatinib and local radiation therapy and was followed up 7 months after therapy without disease progress, 14 months later indicated extensive metastasis and this patient died of pulmonary infection. LESSONS Elderly patients with advanced gastric cancer may benefit from concurrent apatinib with local radiation therapy when chemotherapy is not tolerated or successful. Further studies are needed to investigate the clinical outcomes and toxicities associated with concurrent apatinib and radiation therapy in gastric cancer.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas School of Public Health at Houston, Houston, TX
| | - Xiaoci Cao
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| | | | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Zheping Duan
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Bonan Lv
- Department of Gastrointestinal Surgery
| | - Bin Liu
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
32
|
Kalita B, Ranjan R, Singh A, Yashavarddhan MH, Bajaj S, Gupta ML. A Combination of Podophyllotoxin and Rutin Attenuates Radiation Induced Gastrointestinal Injury by Negatively Regulating NF-κB/p53 Signaling in Lethally Irradiated Mice. PLoS One 2016; 11:e0168525. [PMID: 28036347 PMCID: PMC5201299 DOI: 10.1371/journal.pone.0168525] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022] Open
Abstract
Development of an effective radio protector to minimise radiation-inflicted damages have largely failed owing to inherent toxicity of most of the agents examined so far. This study is centred towards delivering protection to lethally irradiated mice by pre-administration of a safe formulation G-003M (combination of podophyllotoxin and rutin) majorly through regulation of inflammatory and cell death pathways in mice. Single intramuscular dose of G-003M injected 60 min prior to 9 Gy exposure rescued 89% of whole body lethally irradiated C57BL/6J mice. Studies have revealed reduction in radiation induced reactive oxygen species (ROS), nitric oxide (NO) generation, prostaglandin E2 (PGE2) levels and intestinal apoptosis in G-003M pre-treated mice intestine. Restricted nuclear translocation of redox-sensitive Nuclear factor-κB (NF-κB) and subsequent downregulation of cyclo-oxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS; EC 1.14.13.39) and tumor necrosis factor (TNF-α) levels demonstrated the anti-inflammatory effect that G-003M exerts. Support to early hematopoietic recovery was exhibited through G-003M mediated induction of granulocyte colony stimulating factor (G-CSF) and interleukin (IL-6) levels in lethally irradiated mice. Considerable attenuation in radiation induced morphological damage to the intestinal villi, crypts and mucosal layers was observed in G-003M pre-treated mice. Additionally, our formulation did not reduce the sensitivity of tumor tissue to radiation. Altogether, these results suggest that G-003M ameliorates the deleterious effects of radiation exposure by minimising ROS and NO generation and effectively regulating inflammatory and cell death pathways. Mechanism of protection elucidated in the current study demonstrates that G-003M can be used as a safe and effective radio protective agent in radiotherapy for human application.
Collapse
Affiliation(s)
- Bhargab Kalita
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Rajiv Ranjan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Abhinav Singh
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - M. H. Yashavarddhan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Sania Bajaj
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
- * E-mail:
| |
Collapse
|
33
|
Duru N, Wolfson B, Zhou Q. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World J Biol Chem 2016; 7:231-239. [PMID: 27957248 PMCID: PMC5124699 DOI: 10.4331/wjbc.v7.i4.231] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/17/2016] [Accepted: 10/25/2016] [Indexed: 02/05/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization leading to radiation pneumonitis, the first stage of RILF progression. Fibrosis occurs due to the transition of M1 macrophages to the anti-inflammatory pro-fibrotic M2 phenotype, and the resulting imbalance of macrophage regulated inflammatory signaling. Non-coding RNA signaling has been shown to play a large role in the regulation of the M2 mediated signaling pathways that are associated with the development and progression of fibrosis. While many studies show the link between M2 macrophages and fibrosis, there are only a few that explore their distinct role and the regulation of their signaling by non-coding RNA in RILF. In this review we summarize the current body of knowledge describing the roles of M2 macrophages in RILF, with an emphasis on the expression and functions of non-coding RNAs.
