1
|
Cai X, Wei Z, Shen Y, Qian L, Cai J, Yang Y, Chi R, Wang W, Yu S, Li K, Fei Y, Li C, Han Y, Liu M, Zhang J, Wang D, Jiang M, Li YG. Pulmonary artery denervation by noninvasive stereotactic radiotherapy: a pilot study in swine models of pulmonary hypertension. Nat Commun 2025; 16:558. [PMID: 39788963 PMCID: PMC11718002 DOI: 10.1038/s41467-025-55933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Catheter-based pulmonary artery denervation (PADN) has achieved promising outcomes to treat pulmonary hypertension (PH). We herein present stereotactic body radiotherapy (SBRT) as a novel noninvasive approach for PADN. A single fraction of 15 Gy, 20 Gy or 25 Gy was delivered for PADN in a thromboxane A2 (TxA2) - induced acute PH swine model. We demonstrated that PADN by 20-Gy SBRT reduced mean pulmonary artery (PA) pressure during the TxA2 challenge. All SBRT dosages led to a deeper denervation area compared with radiofrequency ablation (RFA) and reduced sympathetic neural norepinephrine synthesis in the ablation zone. Probable radiation related side effects were mostly found in animals treated with 25-Gy. In subsequent monocrotaline-induced chronic PH animals, PADN by 20-Gy SBRT resulted in more significant improvement in pulmonary hemodynamics and PA remodeling in comparison to RFA. In summary, our findings suggest that appropriate SBRT scheme could balance the efficacy and safety for PADN, potentiating to be a novel strategy to treat PH.
Collapse
Affiliation(s)
- Xingxing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhixing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichen Shen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Cai
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuli Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Runmin Chi
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunxuan Yu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keke Li
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yudong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaqin Han
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Krämer A, Hahnemann L, Schunn F, Grott CA, Thomas M, Christopoulos P, Lischalk JW, Hörner-Rieber J, Hoegen-Saßmannshausen P, Eichkorn T, Deng MY, Meixner E, Lang K, Paul A, Weykamp F, Debus J, König L. Fractionated stereotactic radiotherapy of brainstem metastases - Clinical outcome and prognostic factors. Clin Transl Radiat Oncol 2025; 50:100893. [PMID: 39651456 PMCID: PMC11621500 DOI: 10.1016/j.ctro.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Brain metastases (BM) are the most common malignancy in the central nervous system (CNS) and observed in approximately 30% of cancer patients. Brainstem metastases (BSM) are challenging because of their location and the associated neurological risks. There are still no general therapeutic recommendations in this setting. Stereotactic radiosurgery (SRS) is one of few possible local therapy options but limited due to the tolerance dose of the brainstem. There is still no standard regarding the optimal dose und fractionation. Methods We retrospectively analyzed 65 patients with fractionated stereotactic radiotherapy (fSRT) for 69 BSM. FSRT was delivered at a dose of 30 Gy in six fractions prescribed to the 70 % isodose performed with Cyberknife. Overall survival (OS), local control (LC) and total intracranial brain control (TIBC) were analyzed via Kaplan-Meier method. Cox proportional hazards models were used to identify prognostic factors. Results Median follow-up was 27.3 months. One-year TIBC was 35.0 % and one-year LC was 84.1 %. Median OS was 8.9 months. In total, local progression occurred in 7.7 % and in 8.2 % symptomatic radiation-induced contrast enhancements (RICE) were diagnosed. In univariate analysis the Karnofsky performance scale index (KPI) (p = 0,001) was an independent prognostic factor for longer OS. Acute CTCAE grade 3 toxicities occurred in 18.4 %. Conclusion FSRT for BSM is as an effective and safe treatment approach with high LC rates and reasonable neurological toxicity despite the poor prognosis in this patient cohort is still very poor. Clinical and imaging follow-up is necessary to identify cerebral progression and adverse toxicity including RICE.
Collapse
Affiliation(s)
- Anna Krämer
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Laura Hahnemann
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Schunn
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christoph A. Grott
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Maximilian Y. Deng
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Angela Paul
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Caivano D, Pezzulla D, Bonome P, Ricciardi C, Zuccoli P, Rotondi M, Sigillo RC, Serio M, Giannetti F, Molinari A, Menichelli C, Valeriani M, De Sanctis V, Fanelli A, Osti MF. Multi-institutional study using sbrt to treat mediastinal and hilar lymphadenopathy. Clin Exp Metastasis 2024; 42:4. [PMID: 39680157 DOI: 10.1007/s10585-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 12/17/2024]
Abstract
Mediastinal and hilar lymphadenopathy (MHL) is a common pattern of cancer spread, particularly in lung disease. Recently, there has been interest in the use of SBRT for MHL, especially in the oligometastatic setting. The goal is to improve local control (LC) and to achieve shorter treatment durations to minimize systemic treatment interruptions. The primary endpoint of this study was local control (LC). The secondary endpoints were distant metastasis-free survival (DMFS), progression-free survival (PFS), and overall survival (OS) and predictive factors of response. This is a retrospective study. It analyses a group of patients treated with SBRT for MHL with different primary tumours and histologies. From November 2007 to June 2023, we treated 159 MHL in 128 patients. The primary most represented was lung cancer. A single fraction was used in 16% of cases and multiple fractions in 84% of cases. The medium BED 10 was 75.06 Gy (range: 37-120 Gy). Actuarial LC rates at 1, 2 and 5 years were 80.0%, 78.8% and 75.2%. The actuarial DMFS rates at 1, 2 and 5 years were 43.9%, 34.1% and 14.1%, respectively. Actuarial PFS rates at 1, 2 and 5 years were 37.2%, 23.9% and 8.3%, respectively. Actuarial OS rates at 1, 2 and 5 years were 68.8%, 52.7% and 26.9%, respectively. SBRT may be an option for the treatment of MHL. In addition, achieving a complete response is one of the most important predictors of our endpoints, in addition to tumour burden and volume.
Collapse
Affiliation(s)
- D Caivano
- Traslational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psycology, Sapienza University of Rome, Rome, Italy.
| | - D Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, 86100, Italy
| | - P Bonome
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, 86100, Italy
| | - C Ricciardi
- Department of Radiation Oncology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - P Zuccoli
- Istituto di Ricerche Cliniche Ecomedica (Ergea Group), Empoli, Firenze, Italy
| | - M Rotondi
- Department of Radiotherapy, University Hospital of Trieste, Trieste, Italy
| | - R C Sigillo
- MultiMedica IRCCS Sesto San Giovanni Radiotherapy Service, Milano, Italy
| | - M Serio
- Department of Radiation Oncology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - F Giannetti
- Istituto di Ricerche Cliniche Ecomedica (Ergea Group), Empoli, Firenze, Italy
| | - A Molinari
- Istituto di Ricerche Cliniche Ecomedica (Ergea Group), Empoli, Firenze, Italy
| | - C Menichelli
- Istituto di Ricerche Cliniche Ecomedica (Ergea Group), Empoli, Firenze, Italy
| | - M Valeriani
- Department of Radiation Oncology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - V De Sanctis
- Department of Radiation Oncology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - A Fanelli
- Istituto di Ricerche Cliniche Ecomedica (Ergea Group), Empoli, Firenze, Italy
| | - M F Osti
- Traslational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psycology, Sapienza University of Rome, Rome, Italy
- Department of Radiation Oncology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Gualtieri P, Lee BI, Beeney A, Hart C, Leary D, Martin T, Boss MK. Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated with Stereotactic Body Radiation Therapy (SBRT). Radiat Res 2024; 202:807-824. [PMID: 39478420 DOI: 10.1667/rade-24-00079.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024]
Abstract
The objective of this study is describe outcome and toxicity for dogs with oral tumors, specifically oral malignant melanoma (OMM), squamous cell carcinoma (SCC), and soft tissue sarcoma (STS) after stereotactic body radiation therapy (SBRT). A single institution retrospective study was conducted. Outcomes were analyzed using Kaplan-Meier analysis and Cox proportional hazard analysis. Treatment responses at different time points were evaluated with Pearson's Chi-squared test to identify prognostic factors. Acute and late toxicities were recorded according to VRTOG criteria and were analyzed to identify risk factors. Adverse events other than acute and late toxicities were recorded. A total of 98 patients met the inclusion criteria (OMM n = 37; SCC n = 18; STS n = 43). The SBRT prescription was 1-6 fractions, with a total dose range of 12-40 Gy. Local progression-free survival (PFS) for OMM, SCC, and STS was 187, 253, and 161 days, respectively. Overall PFS was 152 days and median survival time (MST) was 270 days, with no statistical difference between tumor types. The presence of lymph node metastasis and the use of elective nodal irradiation (ENI) were associated with shorted PFS and MST. Severe acute toxicities to organs at risk affected 10/85 (11.8%) of patients. Osteoradionecrosis and oronasal fistula formation occurred in 23/81 (28.4%) of patients and was significantly associated with tumor type (SCC, P = 0.006). SBRT can be offered as a treatment option for oral tumors in dogs. Toxicities were common and warrant risk factor considerations and adjustments to current SBRT protocols.
Collapse
Affiliation(s)
- Patricia Gualtieri
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Ber-In Lee
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Amber Beeney
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Cullen Hart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany Martin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
5
|
Bai H, Wang XF, Xu YH, Zaorsky NG, Wang HH, Niu GM, Li JC, Dong Y, Li JY, Yu L, Chen MF, Lu XT, Yuan ZY, Yang JL, Meng MB. Brachial plexopathy following stereotactic body radiation therapy in apical lung malignancies: A dosimetric pooled analysis of individual patient data. Radiother Oncol 2024; 200:110529. [PMID: 39255923 DOI: 10.1016/j.radonc.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study is to establish dosimetric constraints for the brachial plexus at risk of developing grade ≥ 2 brachial plexopathy in the context of stereotactic body radiation therapy (SBRT). PATIENTS AND METHODS Individual patient data from 349 patients with 356 apical lung malignancies who underwent SBRT were extracted from 5 articles. The anatomical brachial plexus was delineated following the guidelines provided in the atlases developed by Hall, et al. and Kong, et al.. Patient characteristics, pertinent SBRT dosimetric parameters, and brachial plexopathy grades (according to CTCAE 4.0 or 5.0) were obtained. Normal tissue complication probability (NTCP) models were used to estimate the risk of developing grade ≥ 2 brachial plexopathy through maximum likelihood parameter fitting. RESULTS The prescription dose/fractionation schedules for SBRT ranged from 27 to 60 Gy in 1 to 8 fractions. During a follow-up period spanning from 6 to 113 months, 22 patients (6.3 %) developed grade ≥2 brachial plexopathy (4.3 % grade 2, 2.0 % grade 3); the median time to symptoms onset after SBRT was 8 months (ranged, 3-54 months). NTCP models estimated a 10 % risk of grade ≥2 brachial plexopathy with an anatomic brachial plexus maximum dose (Dmax) of 20.7 Gy, 34.2 Gy, and 42.7 Gy in one, three, and five fractions, respectively. Similarly, the NTCP model estimates the risks of grade ≥2 brachial plexopathy as 10 % for BED Dmax at 192.3 Gy and EQD2 Dmax at 115.4 Gy with an α/β ratio of 3, respectively. Symptom persisted after treatment in nearly half of patients diagnosed with grade ≥2 brachial plexopathy (11/22, 50 %). CONCLUSIONS This study establishes dosimetric constraints ranging from 20.7 to 42.7 Gy across 1-5 fractions, aimed at mitigating the risk of developing grade ≥2 brachial plexopathy following SBRT. These findings provide valuable guidance for future ablative SBRT in apical lung malignancies.