Collapse
|
34
|
Jeong W, Yang X, Lee J, Ryoo Y, Kim J, Oh Y, Kwon S, Liu D, Son D. Serial changes in the proliferation and differentiation of adipose-derived stem cells after ionizing radiation. Stem Cell Res Ther 2016; 7:117. [PMID: 27530249 PMCID: PMC4988041 DOI: 10.1186/s13287-016-0378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) are important to homeostasis and the regeneration of subcutaneous fat. Hence, we examined the proliferation and differentiation capacity of irradiated ASCs over time. Methods Two female pigs received a single 18 Gy dose of ionizing radiation to an 18 × 8 cm area on the dorsal body skin via a 6 MeV electron beam. After irradiation, the ASCs were cultured from adipose tissue harvested from a non-irradiated area and an irradiated area at 2, 4, and 6 weeks. The proliferation capacity of ASCs was evaluated by a colony-forming units–fibroblasts (CFUs-Fs) assay, a cholecystokinin (CCK) test with 10 % fetal bovine serum (FBS), and a 1 % FBS culture test. The senescence of ASCs was evaluated through morphological examination, immunophenotyping, and β-galactosidase activity, and the multipotent differentiation potential of ASCs was evaluated in adipogenic, osteogenic, and chondrogenic differentiation media. Results Irradiated ASCs demonstrated significantly decreased proliferative capacity 6 weeks after irradiation. As well, the cells underwent senescence, which was confirmed by blunted morphology, weak mesenchymal cell surface marker expression, and elevated β-galactosidase activity. Irradiated ASCs also exhibited significant losses in the capacity for adipocyte and chondrocyte differentiation. In contrast, osteogenic differentiation was preserved in irradiated ASCs. Conclusions We observed decreased proliferation and senescence of irradiated ASCs compared to non-irradiated ASCs 6 weeks after irradiation. Furthermore, irradiated ASCs demonstrated impaired adipocyte and chondrocyte differentiation but retained their osteogenic differentiation capacity. Our results could shed light on additional pathogenic effects of late irradiation, including subcutaneous fibrosis and calcinosis.
Collapse
Affiliation(s)
- Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Xiao Yang
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jeongmi Lee
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Youngwook Ryoo
- Department of Dermatology, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jinhee Kim
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Youngkee Oh
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sunyoung Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dalie Liu
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Daegu Son
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Choi SH, Kim M, Lee HJ, Kim EH, Kim CH, Lee YJ. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation‑induced pulmonary fibrosis. Mol Med Rep 2016; 13:4135-42. [PMID: 27053172 PMCID: PMC4838118 DOI: 10.3892/mmr.2016.5090] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs.
Collapse
Affiliation(s)
- Seo-Hyun Choi
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Miseon Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Eun-Ho Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Yoon-Jin Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| |
Collapse
|
36
|
Giaj-Levra N, Sciascia S, Fiorentino A, Fersino S, Mazzola R, Ricchetti F, Roccatello D, Alongi F. Radiotherapy in patients with connective tissue diseases. Lancet Oncol 2016; 17:e109-e117. [DOI: 10.1016/s1470-2045(15)00417-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023]
|
37
|
Park JH, Ryu SH, Choi EK, Ahn SD, Park E, Choi KC, Lee SW. SKI2162, an inhibitor of the TGF-β type I receptor (ALK5), inhibits radiation-induced fibrosis in mice. Oncotarget 2016; 6:4171-9. [PMID: 25686821 PMCID: PMC4414180 DOI: 10.18632/oncotarget.2878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/08/2014] [Indexed: 01/16/2023] Open
Abstract
Here we demonstrated that SKI2162, a small-molecule inhibitor of the TGF-β type I receptor (ALK5), prevented radiation-induced fibrosis (RIF) in mice. SKI2162 inhibited phosphorylation of Smad and induction of RIF-related genes in vitro. In RIF a mouse model, SKI2162 reduced late skin reactions and leg-contracture without jeopardizing the acute skin reaction. Irradiation of mouse tissue increased COL1A2 mRNA levels, and topical administration of SKI2162 significantly inhibited this effect. Thus, these findings support that SKI2162 has potential value as novel RIF-protective agent, and could be candidate for clinical trials.