Collapse
Affiliation(s)
- Hui Bai
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yi-Han Xu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jia-Cheng Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jun-Yi Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Lu Yu
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mei-Feng Chen
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao-Tong Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
6
|
Van Werkhoven LA, Cammareri E, Hoogeman MS, Nout RA, Milder MTW, Nuyttens JJME. Stereotactic body radiation therapy on abdominal-pelvic lymph node oligometastases: a systematic review on toxicity. Acta Oncol 2024; 63:822-832. [PMID: 39473177 PMCID: PMC11541805 DOI: 10.2340/1651-226x.2024.40681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/05/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND AND PURPOSE To review available data on toxicity during and/or after treatment of abdominal-pelvic lymph node oligometastases (A-P LN) with stereotactic body radiation therapy (SBRT) and to provide an overview of adverse events and its relation to dose or fractionation. MATERIAL AND METHODS For this systematic review, we searched MEDLINE, Embase, Web of Science Core Collection, and CINAH for studies published between the database inception and October 3rd, 2023. Inclusion criteria were (1) patients with 1-5 A-P LN oligometastases, (2) treatment with SBRT to a median prescribed dose of ≥55 Gy BED10, and (3) description of acute and/or late toxicity. There were no language or date restrictions. RESULTS A total of 35 studies, including 1,512 patients, were selected. Late grade 3 and 4 adverse events occurred in 0.6% and 0.1% of the patients treated for A-P LN oligometastases. All late adverse events grade ≥ 3 occurred after treatment of the tumor with a minimum BED10 of 72 Gy. Of the 11 patients with severe late toxicity, five patients were re-irradiated. Late grade 2 and 1 toxicity was reported in 3.4% and 8.3% of the patients. Acute toxicity grades 4, 3, 2, and 1 occurred in 0.1%, 0.2%, 4.4%, and 19.8% of the patients, respectively. INTERPRETATION SBRT for A-P LN oligometastases show low toxicity rates. Nearly 50% of late adverse events ≥ grade 3 were associated with re-irradiation.
Collapse
Affiliation(s)
- Lucy A Van Werkhoven
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands.
| | - Eugenio Cammareri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Remi A Nout
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Maaike T W Milder
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Joost J M E Nuyttens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| |
Collapse
|
7
|
Gkika E, Radicioni G, Eichhorst A, Kirste S, Sprave T, Nicolay NH, Fichtner-Feigl S, Thimme R, Wiehle R, Brunner TB, Grosu AL. The role of ALBI score in patients treated with stereotactic body radiotherapy for locally advanced primary liver tumors: a pooled analysis of two prospective studies. Front Oncol 2024; 14:1427332. [PMID: 39421444 PMCID: PMC11484445 DOI: 10.3389/fonc.2024.1427332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To evaluate the outcomes after stereotactic body radiotherapy (SBRT) for locally advanced primary liver cancer. Materials and methods Patients with locally advanced liver cancer unsuitable for other loco-regional treatments were treated with SBRT with 50-60 Gy in 3-12 fractions in two consecutive prospective trials. Results A total of 83 patients were included, of whom 14 were excluded, leaving 69 evaluable patients with 74 treated lesions. A total of 50 patients had hepatocellular carcinoma (HCC), and 11 patients had cholangiocarcinoma (CCC). Approximately 76% had a Child-Pugh (CP) score of A, while 54% had an albumin-bilirubin (ALBI) score of 1. With a median follow-up of 29 months, the median overall survival (OS) was 11 months, and the progression-free survival (PFS) was 18 months. The ALBI score was an important predictor of overall survival (HR 2.094, p = 0.001), which remained significant also in the multivariate analysis. Patients with an ALBI grade of ≥1 had an OS of 4 months versus 23 months in patients with an ALBI grade of 1 (p ≤ 0.001). The local control at 1 and 2 years was 91%. Thirteen patients developed grade ≥ 3 toxicities, of whom nine patients experienced liver toxicities. Patients with a higher ALBI score had a high risk for developing hepatic failure (OR 6.136, p = 0.006). Discussion SBRT is a very effective treatment with low toxicity and should be considered as a local treatment option in patients with HCC and CCC. Patients with a higher ALBI grade are at risk for developing toxicities after SBRT and have a significantly lower survival rate.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiation Oncology, University Clinic Bonn - University of Bonn, Bonn, Germany
| | - Gianluca Radicioni
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Alexandra Eichhorst
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Henrik Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiation Oncology, University Medical Center Leipzig, Leipzig, Germany
| | - Stefan Fichtner-Feigl
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Freiburg, Germany
| | - Rolf Wiehle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Thomas B. Brunner
- Department of Radiation Oncology, University Medical Center Graz, Graz, Austria
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Lin MH, Arbab M, Pompos A, Wilcox L, Radpour S, Desai K, Timmerman R. Safe Hypofractionation Amid Diverse Technologies: Using Teamwork to Manage the Complexity. Semin Radiat Oncol 2024; 34:395-401. [PMID: 39271274 DOI: 10.1016/j.semradonc.2024.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Radiation oncology caregivers worldwide are dedicated to advancing cancer treatment with the ultimate goal of eradicating the disease. Recognizing the inherent complexity of cancer treatment using hypo-fractionation radiotherapy (HFRT), these caregivers are committed to exploring avenues for progress and providing personalized care to each patient. Strong teams and effective workflows are an essential component to implementing safe HFRT. Every patient presents unique challenges, and as a united team of clinical and administrative professionals, radiation oncology care teams strive to drive advancements and streamline complexities in their field, guided by continuous technological innovation.
Collapse
Affiliation(s)
- Mu-Han Lin
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX.
| | - Mona Arbab
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| | - LaChandra Wilcox
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| | - Sepeadeh Radpour
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| | - Kajal Desai
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, 2280 Inwood Road, Dallas, TX
| |
Collapse
|
9
|
Alcorn S, Cortés ÁA, Bradfield L, Brennan M, Dennis K, Diaz DA, Doung YC, Elmore S, Hertan L, Johnstone C, Jones J, Larrier N, Lo SS, Nguyen QN, Tseng YD, Yerramilli D, Zaky S, Balboni T. External Beam Radiation Therapy for Palliation of Symptomatic Bone Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2024; 14:377-397. [PMID: 38788923 DOI: 10.1016/j.prro.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE This guideline provides evidence-based recommendations for palliative external beam radiation therapy (RT) in symptomatic bone metastases. METHODS The ASTRO convened a task force to address 5 key questions regarding palliative RT in symptomatic bone metastases. Based on a systematic review by the Agency for Health Research and Quality, recommendations using predefined consensus-building methodology were established; evidence quality and recommendation strength were also assessed. RESULTS For palliative RT for symptomatic bone metastases, RT is recommended for managing pain from bone metastases and spine metastases with or without spinal cord or cauda equina compression. Regarding other modalities with RT, for patients with spine metastases causing spinal cord or cauda equina compression, surgery and postoperative RT are conditionally recommended over RT alone. Furthermore, dexamethasone is recommended for spine metastases with spinal cord or cauda equina compression. Patients with nonspine bone metastases requiring surgery are recommended postoperative RT. Symptomatic bone metastases treated with conventional RT are recommended 800 cGy in 1 fraction (800 cGy/1 fx), 2000 cGy/5 fx, 2400 cGy/6 fx, or 3000 cGy/10 fx. Spinal cord or cauda equina compression in patients who are ineligible for surgery and receiving conventional RT are recommended 800 cGy/1 fx, 1600 cGy/2 fx, 2000 cGy/5 fx, or 3000 cGy/10 fx. Symptomatic bone metastases in selected patients with good performance status without surgery or neurologic symptoms/signs are conditionally recommended stereotactic body RT over conventional palliative RT. Spine bone metastases reirradiated with conventional RT are recommended 800 cGy/1 fx, 2000 cGy/5 fx, 2400 cGy/6 fx, or 2000 cGy/8 fx; nonspine bone metastases reirradiated with conventional RT are recommended 800 cGy/1 fx, 2000 cGy/5 fx, or 2400 cGy/6 fx. Determination of an optimal RT approach/regimen requires whole person assessment, including prognosis, previous RT dose if applicable, risks to normal tissues, quality of life, cost implications, and patient goals and values. Relatedly, for patient-centered optimization of treatment-related toxicities and quality of life, shared decision making is recommended. CONCLUSIONS Based on published data, the ASTRO task force's recommendations inform best clinical practices on palliative RT for symptomatic bone metastases.
Collapse
Affiliation(s)
- Sara Alcorn
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota.
| | - Ángel Artal Cortés
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Lisa Bradfield
- American Society for Radiation Oncology, Arlington, Virginia
| | | | - Kristopher Dennis
- Division of Radiation Oncology, Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Dayssy A Diaz
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio
| | - Yee-Cheen Doung
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon
| | - Shekinah Elmore
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren Hertan
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Candice Johnstone
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua Jones
- Department of Radiation Oncology, Rochester Regional Health, Rochester, New York
| | - Nicole Larrier
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, University of Texas - MD Anderson Cancer Center, Houston, Texas
| | - Yolanda D Tseng
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Divya Yerramilli
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra Zaky
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tracy Balboni
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Chiou C, Wu Y, Huang P, Lan K, Chen Y, Kang Y, Chou L, Hu Y. The potential of integrating stereotactic ablative radiotherapy techniques with hyperfractionation for lung cancer. Thorac Cancer 2024; 15:1679-1687. [PMID: 38881388 PMCID: PMC11293925 DOI: 10.1111/1759-7714.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Limited literature exists on the feasibility and effectiveness of integrating stereotactic ablative radiotherapy (SABR) techniques with hyperfractionated regimens for patients with lung cancer. This study aims to assess whether the SABR technique with hyperfractionation can potentially reduce lung toxicity. METHODS We utilized the linear-quadratic model to find the optimal fraction to maximize the tumor biological equivalent dose (BED) to normal-tissue BED ratio. Validation was performed by comparing the SABR plans with 50 Gy/5 fractions and hyperfractionationed plans with 88.8 Gy/74 fractions with the same tumor BED and planning criteria for 10 patients with early-stage lung cancer. Mean lung BED, Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP), critical volume (CV) criteria (volume below BED of 22.92 and 25.65 Gy, and mean BED for lowest 1000 and 1500 cc) and the percentage of the lung receiving 20Gy or more (V20) were compared using the Wilcoxon signed-rank test. RESULTS The transition point occurs when the tumor-to-normal tissue ratio (TNR) of the physical dose equals the TNR of α/β in the BED dose-volume histogram of the lung. Compared with the hypofractionated regimen, the hyperfractionated regimen is superior in the dose range above but inferior below the transition point. The hyperfractionated regimen showed a lower mean lung BED (6.40 Gy vs. 7.73 Gy) and NTCP (3.50% vs. 4.21%), with inferior results concerning CV criteria and higher V20 (7.37% vs. 7.03%) in comparison with the hypofractionated regimen (p < 0.01 for all). CONCLUSIONS The hyperfractionated regimen has an advantage in the high-dose region of the lung but a disadvantage in the low-dose region. Further research is needed to determine the superiority between hypo- and hyperfractionation.
Collapse
Affiliation(s)
- Chi‐Chuan Chiou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yuan‐Hung Wu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Therapeutic and Research Center of Pancreatic CancerTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Pin‐I Huang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Keng‐Li Lan
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- Institute of Traditional Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Yi‐Wei Chen
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Mei Kang
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| | - Lin‐Shan Chou
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
| | - Yu‐Wen Hu
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan, ROC
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
- Institute of Public Health, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan, ROC
| |
Collapse
|
11
|
Choi SH, Lee BM, Kim J, Kim DY, Seong J. Efficacy of stereotactic ablative radiotherapy in patients with oligometastatic hepatocellular carcinoma: A phase II study. J Hepatol 2024; 81:84-92. [PMID: 38467379 DOI: 10.1016/j.jhep.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS Stereotactic ablative radiotherapy (SABR) can extend survival and offers the potential for cure in some patients with oligometastatic disease (OMD). However, limited evidence exists regarding its use in oligometastatic hepatocellular carcinoma (HCC). We aimed to prospectively investigate the efficacy and safety of SABR in patients with oligometastatic HCC. METHODS We enrolled patients with controlled primary HCC and one to five metastatic lesions amenable to SABR. The primary endpoint was treatment efficacy defined as overall survival (OS) and progression-free survival (PFS). The secondary endpoints included time to local progression, objective response rate, disease control rate, toxicities, and quality of life (QOL), assessed using the EORTC QLQ-C30 before, and 0, 1, and 3 months after SABR. RESULTS Overall, 40 consecutive patients received SABR on 62 lesions between 2021 and 2022. The most common locations for OMD were the lungs (48.4%), lymph nodes (22.6%), and bone (17.7%). After a median follow-up of 15.5 months, the 2-year OS was 80%. Median PFS was 5.3 months, with 1- and 2-year PFS rates of 21.2% and 0%, respectively. A shorter time to OMD from the controlled primary independently correlated with PFS (p = 0.039, hazard ratio 2.127) alongside age, Child-Pugh class, and alpha-fetoprotein (p = 0.002, 0.004, 0.019, respectively). The 2-year time to local progression, objective response rate, and disease control rate were 91.1%, 75.8%, and 98.4%, respectively. Overall, 10% of patients experienced acute toxicity, and 7.5% experienced late toxicity, with no grade 3+ toxicity. All QOL scores remained stable, whereas the patients without systemic treatments had improved insomnia and social functioning scores. CONCLUSIONS SABR is an effective and feasible option for oligometastatic HCC that leads to excellent local tumor control and improves survival without adversely affecting QOL. IMPACT AND IMPLICATIONS Stereotactic ablative radiotherapy (SABR) is a non-invasive treatment approach capable of efficiently ablating the target lesion; however, neither the oligometastatic disease concept nor the potential benefits of SABR have been well-defined in hepatocellular carcinoma (HCC). According to this study, SABR is an effective and safe treatment option for oligometastatic HCC, yielding excellent local tumor control and survival improvement without worsening patients' quality of life, regardless of tumor sites. We also demonstrated that patients with a later presentation of OMD from the controlled primary and lower alpha-fetoprotein levels achieved better survival outcomes. This is the first prospective study of SABR in oligometastatic HCC, providing insights for the development of novel strategies to improve oncologic outcomes. CLINICAL TRIAL NUMBER NCT05173610.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Min Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jina Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Marvaso G, Vitullo A, Corrao G, Vincini MG, Zaffaroni M, Villa R, Mastroleo F, Kuncman L, Zerini D, Repetti I, Lorubbio C, Musi G, De Cobelli O, Jereczek-Fossa BA. Muscle-invasive bladder cancer in elderly and frail people: Is hypofractionated radiotherapy a feasible approach when no other local options are available? TUMORI JOURNAL 2024; 110:193-202. [PMID: 38726748 DOI: 10.1177/03008916241252326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
AIM The study aims to report the feasibility and safety of palliative hypofractionated radiotherapy targeting macroscopic bladder tumors in a monocentric cohort of frail and elderly bladder cancer patients not eligible for curative treatments. METHODS Patients who underwent hypofractionated radiotherapy to the gross disease or to the tumor bed after transurethral resection of bladder tumor from 2017 to 2021 at the European Institute of Oncology IRCCS, were retrospectively considered. Schedules of treatment were 30 and 25 Gy in 5 fractions (both every other day, and consecutive days). Treatment response was evaluated with radiological investigation and/or cystoscopy. Toxicity assessment was carried out according to RTOG/EORTC v2.0 criteria. RESULTS A total of 16 patients were included in the study, of these 11 received hypofractionated radiotherapy on the macroscopic target volume and five on the tumor bed after transurethral resection of bladder tumor. No grade (G) >2 acute toxicities were described after treatment for both groups. Only one patient in the group receiving radiotherapy on the macroscopic disease reported G4 GU late toxicity. Ten patients had available follow-up status (median FU time 18 months), of them six had complete response, one had stable disease, and three had progression of disease. The overall response rate and disease control rate were 60% and 70%, respectively. CONCLUSION Our preliminary data demonstrate that palliative hypofractionated radiotherapy for bladder cancer in a frail and elderly population is technically feasible, with an acceptable toxicity profile. These outcomes emphasize the potential of this approach in a non-radical setting and could help to provide more solid indications in this underrepresented setting of patients.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Angelo Vitullo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Riccardo Villa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Lodz, Poland
| | - Dario Zerini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ilaria Repetti
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Lorubbio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Cho WK, Park W, Kim SW, Lee KK, Ahn KJ, Choi JH. Postoperative Hypofractionated Intensity-Modulated Radiotherapy With Concurrent Chemotherapy in Cervical Cancer: The POHIM-CCRT Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:737-743. [PMID: 38662364 PMCID: PMC11046415 DOI: 10.1001/jamaoncol.2024.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 04/26/2024]
Abstract
Importance Prospective data assessing the safety of hypofractionated (40 Gy in 16 fractions) radiotherapy (RT) among patients who receive postoperative concurrent chemoradiotherapy for cervical cancer are lacking. Objective To evaluate the acute toxic effects of hypofractionated pelvic intensity-modulated radiotherapy (IMRT) with concurrent chemotherapy among women with cervical cancer who underwent radical hysterectomy. Design, Setting, and Participants The POHIM-CCRT (Postoperative Hypofractionated Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy in Cervical Cancer) study was designed as a multicenter, phase 2 nonrandomized controlled trial that accrued and followed up patients from June 1, 2017, to February 28, 2023. In total, 84 patients were enrolled from 5 institutions affiliated with the Korean Radiation Oncology Group. Eligible patients experienced lymph node metastasis, parametrial invasion, or positive resection margins after radical hysterectomy for treatment of confirmed cervical cancer. Intervention Postoperative pelvic radiation using hypofractionated IMRT with 40 Gy in 16 fractions to the whole pelvis combined with concurrent chemotherapy. Main Outcomes and Measures The primary end point was incidence of acute grade 3 or higher gastrointestinal tract, genitourinary, and hematologic toxic effects (based on the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0) in the evaluable population during RT or within 3 months after RT completion. Results Of 84 patients enrolled, 5 dropped out prior to RT, and data from 79 patients were analyzed. The patients' median (IQR) age was 48 (42-58) years, and the median (IQR) tumor size was 3.7 (2.7-4.5) cm. Of these patients, 31 (39.7%) had lymph node metastasis, 4 (5.1%) had positive resection margins, and 43 (54.4%) had parametrial invasion. Grade 3 or higher acute toxic effects occurred in 2 patients (2.5% [90% CI, 0%-4.8%]). After a median (IQR) follow-up of 43.0 (21.1-59.0) months, the 3-year disease-free survival rate was 79.3%, and the overall survival rate was 98.0%. Conclusions Findings from this nonrandomized control trial indicated that postoperative pelvic irradiation combined with concurrent chemotherapy using hypofractionated IMRT with 40 Gy in 16 fractions was safe and well-tolerated in women with cervical cancer. Studies assessing long-term toxic effects and oncological outcomes with longer follow-up periods are needed. Trial Registration ClinicalTrials.gov Identifier: NCT03239613.