Collapse
Affiliation(s)
- Jin-hong Park
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung-Hee Ryu
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Euisun Park
- Life Science Research Center, SK Chemicals, Seongnam-si, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
38
|
|
39
|
The potential use of biogas producing microorganisms in radiation protection. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Fountain MD, Abernathy LM, Lonardo F, Rothstein SE, Dominello MM, Yunker CK, Chen W, Gadgeel S, Joiner MC, Hillman GG. Radiation-Induced Esophagitis is Mitigated by Soy Isoflavones. Front Oncol 2015; 5:238. [PMID: 26557504 PMCID: PMC4617099 DOI: 10.3389/fonc.2015.00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction Lung cancer patients receiving radiotherapy present with acute esophagitis and chronic fibrosis, as a result of radiation injury to esophageal tissues. We have shown that soy isoflavones alleviate pneumonitis and fibrosis caused by radiation toxicity to normal lung. The effect of soy isoflavones on esophagitis histopathological changes induced by radiation was investigated. Methods C57BL/6 mice were treated with 10 Gy or 25 Gy single thoracic irradiation and soy isoflavones for up to 16 weeks. Damage to esophageal tissues was assessed by hematoxylin–eosin, Masson’s Trichrome and Ki-67 staining at 1, 4, 10, and 16 weeks after radiation. The effects on smooth muscle cells and leukocyte infiltration were determined by immunohistochemistry using anti-αSMA and anti-CD45, respectively. Results Radiation caused thickening of esophageal tissue layers that was significantly reduced by soy isoflavones. Major radiation alterations included hypertrophy of basal cells in mucosal epithelium and damage to smooth muscle cells in muscularis mucosae as well as disruption of collagen fibers in lamina propria connective tissue with leukocyte infiltration. These effects were observed as early as 1 week after radiation and were more pronounced with a higher dose of 25 Gy. Soy isoflavones limited the extent of tissue damage induced by radiation both at 10 and 25 Gy. Conclusion Soy isoflavones have a radioprotective effect on the esophagus, mitigating the early and late effects of radiation injury in several esophagus tissue layers. Soy could be administered with radiotherapy to decrease the incidence and severity of esophagitis in lung cancer patients receiving thoracic radiation therapy.
Collapse
Affiliation(s)
- Matthew D Fountain
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Lisa M Abernathy
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Fulvio Lonardo
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Shoshana E Rothstein
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Michael M Dominello
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Christopher K Yunker
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Shirish Gadgeel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Michael C Joiner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Gilda G Hillman
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| |
Collapse
|
41
|
Chen Y, Zong C, Guo Y, Tian L. Hydrogen-rich saline may be an effective and specific novel treatment for osteoradionecrosis of the jaw. Ther Clin Risk Manag 2015; 11:1581-5. [PMID: 26508867 PMCID: PMC4610769 DOI: 10.2147/tcrm.s90770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hydrogen, a therapeutic medical gas, can exert antioxidant activity via selectively reducing cytotoxic reactive oxygen species such as hydroxyl radicals. Hydrogen-rich saline is an alternative form of molecular hydrogen that has been widely used in many studies, including metabolic syndrome, cerebral, hepatic, myocardial ischemia/reperfusion, and liver injuries with obstructive jaundice, with beneficial results. Osteoradionecrosis of the jaw is a serious complication following radiotherapy for head and neck cancers. It has long been known that most radiation-induced symptoms are caused by free radicals generated by radiolysis of H2O, and the hydroxyl radical is the most reactive of these. Reducing the hydroxyl radical can distinctly improve the protection of cells from radiation damage. We hypothesized that hydrogen-rich saline might be an effective and specific method of managing and preventing osteoradionecrosis of the jaw.
Collapse
Affiliation(s)
- Yuanli Chen
- Department of Cranio-facial Trauma and Orthognathic Surgery Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Chunlin Zong
- Department of Cranio-facial Trauma and Orthognathic Surgery Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Yuxuan Guo
- Department of Cranio-facial Trauma and Orthognathic Surgery Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Lei Tian
- Department of Cranio-facial Trauma and Orthognathic Surgery Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| |
Collapse
|
42
|
Pollom EL, Deng L, Pai RK, Brown JM, Giaccia A, Loo BW, Shultz DB, Le QT, Koong AC, Chang DT. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 92:568-76. [PMID: 26068491 DOI: 10.1016/j.ijrobp.2015.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.
Collapse
Affiliation(s)
- Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lei Deng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amato Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - David B Shultz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
43
|
Wang YY, Zhang CY, Ma YQ, He ZX, Zhe H, Zhou SF. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. Drug Des Devel Ther 2015; 9:3163-78. [PMID: 26124639 PMCID: PMC4482372 DOI: 10.2147/dddt.s80958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson's trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Cui-Ying Zhang
- Graduate School, Ningxia Medical University, Guiyang, People’s Republic of China
| | - Ya-Qiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL, USA
| |
Collapse
|
44
|
De A, Kamath S, Wong K, Olch AJ, Malvar J, Sposto R, Mascarenhas L, Keens TG, Venkatramani R. Correlation of pulmonary function abnormalities with dose volume histograms in children treated with lung irradiation. Pediatr Pulmonol 2015; 50:596-603. [PMID: 24644268 DOI: 10.1002/ppul.23034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is limited data on pulmonary function test (PFT) abnormalities in children treated with modern irradiation techniques. PFT abnormalities have not been correlated with the dose and volume of irradiation. METHODS A retrospective chart review of PFTs and clinical outcomes in children who received radiation therapy (RT) at Children's Hospital Los Angeles between 1999 and 2009 was performed. Radiation dose distribution to normal lung tissue was calculated. RESULTS Forty-nine patients had PFTs available post-RT at a median time of 2.91 years (range, 0.01-8.28) from irradiation. Sixty-seven percent of patients had at least one PFT abnormality on their last available study. The most common abnormality was obstructive lung disease (24%) followed by hyperinflation (20%). Thoracic surgery prior to RT increased the odds of an abnormal FEV1, RV/TLC, and obstructive disease. The sex of the patient, age at the time of irradiation, and time of the PFT after irradiation did not have a significant association with abnormalities. The mean lung dose, maximum lung dose, and prescribed dose of radiation were significantly associated with the development of PFT abnormalities. The odds of developing an abnormal PFT increased with increase in the minimum threshold dose (V(dose)) of radiation, mostly above V(20). CONCLUSION PFT abnormalities are common even when modern radiation techniques are used. A significant correlation between radiation parameters and PFT abnormalities was noted.
Collapse
Affiliation(s)
- Aliva De
- Division of Pulmonology, Children's Hospital Los Angeles, Los Angeles, California
| | - Sunil Kamath
- Division of Pulmonology, Children's Hospital Los Angeles, Los Angeles, California
| | - Kenneth Wong
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiation Oncology, University of California, Los Angeles, California
| | - Arthur J Olch
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Jemily Malvar
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California
| | - Richard Sposto
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Leo Mascarenhas
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Thomas G Keens
- Division of Pulmonology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
45
|
Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, Ji YH, Lee YS, Cho J, Lee YJ. A Hypoxia-Induced Vascular Endothelial-to-Mesenchymal Transition in Development of Radiation-Induced Pulmonary Fibrosis. Clin Cancer Res 2015; 21:3716-26. [DOI: 10.1158/1078-0432.ccr-14-3193] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
|
46
|
Azad GK, Corner C. Radiation therapy and soft tissue response. Plast Reconstr Surg 2015. [DOI: 10.1002/9781118655412.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Shukla L, Morrison WA, Shayan R. Adipose-derived stem cells in radiotherapy injury: a new frontier. Front Surg 2015; 2:1. [PMID: 25674565 PMCID: PMC4309196 DOI: 10.3389/fsurg.2015.00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumor. While the early effects of radiotherapy (desquamation, erythema, and hair loss) typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture, and/or lymphedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of: (i) mechanisms of chronic radiation injury and its clinical manifestations; (ii) biological properties of fat grafts and their key constituent, adipose-derived stem cells (ADSCs); and (iii) the role of ADSCs in radiotherapy-induced soft-tissue injury.