Collapse
Affiliation(s)
- Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Won Kim
- Department of Radiation Oncology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Kang Kyu Lee
- Department of Radiation Oncology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Ki Jung Ahn
- Department of Radiation Oncology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jin Hwa Choi
- Department of Radiation Oncology, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Ji X, Zhou B, Huang H, Wang Y, Jiang W, Wang J, Ding W, Wang Z, Chen G, Sun X. Efficacy and safety of stereotactic radiotherapy on elderly patients with stage I-II central non-small cell lung cancer. Front Oncol 2024; 14:1235630. [PMID: 38803531 PMCID: PMC11128597 DOI: 10.3389/fonc.2024.1235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Many studies demonstrated the safety and efficacy of SBRT in the treatment of elderly patients with early-stage non-small cell lung cancer (NSCLC). However, those studies focused on patients with peripheral lung cancer. This study aimed to evaluate the clinical efficacy and toxicity of SBRT in elderly patients with stage I-II central NSCLC in single institution. Methods From April 2009 to January 2020, a retrospective study was conducted on patients ≥ 65 years old with stage I-II NSCLC that was centrally localized and treated with SBRT at a single institution. Absolute C-reactive protein (CRP)/albumin ratio (CAR) and body mass index (BMI) recorded at pretreatment were analyzed. Endpoints included overall survival (OS), progression-free survival (PFS), cancer-specific death, noncancer-specific death, local progression (LP) and distant progression (DP). Results Stereotactic body radiation treatment (SBRT) was administered to a total of 44 patients. The most common dose fractionation schedule was 60 Gy given in 5 fractions. The median PFS of the cohort was 31 months (95% CI, 19.47-42.53 months). The median OS of all patients was 69 months (95% CI, 33.8-104.2 months). The median time to noncancer-specific death was 54.5 months. The median time to cancer-specific death was 36 months. The cumulative incidences of cancer-specific death at 1 year, 5 years, and 10 years were 11.63% (95%CI, 4.2-23.23%), 42.99% (95%CI, 27.56-57.53%), and 65.94% (95%CI, 45.76-80.1%), respectively. pre-SBRT BMI of ≤ 22.77 (HR 4.60, 95% CI 1.84-11.51, P=0.001) and pre-SBRT CAR of ≤0.91 (HR 5.19, 95% CI 2.15-12.52, P<0.000) were significant predictors of higher OS on multivariable analysis. The median times to LP and DP were 10 months and 11 months, respectively. In terms of acute toxicity, grade 1 including cough (38.64%), radiation pneumonitis (29.55%), anemia (25%), and fatigue (20.45%) was often observed. There was no evidence of grade 4 or 5 acute toxicity. In terms of late toxicity, 2 patients developed grade 1 pulmonary fibrosis during follow-up. Conclusion This study showed that SBRT can effectively control local tumor progression, and have acceptable toxicity for elderly patients with centrally located stage I-II NSCLC. Lower pre-SBRT BMI and lower pre-SBRT CAR were associated with a decreased risk of cancer-specific death.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hua Huang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- Department of Outpatient clinic, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanrong Jiang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiasheng Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Ding
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhen Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guanha Chen
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangdong Sun
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Hahnemann L, Krämer A, Fink C, Jungk C, Thomas M, Christopoulos P, Lischalk J, Meis J, Hörner-Rieber J, Eichkorn T, Deng M, Lang K, Paul A, Meixner E, Weykamp F, Debus J, König L. Fractionated stereotactic radiotherapy of intracranial postoperative cavities after resection of brain metastases - Clinical outcome and prognostic factors. Clin Transl Radiat Oncol 2024; 46:100782. [PMID: 38694237 PMCID: PMC11061678 DOI: 10.1016/j.ctro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024] Open
Abstract
Background and Purpose After surgical resection of brain metastases (BM), radiotherapy (RT) is indicated. Postoperative stereotactic radiosurgery (SRS) reduces the risk of local progression and neurocognitive decline compared to whole brain radiotherapy (WBRT). Aside from the optimal dose and fractionation, little is known about the combination of systemic therapy and postoperative fractionated stereotactic radiotherapy (fSRT), especially regarding tumour control and toxicity. Methods In this study, 105 patients receiving postoperative fSRT with 35 Gy in 7 fractions performed with Cyberknife were retrospectively reviewed. Overall survival (OS), local control (LC) and total intracranial brain control (TIBC) were analysed via Kaplan-Meier method. Cox proportional hazards models were used to identify prognostic factors. Results Median follow-up was 20.8 months. One-year TIBC was 61.6% and one-year LC was 98.6%. Median OS was 28.7 (95%-CI: 16.9-40.5) months. In total, local progression (median time not reached) occurred in 2.0% and in 20.4% radiation-induced contrast enhancements (RICE) of the cavity (after median of 14.3 months) were diagnosed. Absence of extracranial metastases was identified as an independent prognostic factor for superior OS (p = <0.001) in multivariate analyses, while a higher Karnofsky performance score (KPS) was predictive for longer OS in univariate analysis (p = 0.041). Leptomeningeal disease (LMD) developed in 13% of patients. Conclusion FSRT after surgical resection of BM is an effective and safe treatment approach with excellent local control and acceptable toxicity. Further prospective randomized trials are needed to establish standardized therapeutic guidelines.
Collapse
Affiliation(s)
- L. Hahnemann
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Krämer
- Department of Radiation Oncology, University Hospital of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - C. Fink
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C. Jungk
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Thomas
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - P. Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - J.W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA
| | - J. Meis
- Institute of Medical Biometry, University of Heidelberg, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
| | - J. Hörner-Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - T. Eichkorn
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Deng
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - K. Lang
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Paul
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - E. Meixner
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - F. Weykamp
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - J. Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - L. König
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Liu M, Cygler JE, Tiberi D, Doody J, Malone S, Vandervoort E. Dosimetric impact of rotational errors in trigeminal neuralgia radiosurgery using CyberKnife. J Appl Clin Med Phys 2024; 25:e14238. [PMID: 38131465 PMCID: PMC11005971 DOI: 10.1002/acm2.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Trigeminal neuralgia (TN) can be treated on the CyberKnife system using two different treatment delivery paths: the general-purpose full path corrects small rotations, while the dedicated trigeminal path improves dose fall-off but does not allow rotational corrections. The study evaluates the impact of uncorrected rotations on brainstem dose and the length of CN5 (denoted as Leff) covered by the prescription dose. METHODS AND MATERIALS A proposed model estimates the delivered dose considering translational and rotational delivery errors for TN treatments on the CyberKnife system. The model is validated using radiochromic film measurements with and without rotational setup error for both paths. Leff and the brainstem dose is retrospectively assessed for 24 cases planned using the trigeminal path. For 15 cases, plans generated using both paths are compared for the target coverage and toxicity to the brainstem. RESULTS In experimental validations, measured and estimated doses agree at 1%/1 mm level. For 24 cases, the treated Leff is 5.3 ± 1.7 mm, reduced from 5.9 ± 1.8 mm in the planned dose. Constraints for the brainstem are met in 23 cases for the treated dose but require frequent treatment interruption to maintain rotational corrections <0.5° using the trigeminal path. The treated length of CN5, and plan quality metrics are similar for the two paths, favoring the full path where rotations are corrected. CONCLUSIONS We validated an analytical model that can provide patient-specific tolerances on rotations to meet plan objectives. Treatment using the full path can reduce treatment time and allow for rotational corrections.
Collapse
Affiliation(s)
- Ming Liu
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
| | - Joanna E Cygler
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
- Department of RadiologyUniversity of OttawaOttawaOntarioCanada
| | - David Tiberi
- Department of Radiation OncologyThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
- Department of Radiation OncologyUniversity of OttawaOttawaOntarioCanada
| | - Janice Doody
- Radiation Medicine ProgramThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
| | - Shawn Malone
- Department of Radiation OncologyThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
- Department of Radiation OncologyUniversity of OttawaOttawaOntarioCanada
| | - Eric Vandervoort
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
- Department of RadiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
17
|
Koç İ, Yüce Sarı S, Yazıcı G, Kapucu Y, Kıratlı H, Zorlu F. Role of hypofractionated stereotactic radiotherapy for primary optic nerve sheath meningioma. Neurooncol Pract 2024; 11:150-156. [PMID: 38496921 PMCID: PMC10940822 DOI: 10.1093/nop/npad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background Optic nerve sheath meningiomas (ONSM) are rare tumors potentially causing visual deficits. This study aims to report the anatomic and visual outcomes of patients with primary ONSM treated with hypofractionated stereotactic radiotherapy (HF-SRT). Methods Data of 36 patients treated with HF-SRT between 2008 and 2019 were retrospectively collected. The clinical target volume (CTV) was equal to the gross tumor volume and a 2 mm was added for the planning target volume. All responses other than progression were accepted as local control (LC). The VA grading was performed under 3 groups to provide an even distribution; 20/400 or worse, 20/40-20/400, and 20/40 or better. Results Median HF-SRT dose was 25 Gy and the median CTV was 1.94 cc. After a median of 106 months of follow-up, the tumor regressed in 23 (64%), was stable in 9 (25%), and progressed in 4 (11%) eyes. The overall rate of LC was 89% with 2-, 5-, 10-, and 15-year rate of 100%, 94%, 84%, and 84%, respectively. Treatment-related late toxicity rate was 11%. The VA was stable in 27 (75%) eyes, improved in 5 (14%) eyes, and worsened in 4 (11%) eyes, respectively, after HF-SRT. Female gender was the only independent predictor of an improved VA. Conclusions Hypofractionated stereotactic radiotherapy is a safe and satisfactory treatment option for primary ONSM without severe toxicity. It may be advisable to commence treatment before an established visual deficit of 20/400 or worse occurs, to make the most of the functional benefit.
Collapse
Affiliation(s)
- İrem Koç
- Ocular Oncology Service, Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Sezin Yüce Sarı
- Department of Radiation Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gözde Yazıcı
- Department of Radiation Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yasemin Kapucu
- Ocular Oncology Service, Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Hayyam Kıratlı
- Ocular Oncology Service, Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Milano MT, Doucette C, Mavroidis P, Yorke E, Ryckman J, Mahadevan A, Kapitanova I, Kong FMS, Grimm J, Marks LB. Hypofractionated Stereotactic Radiation Therapy Dosimetric Tolerances for the Inferior Aspect of the Brachial Plexus: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 118:931-943. [PMID: 36682981 PMCID: PMC11325459 DOI: 10.1016/j.ijrobp.2022.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 01/22/2023]
Abstract
We sought to systematically review and summarize dosimetric factors associated with radiation-induced brachial plexopathy (RIBP) after stereotactic body radiation therapy (SBRT) or hypofractionated image guided radiation therapy (HIGRT). From published studies identified from searches of PubMed and Embase databases, data quantifying risks of RIBP after 1- to 10-fraction SBRT/HIGRT were extracted and summarized. Published studies have reported <10% risks of RIBP with maximum doses (Dmax) to the inferior aspect of the brachial plexus of 32 Gy in 5 fractions and 25 Gy in 3 fractions. For 10-fraction HIGRT, risks of RIBP appear to be low with Dmax < 40 to 50 Gy. For a given dose value, greater risks are anticipated with point volume-based metrics (ie, D0.03-0.035cc: minimum dose to hottest 0.03-0.035 cc) versus Dmax. With SBRT/HIGRT, there were insufficient published data to predict risks of RIBP relative to brachial plexus dose-volume exposure. Minimizing maximum doses and possibly volume exposure of the brachial plexus can reduce risks of RIBP after SBRT/HIGRT. Further study is needed to better understand the effect of volume exposure on the brachial plexus and whether there are location-specific susceptibilities along or within the brachial plexus structure.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | | | - Panayiotis Mavroidis
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jeff Ryckman
- Department of Radiation Oncology, West Virginia University, Parkersburg, West Virginia
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Irina Kapitanova
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital/Li Ka Shing School of Medicine, Shenzhen/Hong Kong, China
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Ma TM, Ladbury C, Tran M, Keiper TD, Andraos T, Gogineni E, Mohideen N, Siva S, Loblaw A, Tree AC, Cheung P, Kresl J, Collins S, Cao M, Kishan AU. Stereotactic Body Radiation Therapy: A Radiosurgery Society Guide to the Treatment of Localized Prostate Cancer Illustrated by Challenging Cases. Pract Radiat Oncol 2024; 14:e117-e131. [PMID: 37661040 DOI: 10.1016/j.prro.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Traditionally, external beam radiotherapy (EBRT) for localized prostate cancer (PCa) involved lengthy courses with low daily doses. However, advancements in radiation delivery and a better understanding of prostate radiobiology have enabled the development of shorter courses of EBRT. Ultrahypofractionated radiotherapy, administering doses greater than 5 Gy per fraction, is now considered a standard of care regimen for localized PCa, particularly for intermediate-risk disease. Stereotactic body radiotherapy (SBRT), a specific type of ultrahypofractionated radiotherapy employing advanced planning, imaging, and treatment technology to deliver in five or fewer fractions, is gaining prominence as a cost-effective, convenient, and safe alternative to longer radiotherapy courses. It is crucial to address practical considerations related to patient selection, fractionation scheme, target delineation, and planning objectives. This is especially important in challenging clinical situations where clear evidence for guidance may be lacking. The Radiosurgery Society endorses this case-based guide with the aim of providing a practical framework for delivering SBRT to the intact prostate, exemplified by two case studies. The article will explore common SBRT dose/fractionation schemes and dose constraints for organs-at-risk. Additionally, it will review existing evidence and expert opinions on topics such as SBRT dose escalation, the use of rectal spacers, the role of androgen deprivation therapy in the context of SBRT, SBRT in special patient populations (e.g., high-risk disease, large prostate, high baseline urinary symptom burdens, and inflammatory bowel disease), as well as new imaging-guidance techniques like Magnetic Resonance Imaging for SBRT delivery.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope National Cancer Center, Duarte, California
| | - Maxwell Tran
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Timothy D Keiper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Therese Andraos
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Najeeb Mohideen
- Department of Radiation Oncology, Northwest Community Hospital, Arlington Heights, Illinois
| | - Shankar Siva
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Loblaw
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, United Kingdom
| | - Patrick Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - John Kresl
- Phoenix CyberKnife and Radiation Oncology Center, Phoenix, Arizona
| | - Sean Collins
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, D.C
| | - Minsong Cao
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; Department of Urology, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Yip PL, Lee WYV, Leung WK, Nyaw SF, Chan NY, Lee SF. Stereotactic Body Radiation Therapy to the Foot for Bone Metastasis. Adv Radiat Oncol 2024; 9:101363. [PMID: 38261951 PMCID: PMC10797535 DOI: 10.1016/j.adro.2023.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/19/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Pui Lam Yip
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
| | - Wan Yan Venus Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | | | - Shi Feng Nyaw
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | - Ngai Yui Chan
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
| | - Shing Fung Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories West Cluster, Hospital Authority, Hong Kong
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore
| |
Collapse
|
21
|
Yariv O, Camphausen K, Krauze AV. Small Bowel Dose Constraints in Radiation Therapy—Where Omics-Driven Biomarkers and Bioinformatics Can Take Us in the Future. BIOMEDINFORMATICS 2024; 4:158-172. [DOI: 10.3390/biomedinformatics4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Radiation-induced gastrointestinal (GI) dose constraints are still a matter of concern with the ongoing evolution of patient outcomes and treatment-related toxicity in the era of image-guided intensity-modulated radiation therapy (IMRT), stereotactic ablative radiotherapy (SABR), and novel systemic agents. Small bowel (SB) dose constraints in pelvic radiotherapy (RT) are a critical aspect of treatment planning, and prospective data to support them are scarce. Previous and current guidelines are based on retrospective data and experts’ opinions. Patient-related factors, including genetic, biological, and clinical features and systemic management, modulate toxicity. Omic and microbiome alterations between patients receiving RT to the SB may aid in the identification of patients at risk and real-time identification of acute and late toxicity. Actionable biomarkers may represent a pragmatic approach to translating findings into personalized treatment with biologically optimized dose escalation, given the mitigation of the understood risk. Biomarkers grounded in the genome, transcriptome, proteome, and microbiome should undergo analysis in trials that employ, R.T. Bioinformatic templates will be needed to help advance data collection, aggregation, and analysis, and eventually, decision making with respect to dose constraints in the modern RT era.
Collapse
Affiliation(s)
- Orly Yariv
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Yang J, Liao W, Su S, Zeng N, Zhang S, He J, Chen N. Long-term outcomes of metastasis-directed stereotactic body radiation therapy in metastatic nasopharyngeal carcinoma. Cancer Med 2024; 13:e6764. [PMID: 38148586 PMCID: PMC10807683 DOI: 10.1002/cam4.6764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND The study aims to evaluate the outcomes of metastasis-directed stereotactic body radiation therapy (SBRT) in metastatic nasopharyngeal carcinoma (mNPC). METHODS We reviewed all SBRT conducted in patients with mNPC in our institution between 2013 and 2022. Systemic therapy was performed with chemotherapy with or without anti-programmed death-1 (PD-1) therapy. Local treatment delivered with ablative purpose in stereotactic setting with dose/fraction ≥5 Gy was evaluated. Kaplan-Meier analyses were used to determine the rates of local control (LC), progression-free survival (PFS), and overall survival (OS). Univariate and multivariate analyses were performed by Cox regression. RESULTS A total of 54 patients with 76 metastatic sites receiving SBRT were analyzed. Median follow-up was 49 months. The 3-year LC, PFS, and OS rates were 89.1%, 29.4%, and 57.9%, respectively. Adding a PD-1 inhibitor to SBRT tended to prolong median OS (50.1 vs. 32.2 months, p = 0.068). Patients receiving a biological effective dose (BED, α/β = 10) ≥ 80 Gy had a significantly longer median OS compared to those who received a lower dose (not reached vs. 29.5 months, p = 0.004). Patients with oligometastases (1-5 metastases) had a better median OS (not reached vs. 29.5 months, p < 0.001) and PFS (34.3 vs. 4.6 months, p < 0.001). Pretreatment EBV-DNA and maintenance therapy were also significant predictors for OS. CONCLUSIONS Metastatic NPC patients could benefit from metastases-directed SBRT in combination with systemic therapy.
Collapse
Affiliation(s)
- Jiangping Yang
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Shitong Su
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Ni Zeng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Jinlan He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
Quashie EE, Li XA, Prior P, Awan M, Schultz C, Tai A. Obtaining organ-specific radiobiological parameters from clinical data for radiation therapy planning of head and neck cancers. Phys Med Biol 2023; 68:245015. [PMID: 37903437 DOI: 10.1088/1361-6560/ad07f5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Objective.Different radiation therapy (RT) strategies, e.g. conventional fractionation RT (CFRT), hypofractionation RT (HFRT), stereotactic body RT (SBRT), adaptive RT, and re-irradiation are often used to treat head and neck (HN) cancers. Combining and/or comparing these strategies requires calculating biological effective dose (BED). The purpose of this study is to develop a practical process to estimate organ-specific radiobiologic model parameters that may be used for BED calculations in individualized RT planning for HN cancers.Approach.Clinical dose constraint data for CFRT, HFRT and SBRT for 5 organs at risk (OARs) namely spinal cord, brainstem, brachial plexus, optic pathway, and esophagus obtained from literature were analyzed. These clinical data correspond to a particular endpoint. The linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) models were used to fit these clinical data and extract relevant model parameters (alpha/beta ratio, gamma/alpha,dTand BED) from the iso-effective curve. The dose constraints in terms of equivalent physical dose in 2 Gy-fraction (EQD2) were calculated using the obtained parameters.Main results.The LQ-L and LQ models fitted clinical data well from the CFRT to SBRT with the LQ-L representing a better fit for most of the OARs. The alpha/beta values for LQ-L (LQ) were found to be 2.72 (2.11) Gy, 0.55 (0.30) Gy, 2.82 (2.90) Gy, 6.57 (3.86) Gy, 5.38 (4.71) Gy, and the dose constraint EQD2 were 55.91 (54.90) Gy, 57.35 (56.79) Gy, 57.54 (56.35) Gy, 60.13 (59.72) Gy and 65.66 (64.50) Gy for spinal cord, optic pathway, brainstem, brachial plexus, and esophagus, respectively. Additional two LQ-L parametersdTwere 5.24 Gy, 5.09 Gy, 7.00 Gy, 5.23 Gy, and 6.16 Gy, and gamma/alpha were 7.91, 34.02, 8.67, 5.62 and 4.95.Significance.A practical process was developed to extract organ-specific radiobiological model parameters from clinical data. The obtained parameters can be used for biologically based radiation planning such as calculating dose constraints of different fractionation regimens.
Collapse
Affiliation(s)
- Edwin E Quashie
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
- Department of Radiation Oncology, Brown University School of Medicine, Providence, RI 02903, United States of America
- Department of Radiation Oncology, Rhode Island Hospital, Providence, RI 02903, United States of America
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Phillip Prior
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, WI 53226, United States of America
| |
Collapse
|
24
|
Darréon J, Debnath SBC, Benkreira M, Fau P, Mailleux H, Ferré M, Benkemouche A, Tallet A, Annede P, Petit C, Salem N. A novel lung SBRT treatment planning: Inverse VMAT plan with leaf motion limitation to ensure the irradiation reproducibility of a moving target. Med Dosim 2023; 49:159-164. [PMID: 38061915 DOI: 10.1016/j.meddos.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 05/08/2024]
Abstract
This study exposed the implementation of a novel technique (VMATLSL) for the planning of moving targets in lung stereotactic body radiation therapy (SBRT). This new technique has been compared to static conformal radiotherapy (3D-CRT), volumetric-modulated arc therapy (VMAT), and dynamic conformal arc (DCA). The rationale of this study was to lower geometric complexity (54.9% lower than full VMAT) and hence ensure the reproducibility of the treatment delivery by reducing the risk for interplay errors induced by respiratory motion. Dosimetry metrics were studied with a cohort of 30 patients. Our results showed that leaf speed limitation provided conformal number (CN) close to the VMAT (median CN of VMATLSL is 0.78 vs 0.82 for full VMAT) and was a significant improvement on 3D-CRT and DCA with segment-weight optimized (respectively 0.55 and 0.57). This novel technique is an alternative to VMAT or DCA for lung SBRT treatments, combining independence from the patient's breathing pattern, from the size and amplitude of the lesion, free from interplay effect, and with dosimetry metrics close to the best that could be achieved with full VMAT.
Collapse
Affiliation(s)
- Julien Darréon
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France.
| | | | - Mohamed Benkreira
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Pierre Fau
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Hugues Mailleux
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Marjorie Ferré
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Ahcene Benkemouche
- Département de Physique Médicale, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Agnès Tallet
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| | - Pierre Annede
- Centre de radiothérapie Saint Louis, Croix Rouge Française, Toulon, 83100, France
| | - Claire Petit
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| | - Naji Salem
- Institut Paoli-Calmettes, Service de Radiothérapie, Marseille, 13009, France
| |
Collapse
|
25
|
Roers J, Rolf D, Baehr A, Pöttgen C, Stickan-Verfürth M, Siats J, Hering DA, Moustakis C, Grohmann M, Oertel M, Haverkamp U, Stuschke M, Timmermann B, Eich HT, Reinartz G. Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study. Cancers (Basel) 2023; 15:5712. [PMID: 38136257 PMCID: PMC10741516 DOI: 10.3390/cancers15245712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
This biophysical study aimed to determine fitting parameters for the Lyman-Kutcher-Burman (LKB) dose-response model for normal tissue complication probability (NTCP) calculations of acute side effects and to investigate the impact of reduced radiation doses on the probability of their occurrence in supradiaphragmatic non-Hodgkin lymphoma (NHL) irradiation. A cohort of 114 patients with NHL in the cervicothoracic region, treated between 2015 and 2021 at the University Hospitals of Münster, Hamburg, and Essen, with involved site radiation therapy (ISRT), were included. Among them, 68 patients with aggressive NHL (a-NHL) received consolidative radiation therapy with 24-54 Gy following (R-)CHOP chemotherapy. Additionally, 46 patients with indolent NHL (i-NHL) underwent radiotherapy with 22.5-45.0 Gy. Two treatment plans were prospectively created for each patient (a-NHL: 30.0/40.0 Gy; i-NHL: 24.0/30.0 Gy). NTCP were then calculated using the optimized LKB model. The adapted dose-response models properly predicted the patient's probability of developing acute side effects when receiving doses ≤ 50 Gy. In addition, it was shown that reduced radiation doses can influence the NTCP of acute side effects depending on the aggressiveness of NHL significantly. This study provided a foundation to prospectively assess the probability of adverse side effects among today's reduced radiation doses in the treatment of NHL.