Collapse
Affiliation(s)
- Lipi Shukla
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia
| | - Wayne A Morrison
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia ; Department of Surgery, University of Melbourne , Melbourne, VIC , Australia
| | - Ramin Shayan
- Regenerative Surgery Group, O'Brien Institute , Fitzroy, VIC , Australia ; Department of Plastic Surgery, St. Vincent's Hospital , Fitzroy, VIC , Australia ; Regenerative Surgery Group, Australian Catholic University and O'Brien Institute Tissue Engineering Centre (AORTEC) , Fitzroy, VIC , Australia ; Department of Surgery, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
48
|
Siva S, MacManus M, Kron T, Best N, Smith J, Lobachevsky P, Ball D, Martin O. A pattern of early radiation-induced inflammatory cytokine expression is associated with lung toxicity in patients with non-small cell lung cancer. PLoS One 2014; 9:e109560. [PMID: 25289758 PMCID: PMC4188745 DOI: 10.1371/journal.pone.0109560] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022] Open
Abstract
Purpose Lung inflammation leading to pulmonary toxicity after radiotherapy (RT) can occur in patients with non-small cell lung cancer (NSCLC). We investigated the kinetics of RT induced plasma inflammatory cytokines in these patients in order to identify clinical predictors of toxicity. Experimental Design In 12 NSCLC patients, RT to 60 Gy (30 fractions over 6 weeks) was delivered; 6 received concurrent chemoradiation (chemoRT) and 6 received RT alone. Blood samples were taken before therapy, at 1 and 24 hours after delivery of the 1st fraction, 4 weeks into RT, and 12 weeks after completion of treatment, for analysis of a panel of 22 plasma cytokines. The severity of respiratory toxicities were recorded using common terminology criteria for adverse events (CTCAE) v4.0. Results Twelve cytokines were detected in response to RT, of which ten demonstrated significant temporal changes in plasma concentration. For Eotaxin, IL-33, IL-6, MDC, MIP-1α and VEGF, plasma concentrations were dependent upon treatment group (chemoRT vs RT alone, all p-values <0.05), whilst concentrations of MCP-1, IP-10, MCP-3, MIP-1β, TIMP-1 and TNF-α were not. Mean lung radiation dose correlated with a reduction at 1 hour in plasma levels of IP-10 (r2 = 0.858, p<0.01), MCP-1 (r2 = 0.653, p<0.01), MCP-3 (r2 = 0.721, p<0.01), and IL-6 (r2 = 0.531, p = 0.02). Patients who sustained pulmonary toxicity demonstrated significantly different levels of IP-10 and MCP-1 at 1 hour, and Eotaxin, IL-6 and TIMP-1 concentration at 24 hours (all p-values <0.05) when compared to patients without respiratory toxicity. Conclusions Inflammatory cytokines were induced in NSCLC patients during and after RT. Early changes in levels of IP-10, MCP-1, Eotaxin, IL-6 and TIMP-1 were associated with higher grade toxicity. Measurement of cytokine concentrations during RT could help predict lung toxicity and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- * E-mail:
| | - Michael MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nickala Best
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, VIC, Australia
| | - Jai Smith
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, VIC, Australia
| | - Pavel Lobachevsky
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, VIC, Australia
| | - David Ball
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
| | - Olga Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, VIC, Australia
| |
Collapse
|
49
|
Zhou Y, Niu J, Li S, Hou H, Xu Y, Zhang W, Jiang Y. Radioprotective effects of valproic acid, a histone deacetylase inhibitor, in the rat brain. Biomed Rep 2014; 3:63-69. [PMID: 25469249 DOI: 10.3892/br.2014.