Collapse
Affiliation(s)
- Julian Roers
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Daniel Rolf
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Andrea Baehr
- Department of Radiation Oncology, University Hospital of Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, University Hospital of Essen, West German Cancer Center (WTZ), Hufelandstraße 55, 45147 Essen, Germany
| | - Martina Stickan-Verfürth
- Department of Particle Therapy, University Hospital of Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Am Mühlenbach 1, 45147 Essen, Germany
| | - Jan Siats
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Dominik A. Hering
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Christos Moustakis
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of Radiation Oncology, University Hospital of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany
| | - Maximilian Grohmann
- Department of Radiation Oncology, University Hospital of Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Michael Oertel
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Uwe Haverkamp
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Stuschke
- Department of Radiation Oncology, University Hospital of Essen, West German Cancer Center (WTZ), Hufelandstraße 55, 45147 Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital of Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Am Mühlenbach 1, 45147 Essen, Germany
| | - Hans T. Eich
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gabriele Reinartz
- Department of Radiation Oncology, University Hospital of Münster, West German Cancer Center (WTZ) Network Partner Site, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
26
|
Zerella MA, Zaffaroni M, Ronci G, Dicuonzo S, Rojas DP, Morra A, Gerardi MA, Fodor C, Rondi E, Vigorito S, Penco S, Sargenti M, Baratella P, Vicini E, Morigi C, Kahler-Ribeiro-Fontana S, Galimberti VE, Gandini S, De Camilli E, Renne G, Cattani F, Veronesi P, Orecchia R, Jereczek-Fossa BA, Leonardi MC. A narrative review for radiation oncologists to implement preoperative partial breast irradiation. LA RADIOLOGIA MEDICA 2023; 128:1553-1570. [PMID: 37650981 DOI: 10.1007/s11547-023-01706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The strategy to anticipate radiotherapy (RT) before surgery, for breast cancer (BC) treatment, has recently generated a renewed interest. Historically, preoperative RT has remained confined either to highly selected patients, in the context of personalized therapy, or to clinical research protocols. Nevertheless, in the recent years, thanks to technological advances and increased tumor biology understanding, RT has undergone great changes that have also impacted the preoperative settings, embracing the modern approach to breast cancer. In particular, the reappraisal of preoperative RT can be viewed within the broader view of personalized and tailored medicine. In fact, preoperative accelerated partial breast irradiation (APBI) allows a more precise target delineation, with less variability in contouring among radiation oncologists, and a smaller treatment volume, possibly leading to lower toxicity and to dose escalation programs. The aim of the present review, which represents a benchmark study for the AIRC IG-23118, is to report available data on different technical aspects of preoperative RT including dosimetric studies, patient's selection and set-up, constraints, target delineation and clinical results. These data, along with the ones that will become available from ongoing studies, may inform the design of the future trials and representing a step toward a tailored APBI approach with the potential to challenge the current treatment paradigm in early-stage BC.Trial registration: The study is registered at clinicaltrials.gov (NCT04679454).
Collapse
Affiliation(s)
- Maria Alessia Zerella
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Mattia Zaffaroni
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giuseppe Ronci
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Dicuonzo
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Damaris Patricia Rojas
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Anna Morra
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | | | - Cristiana Fodor
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Rondi
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sabrina Vigorito
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Division of Breast Radiology, IRCSS, IEO European Institute of Oncology, Milan, Italy
| | - Manuela Sargenti
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Baratella
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Vicini
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Consuelo Morigi
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Sara Gandini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa De Camilli
- Department of Pathology and Laboratory Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Renne
- Department of Pathology and Laboratory Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Cristina Leonardi
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy.
| |
Collapse
|
27
|
Thiele M, Galonske K, Ernst I. Comparison of two optimization algorithms (VOLO TM , SEQU) for CyberKnife® treatment of acoustic neuromas, lung metastases, and liver metastases. J Appl Clin Med Phys 2023; 24:e14144. [PMID: 37672349 PMCID: PMC10691623 DOI: 10.1002/acm2.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
INTRODUCTION Two optimization algorithms VOLO™ and sequential optimization algorithm (SEQU) are compared in the Precision® treatment planning system from Accuray® for stereotactic radiosurgery and stereotactic body radiotherapy (SBRT) treatment plans. The aim is to compare the two algorithms to assess if VOLO™ is better of SEQU in certain treatment site. MATERIALS AND METHODS Sixty clinical treatment cases were compared. Entities include Acoustic neuroma (AN), lung metastases, and liver metastases. In each entity, 10 SEQU and 10 VOLO™ treatment plans were optimized. The Ray-Tracing calculation algorithm was used for all treatment plans and the treatments were planned exclusively with fixed cones (5-50 mm). The number of nodes, beams, total MU, and treatment time were compared. Conformity index (CI), new conformity index (nCI), homogeneity index (HI), gradient index (GI), and target coverage were examined for agreement. Dmin , Dmean , Dmax , D100%, D98%, and D2% dose in the target volume as well as exposure to organs at risk was checked. To determine peripheral doses, the isodose volumes from V10% to V98% were evaluated. RESULTS AN treatment plans showed significant differences for the number of nodes, beams, total MU, treatment time, D98%, D100% for the target volume, and the doses for all organs at risk. VOLO™ achieved better results on average. Total MU, treatment time, coverage, and D98% are significantly better for VOLO™ for lung metastases. For liver metastases, a significant reduction in number of nodes, total MU, and treatment time was observed for VOLO™ plans. The mean target coverage increased slightly with VOLO™, while the mean CI deteriorated slightly. The averages of Dmin , Dmean , D98%, D100%, and V80% resulted in a significant increase for VOLO™. CONCLUSION The results of the present study indicate that VOLO™ should be used in place of SEQU as a standard for AN cases moving forward. Despite the lack of significance in the lung and liver cases, VOLO™ optimization is recommended because OAR sparing was similar, but coverage, Dmin , and Dmean were increased, and thus better tumor control can be expected.
Collapse
Affiliation(s)
| | | | - Iris Ernst
- German Center for Stereotaxy and Precision IrradiationSoestGermany
| |
Collapse
|
28
|
Grzbiela H, Nowicka E, Gawkowska M, Tarnawska D, Tarnawski R. Robotic Stereotactic Radiotherapy for Intracranial Meningiomas-An Opportunity for Radiation Dose De-Escalation. Cancers (Basel) 2023; 15:5436. [PMID: 38001695 PMCID: PMC10670356 DOI: 10.3390/cancers15225436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE To evaluate the possibility of dose de-escalation, with consideration of the efficacy and safety of robotic stereotactic CyberKnife radiotherapy in patients diagnosed with intracranial meningiomas. METHODS The study group consisted of 172 patients (42 men and 130 women) treated in III Radiotherapy and Chemotherapy Clinic of Maria Sklodowska-Curie National Research Institute of Oncology in Gliwice between January 2011 and July 2018. The qualification for dose de-escalation was based on MRI (magnetic resonance imaging) features: largest tumor diameter less than 5 cm, well-defined tumor margins, no edema, and no brain infiltration. The age of patients was 21-79 years (median 59 years) at diagnosis and 24-80 years (median 62 years) at radiotherapy. Sixty-seven patients (Group A) were irradiated after initial surgery. Histopathological findings were meningioma grade WHO 1 in 51 and WHO 2 in 16 cases. Group B (105 patients) had no prior surgery and the diagnosis was based on the typical features of meningioma on MRI. All patients qualified for the robotic stereotactic CyberKnife radiotherapy, and the total dose received was 18 Gy in three fractions to reference isodose 78-92%. RESULTS Follow-up period was 18 to 124 months (median 67.5 months). Five- and eight-year progression free survival was 90.3% and 89.4%, respectively. Two patients died during the follow-up period. Progression of tumor after radiotherapy was registered in 16 cases. Four patients required surgery due to progressive disease, and three of them were progression free during further follow-up. Twelve patients received a second course of robotic radiotherapy, 11 of them had stable disease, and one patient showed further tumor growth but died of heart failure. Crude progression free survival after both primary and secondary treatment was 98.8%. Radiotherapy was well-tolerated: acute toxicity grade 1/2 (EORTC-RTOG scale) was seen in 10.5% of patients. We did not observe any late effects of radiotherapy. CONCLUSION Stereotactic CyberKnife radiotherapy with total dose of 18 Gy delivered in three fractions showed comparable efficacy to treatment schedules with higher doses. This could support the idea of dose de-escalation in the treatment of intracranial meningiomas.
Collapse
Affiliation(s)
- Hanna Grzbiela
- III Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-100 Gliwice, Poland
| | - Elzbieta Nowicka
- III Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-100 Gliwice, Poland
| | - Marzena Gawkowska
- III Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-100 Gliwice, Poland
| | - Dorota Tarnawska
- Institute of Biomedical Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Rafal Tarnawski
- III Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-100 Gliwice, Poland
| |
Collapse
|
29
|
Borzillo V, Scipilliti E, Pezzulla D, Serra M, Ametrano G, Quarto G, Perdonà S, Rossetti S, Pignata S, Crispo A, Di Gennaro P, D’Alesio V, Arrichiello C, Buonanno F, Mercogliano S, Russo A, Tufano A, Di Franco R, Muto P. Stereotactic body radiotherapy with CyberKnife ® System for low- and intermediate-risk prostate cancer: clinical outcomes and toxicities of CyPro Trial. Front Oncol 2023; 13:1270498. [PMID: 38023175 PMCID: PMC10660677 DOI: 10.3389/fonc.2023.1270498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Simple summary Stereotactic body radiotherapy (SBRT) of 35-36.25 Gy in five fractions with the CyberKnife System yields excellent control with low toxicity in low-intermediate-risk prostate cancer patients. We found no differences in biochemical control and overall survival in relation to dose. There were no significant differences in toxicity or quality of life between the two groups. Aims Stereotactic body radiotherapy (SBRT) is an emerging therapeutic approach for low- and intermediate-risk prostate cancer. We present retrospective data on biochemical control, toxicity, and quality of life of CyPro Trial. Materials and methods A total of 122 patients with low- and intermediate-risk prostate cancer were treated with the CyberKnife System at a dose of 35 Gy or 36.25 Gy in five fractions. Biochemical failure (BF)/biochemical disease-free survival (bDFS) was defined using the Phoenix method (nadir + 2 ng/ml). Acute/late rectal and urinary toxicities were assessed by the Radiation Therapy Oncology Group (RTOG) toxicity scale. Quality of life (QoL) was assessed by the European Organisation for Research and Treatment of Cancer (EORTC) QLQ C30 and PR25. International Erectile Function Index-5 (IIEF5) and International Prostate Symptom Score (IPSS) questionnaires were administered at baseline, every 3 months after treatment during the first years, and then at 24 months and 36 months. Results The 1-, 2-, and 5-year DFS rates were 92.9%, 92.9%, and 92.3%, respectively, while the 1-, 2-, and 5-year bDFS rates were 100%, 100%, and 95.7%, respectively. With regard to risk groups or doses, no statistically significant differences were found in terms of DFS or bDFS. Grade 2 urinary toxicity was acute in 10% and delayed in 2% of patients. No Grade 3 acute and late urinary toxicity was observed. Grade 2 rectal toxicity was acute in 8% and late in 1% of patients. No Grade 3-4 acute and late rectal toxicity was observed. Grade 2 acute toxicity appeared higher in the high-dose group (20% in the 36.25-Gy group versus 3% in the 35-Gy group) but was not statistically significant. Conclusion Our study confirms that SBRT of 35-36.25 Gy in five fractions with the CyberKnife System produces excellent control with low toxicity in patients with low-intermediate-risk prostate cancer. We found no dose-related differences in biochemical control and overall survival. Further confirmation of these results is awaited through the prospective phase of this study, which is still ongoing.
Collapse
Affiliation(s)
- Valentina Borzillo
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Esmeralda Scipilliti
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Donato Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy
| | - Marcello Serra
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Gianluca Ametrano
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Giuseppe Quarto
- Department of Uro-Gynecological, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Sisto Perdonà
- Department of Uro-Gynecological, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Sabrina Rossetti
- Departmental Unit of Clinical and Experimental Uro-Andrologic Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Sandro Pignata
- Departmental Unit of Clinical and Experimental Uro-Andrologic Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Piergiacomo Di Gennaro
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Valentina D’Alesio
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Cecilia Arrichiello
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | | | - Simona Mercogliano
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Antonio Russo
- Department of Diagnostic Imaging and Radiation Oncology, University “Federico II” of Naples, Napoli, Italy
| | - Antonio Tufano
- Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
| | - Rossella Di Franco
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Paolo Muto
- Department of Radiation Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
30
|
He L, Peng X, Chen N, Wei Z, Wang J, Liu Y, Xiao J. Automated treatment planning for liver cancer stereotactic body radiotherapy. Clin Transl Oncol 2023; 25:3230-3240. [PMID: 37097529 DOI: 10.1007/s12094-023-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE To evaluate the quality of fully automated stereotactic body radiation therapy (SBRT) planning based on volumetric modulated arc therapy, which can reduce the reliance on historical plans and the experience of dosimetrists. METHODS Fully automated re-planning was performed on twenty liver cancer patients, automated plans based on automated SBRT planning (ASP) program and manual plans were conducted and compared. One patient was randomly selected and evaluate the repeatability of ASP, ten automated and ten manual SBRT plans were generated based on the same initial optimization objectives. Then, ten SBRT plans were generated for another selected randomly patient with different initial optimization objectives to assess the reproducibility. All plans were clinically evaluated in a double-blinded manner by five experienced radiation oncologists. RESULTS Fully automated plans provided similar planning target volume dose coverage and statistically better organ at risk sparing compared to the manual plans. Notably, automated plans achieved significant dose reduction in spinal cord, stomach, kidney, duodenum, and colon, with a median dose of D2% reduction ranging from 0.64 to 2.85 Gy. R50% and Dmean of ten rings for automated plans were significantly lower than those of manual plans. The average planning time for automated and manual plans was 59.8 ± 7.9 min vs. 127.1 ± 16.8 min (- 67.3 min). CONCLUSION Automated planning for SBRT, without relying on historical data, can generate comparable or even better plan quality for liver cancer compared with manual planning, along with better reproducibility, and less clinically planning time.
Collapse
Affiliation(s)
- Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Chen
- School of Pharmacy, Chengdu Medical College, Xindu Avenue No. 783, Chengdu, 610500, Sichuan, China
| | - Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingtong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Jianghong Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Baty M, Pasquier D, Gnep K, Castelli J, Delaby N, Lacornerie T, de Crevoisier R. Achievable Dosimetric Constraints in Stereotactic Reirradiation for Recurrent Prostate Cancer. Pract Radiat Oncol 2023; 13:e515-e529. [PMID: 37295723 DOI: 10.1016/j.prro.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Stereotactic body radiation therapy has been proposed as a salvage treatment for recurrent prostate cancer after irradiation. One crucial issue is choosing appropriate dose-volume constraints (DVCs) during planning. The objectives of this study were to (1) quantify the proportion of patients respecting the DVCs according to the Urogenital Tumor Study Group GETUG-31 trial, testing 36 Gy in six fractions, (2) explain geometrically why the DVCs could not be respected, and (3) propose the most suitable DVCs. METHODS AND MATERIALS This retrospective dosimetric analysis included 141 patients treated for recurrent prostate cancer with Cyberknife (Accuray), according to GETUG-31 DVCs: V95% ≥ 95% for the planning target volume (PTV), V12Gy < 20% and V27Gy < 2 cc for the rectum, and V12Gy < 15% and V27Gy < 5 cc for the bladder. The percentage of patients not respecting the DVCs was quantified. Correlations between the DVCs and anatomic structures were examined. New DVCs were proposed. RESULTS Only 19% of patients respected all DVCs, with a mean PTV of 18.5 cc (range, 3-48 cc), although the mean PTV was 40.5 cc (range, 3-174 cc) in the whole series. A total of 98% of the patients with a clinical target volume (CTV)/prostate ratio >0.5 could not respect the DVCs in the organs at risk. The target coverage and organ-at-risk sparing decreased significantly with increase in the values of PTV, CTV, CTV/prostate ratio, the overlapping volume between the PTV and bladder wall and between the PTV and rectal wall. Threshold values of PTV, >20 cc and 40 cc, allowed for the PTV and bladder DVCs, respectively. To improve DVC respect in case of large target volume, we proposed the following new DVCs: V12Gy < 25% and 25% and V27Gy < 2 cc and 5 cc for the rectum and bladder, respectively. CONCLUSIONS GETUG-31 DVCs are achievable only for small target volumes (CTV more than half of the prostate). For a larger target volume, new DVCs have been proposed.
Collapse
Affiliation(s)
- Manon Baty
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France.
| | - David Pasquier
- Department of Radiation Oncology, Center Oscar Lambret, Lille University, France
| | - Khemara Gnep
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France
| | - Joel Castelli
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France; Laboratoire Traitement du Signal et de l'Image, Rennes, France
| | - Nolwenn Delaby
- Department of Medical Physics, Center Eugène Marquis, Rennes, France
| | - Thomas Lacornerie
- Department of Radiation Oncology, Center Oscar Lambret, Lille, France
| | - Renaud de Crevoisier
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France; Laboratoire Traitement du Signal et de l'Image, Rennes, France; Laboratoire Traitement du Signal et de l'Image, University of Rennes, Rennes, France
| |
Collapse
|
32
|
Peters DR, Asher A, Conti A, Schiappacasse L, Daniel RT, Levivier M, Tuleasca C. Single fraction and hypofractionated radiosurgery for perioptic meningiomas-tumor control and visual outcomes: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:287. [PMID: 37897519 DOI: 10.1007/s10143-023-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Perioptic meningiomas, defined as those that are less than 3 mm from the optic apparatus, are challenging to treat with stereotactic radiosurgery (SRS). Tumor control must be weighed against the risk of radiation-induced optic neuropathy (RION), as both tumor progression and RION can lead to visual decline. We performed a systematic review and meta-analysis of single fraction SRS and hypofractionated radiosurgery (hfRS) for perioptic meningiomas, evaluating tumor control and visual preservation rates. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we reviewed articles published between 1968 and December 8, 2022. We retained 5 studies reporting 865 patients, 438 cases treated in single fraction, while 427 with hfRS. For single fraction SRS, the overall rate of tumor control was 95.1%, with actuarial rates at 5 and 10 years of 96% and 89%, respectively; tumor progression was 7.7%. The rate of visual stability was 90.4%, including visual improvement in 29.3%. The rate of visual decline was 9.6%, including blindness in 1.2%. For hfRS, the overall rate of tumor control was 95.6% (range 92.1-99.1, p < 0.001); tumor progression was 4.4% (range 0.9-7.9, p = 0.01). Overall rate of visual stability was 94.9% (range 90.9-98.9, p < 0.001), including visual improvement in 22.7% (range 5.0-40.3, p = 0.01); visual decline was 5.1% (range 1.1-9.1, p = 0.013). SRS is an effective and safe treatment option for perioptic meningiomas. Both hypofractionated regimens and single fraction SRS can be considered.
Collapse
Affiliation(s)
- David R Peters
- Carolina Neurosurgery & Spine Associates, Charlotte, NC, USA.
- Department of Neurosurgery, Atrium Health, Charlotte, NC, USA.