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy is commonly used in the treatment of brain tumors but can cause significant damage to surrounding normal brain. The radioprotective effects of valproic acid (VPA) on normal tissue in the rat brain were evaluated following irradiation. Male Wistar rats were used in the present study and 48 rats were randomly divided into four groups consisting of 12 rats each. The whole-brain irradiation (WBI) was delivered by X-ray and the rats received the following treatment once a day for 5 days. The control group (sham-exposed group) received sham irradiation plus physiological saline. The VPA group received sham irradiation plus 150 mg VPA/kg. The X-ray group received WBI plus physiological saline. The combined group received WBI plus 150 mg/kg intraperitoneally VPA. A total of 6 months post-irradiation, the rats were sacrificed and the brains were harvested. Cell apoptosis in the cortex was determined by immunohistochemistry 24 h post-irradiation using an antibody for protein caspase-3. Transmission electron microscope (TEM) analyses were used to assess the effects of VPA on the radioprotection of rat normal brain cells 6 months post-irradiation. The weights of the animals in the TEM group measured over the two weeks after the first injection of VPA were also observed. Histological findings demonstrated that apoptosis occurred on the cortex 1 day after treatment, peaking in the X-ray group. The cells of the combined group showed a moderate caspase-3 staining compared to the X-ray group. There was a trend towards a lower body weight of the X-ray group following irradiation compared to either no-irradiation or rats of the combined group, although there was no significant difference in the average weight between the combined group and irradiated rats. Mild swelling of the capillary endothelial cells in the irregular lumen was observed in the combined group, whereas the X-ray group showed a severe structural disorder. In conclusion, VPA supplementation during radiotherapy may be beneficial for radioprotection following WBI by reducing normal brain cell injury.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Junjie Niu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shupeng Li
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Huaying Hou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ying Xu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Zhang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
50
|
Vidal-Casariego A, Calleja-Fernández A, Cano-Rodríguez I, Cordido F, Ballesteros-Pomar MD. Effects of oral glutamine during abdominal radiotherapy on chronic radiation enteritis: a randomized controlled trial. Nutrition 2014; 31:200-4. [PMID: 25466666 DOI: 10.1016/j.nut.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 07/14/2014] [Accepted: 08/11/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Glutamine has been proposed as a preventive treatment for toxicity related to cancer therapies. The aim of this study was to test the efficacy of glutamine in the prevention of radiation enteritis. METHODS A randomized, double-blind, controlled trial was performed including 69 patients who were assigned to receive either glutamine (Gln, 30 g/d) or placebo while they were receiving abdominal radiotherapy. Patients were re-evaluated 1 y after completion of treatment. The presence of chronic enteritis was assessed using the Radiation Therapy Oncology Group scale. Nutritional status was evaluated using subjective global assessment, weight, and bioimpedance. Relative risk (RR) and its confidence interval (CI) were also calculated. RESULTS The trial initially included 69 patients (34 Gln, 35 placebo), but 11 patients were lost during follow-up (4 Gln, 7 placebo; P = 0.296). Chronic enteritis was developed by 14 % of patients: Gln 16.7 % versus placebo 11.1% (RR = 1.33; 95% CI, 0.35-5.03; P = 0.540). Most cases of enteritis were grade I (75%), with no differences between groups. The stool frequency increased after radiotherapy in patients who received Gln (from 1 ± 1 to 2 ± 2 stools per day, P = 0.012), but remained unchanged with placebo (1 ± 1 stools per day, P = 0.858; difference between groups P = 0.004). There were no differences between the two groups in terms of weight, fat mass, or fat-free mass index, or between patients with enteritis and those without intestinal toxicity. CONCLUSIONS Chronic enteritis is a relatively infrequent phenomenon, and Gln administration during radiotherapy does not exert a protective effect.
Collapse
Affiliation(s)
- Alfonso Vidal-Casariego
- Sección de Endocrinología y Nutrición, Complejo Asistencial Universitario de León, León, Spain.
| | | | - Isidoro Cano-Rodríguez
- Sección de Endocrinología y Nutrición, Complejo Asistencial Universitario de León, León, Spain
| | - Fernando Cordido
- Departamento de Medicina, Universidad de A Coruña, A Coruña, Spain
| | | |
Collapse
|