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Anthony Asher
- Carolina Neurosurgery & Spine Associates, Charlotte, NC, USA
- Department of Neurosurgery, Atrium Health, Charlotte, NC, USA
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Unit of Neurosurgery, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, Bologna, Italy
| | - Luis Schiappacasse
- Radiation Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roy T Daniel
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland
| |
Collapse
|
33
|
Park DJ, Marianayagam NJ, Yener U, Tayag A, Ustrzynski L, Emrich SC, Pollom E, Soltys S, Meola A, Chang SD. Practical Guideline for Prevention of Patchy Hair Loss following CyberKnife Stereotactic Radiosurgery for Calvarial or Scalp Tumors: Retrospective Analysis of a Single Institution Experience. Stereotact Funct Neurosurg 2023; 101:319-325. [PMID: 37699370 DOI: 10.1159/000533555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Patchy alopecia is a common adverse effect of stereotactic radiosurgery (SRS) on the calvarium and/or scalp, yet no guidelines exist for its prevention. This study aims to investigate the incidence and outcomes of patchy alopecia following SRS for patients with calvarial or scalp lesions and establish preventive guidelines. METHODS The study included 20 patients who underwent CyberKnife SRS for calvarial or scalp lesions, resulting in a total of 30 treated lesions. SRS was administered as a single fraction for 8 lesions and hypofractionated for 22 lesions. The median SRS target volume was 9.85 cc (range: 0.81-110.7 cc), and the median prescription dose was 27 Gy (range: 16-40 Gy), delivered in 1-5 fractions (median: 3). The median follow-up was 15 months. RESULTS Among the 30 treated lesions, 11 led to patchy alopecia, while 19 did not. All cases of alopecia resolved within 12 months, and no patients experienced other adverse radiation effects. Lesions resulting in alopecia exhibited significantly higher biologically effective dose (BED) and single-fraction equivalent dose (SFED) on the overlying scalp compared to those without alopecia. Patients with BED and SFED exceeding 60 Gy and 20 Gy, respectively, were 9.3 times more likely to experience patchy alopecia than those with lower doses. The 1-year local tumor control rate for the treated lesions was 93.3%. Chemotherapy was administered for 26 lesions, with 11 lesions receiving radiosensitizing agents. However, no statistically significant difference was found. CONCLUSION In summary, SRS is a safe and effective treatment for patients with calvarial/scalp masses regarding patchy alopecia near the treated area. Limiting the BED under 60 Gy and SFED under 20 Gy for the overlying scalp can help prevent patchy alopecia during SRS treatment of the calvarial/scalp mass. Clinicians can use this information to inform patients about the risk of alopecia and the contributing factors.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford, California, USA,
| | | | - Ulas Yener
- Department of Neurosurgery, Stanford, California, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford, California, USA
| | | | - Sara C Emrich
- Department of Neurosurgery, Stanford, California, USA
| | - Erqi Pollom
- Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Scott Soltys
- Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford, California, USA
| | | |
Collapse
|
34
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
35
|
Hyung Kim T, Kim J, Lee J, Nam TK, Min Choi Y, Seong J. Vertebral compression fracture after stereotactic ablative radiotherapy in patients with oligometastatic bone lesions from hepatocellular carcinoma. Clin Transl Radiat Oncol 2023; 41:100636. [PMID: 37216046 PMCID: PMC10195846 DOI: 10.1016/j.ctro.2023.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Background and purpose Stereotactic ablative radiotherapy (SABR) is popularly used to treat bone metastasis. Despite its efficacy, adverse events, including vertebral compression fracture (VCF), are frequently observed. Here, we investigated VCF risk after SABR for oligometastatic vertebral bone metastasis from hepatocellular carcinoma. Materials and methods A total of 84 patients with 144 metastatic bone lesions treated at three institutions between 2009 and 2019 were retrospectively reviewed. The primary endpoint was VCF development, either new or progression of a pre-existing VCF. VCFs were assessed using the spinal instability neoplastic score (SINS). Results Among 144 spinal segments, 26 (18%) had pre-existing VCF and 90 (63%) had soft tissue extension. The median biologically effective dose (BED) was 76.8 Gy. VCF developed in 14 (12%) of 118 VCF-naïve patients and progressed in 20 of the 26 with pre-existing VCF. The median time to VCF development was 6 months (range, 1-12 months). The cumulative incidence of VCF at 12 months with SINS class I, II and III was 0%, 26% and 83%, respectively (p < 0.001). Significant factors for VCF development were pre-existing VCF, soft tissue extension, high BED, and SINS class in univariate analysis, and pre-existing VCF in multivariate analysis. Of the six components of SINS, pain, type of bone lesion, spine alignment, vertebral body collapse, and posterolateral involvement were identified as predictors of VCF development. Conclusion SABR for oligometastatic vertebral bone lesions from HCC resulted in a substantial rate of new VCF development and pre-existing VCF progression. Pre-existing VCF was significant risk factor for VCF development, which require special attention in patient care. Patients with SINS class III should be considered surgical treatment rather than upfront SABR.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea
| | - Jina Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Joongyo Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Min Choi
- Department of Radiation Oncology, Dong-A University College of Medicine, Busan, South Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Gualtieri P, Martin T, Leary D, Lana SE, LaRue SM, Boss MK. Canine salivary gland carcinoma treated with stereotactic body radiation therapy: a retrospective case series. Front Vet Sci 2023; 10:1202265. [PMID: 37441554 PMCID: PMC10333581 DOI: 10.3389/fvets.2023.1202265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Objective The aim of this study was to describe the therapeutic outcomes of dogs with locally advanced salivary gland carcinomas (SGC) following stereotactic body radiation therapy (SBRT). Methods A single institution retrospective study was conducted of client-owned dogs with macroscopic SGC treated with SBRT. Patient signalment, clinical characteristics, and treatment parameters were recorded. Clinical benefit was determined based on follow-up physical examination and medical history. Progression-free interval (PFI), median survival time (MST), and disease-specific survival (DSS) were calculated using Kaplan-Meier analysis. Acute and late toxicity were recorded according to Veterinary Radiation Therapy Oncology Group (VRTOG) criteria. Results Six patients were included in the study. Tumor origins were mandibular (n = 3), parotid (n = 2), and zygomatic (n = 1) salivary glands. The SBRT prescription was 10 Gy × 3 daily or every other day. All patients (100%) experienced clinical benefit from treatment at a median time of 34 days (range 28-214). No local or regional nodal failure was reported following SBRT. Progressive pulmonary metastatic disease was documented in three dogs (50%). The median PFI was 260 days (range 43-1,014) and the MST was 397 days (range 185-1,014). Median DSS was 636 days (range 185-1,014). Four dogs (66.6%) died of confirmed or suspected metastatic SGC. The reported acute side effects included grade 2 mucositis (n = 1) and vision loss (n = 1). No late side effects were recorded. Conclusion This study suggests that SBRT may provide durable local control for invasive SGC in dogs. Further investigation in a larger cohort of patients is warranted. The incidence of reported acute and late toxicity was low.
Collapse
Affiliation(s)
- Patricia Gualtieri
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Susan E. Lana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Susan M. LaRue
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
37
|
Beddok A, Loi M, Rivin Del Campo E, Dumas JL, Orthuon A, Créhange G, Huguet F. [Limits of dose constraint definition for organs at risk specific to stereotactic radiotherapy]. Cancer Radiother 2023:S1278-3218(23)00067-7. [PMID: 37208260 DOI: 10.1016/j.canrad.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 05/21/2023]
Abstract
Stereotactic radiotherapy is a very hypofractionated radiotherapy (>7.5Gy per fraction), and therefore is more likely to induce late toxicities than conventional normofractionated irradiations. The present study examines four frequent and potentially serious late toxicities: brain radionecrosis, radiation pneumonitis, radiation myelitis, and radiation-induced pelvic toxicities. The critical review focuses on the toxicity scales, the definition of the dose constrained volume, the dosimetric parameters, and the non-dosimetric risk factors. The most commonly used toxicity scales remain: RTOG/EORTC or common terminology criteria for adverse events (CTCAE). The definition of organ-at-risk volume requiring protection is often controversial, which limits the comparability of studies and the possibility of accurate dose constraints. Nevertheless, for the brain, whatever the indication (arteriovenous malformation, benign tumor, metastasis of solid tumors...), the association between the volume of brain receiving 12Gy (V12Gy) and the risk of cerebral radionecrosis is well established for both single and multi-fraction stereotactic irradiation. For the lung, the average dose received by both lungs and the V20 seem to correlate well with the risk of radiation-induced pneumonitis. For the spinal cord, the maximum dose is the most consensual parameter. Clinical trial protocols are useful for nonconsensual dose constraints. Non-dosimetric risk factors should be considered when validating the treatment plan.
Collapse
Affiliation(s)
- A Beddok
- Institut Curie, université PSL, université Paris Saclay, Inserm, Lito U1288, 75005 Orsay, France; Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France.
| | - M Loi
- Radiotherapy Department, University of Florence, Florence, Italie
| | - E Rivin Del Campo
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France; Faculté de médecine, Sorbonne Université, 75013 Paris, France
| | - J-L Dumas
- Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| | - A Orthuon
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France
| | - G Créhange
- Institut Curie, université PSL, université Paris Saclay, Inserm, Lito U1288, 75005 Orsay, France; Service de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| | - F Huguet
- Service de radiothérapie oncologique, hôpital Tenon, AP-HP, Sorbonne Université, 75020 Paris, France; Faculté de médecine, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
38
|
Das IJ, Yadav P, Andersen AD, Chen ZJ, Huang L, Langer MP, Lee C, Li L, Popple RA, Rice RK, Schiff PB, Zhu TC, Abazeed ME. Dose prescription and reporting in stereotactic body radiotherapy: A multi-institutional study. Radiother Oncol 2023; 182:109571. [PMID: 36822361 PMCID: PMC10121952 DOI: 10.1016/j.radonc.2023.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND PURPOSE Radiation dose prescriptions are foundational for optimizing treatment efficacy and limiting treatment-related toxicity. We sought to assess the lack of standardization of SBRT dose prescriptions across institutions. MATERIALS & METHODS Dosimetric data from 1298 patients from 9 academic institutions treated with IMRT and VMAT were collected. Dose parameters D100, D98, D95, D50, and D2 were used to assess dosimetric variability. RESULTS Disease sites included lung (48.3 %) followed by liver (29.7 %), prostate (7.5 %), spine (6.8 %), brain (4.1 %), and pancreas (2.5 %). The PTV volume in lung varied widely with bimodality into two main groups (22.0-28.7 cm3) and (48.0-67.1 cm3). A hot spot ranging from 120-150 % was noted in nearly half of the patients, with significant variation across institutions. A D50 ≥ 110 % was found in nearly half of the institutions. There was significant dosimetric variation across institutions. CONCLUSIONS The SBRT prescriptions in the literature or in treatment guidelines currently lack nuance and hence there is significant variation in dose prescriptions across academic institutions. These findings add greater importance to the identification of dose parameters associated with improved clinical outcome comparisons as we move towards more hypofractionated treatments. There is a need for standardized reporting to help institutions in adapting treatment protocols based on the outcome of clinical trials. Dosimetric parameters are subsequently needed for uniformity and thereby standardizing planning guidelines to maximize efficacy, mitigate toxicity, and reduce treatment disparities are urgently needed.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Poonam Yadav
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aaron D Andersen
- Department of Radiation Oncology, Renown Medical Center, Reno, NV, USA
| | - Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University, New haven, CT, USA
| | - Long Huang
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, USA
| | - Mark P Langer
- Department of Radiation Oncology, Indiana University Health, Indianapolis, IN, USA
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lin Li
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roger K Rice
- Department of Radiation Medicine and Applied Science, University of California, San Diego, CA, USA
| | - Peter B Schiff
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed E Abazeed
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
39
|
Dupuis P, François M, Baudier T, Sunyach MP, Brahmi T, Ayadi M, Biston MC. Evaluation of a dedicated software for semi-automated VMAT planning of spine Stereotactic Body Radiotherapy (SBRT). Phys Med 2023; 109:102578. [PMID: 37084679 DOI: 10.1016/j.ejmp.2023.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
PURPOSE To determine whether SBRT of spinal metastasis using a dedicated treatment planning system (TPS) and delivered with a gantry-based LINAC could provide plans of similar quality to the Cyberknife technology. Additional comparison was also done with other commercial TPS used for volumetric modulated arc therapy (VMAT) planning. MATERIALS AND METHODS Thirty Spine SBRT patients, previously treated in our institution with CyberKnife (Accuray, Sunnyvale) using Multiplan TPS, were replanned in VMAT with an dedicated TPS (Elements Spine SRS, Brainlab, Munich) and our clinical TPS (Monaco, Elekta LTD, Stockholm), using exactly the same arc geometry. The comparison was done by assessing differences in dose delivered to PTV, CTV and spinal cord, calculating modulation complexity scores (MCS) and performing quality control (QA) of the plans. RESULTS Regardless of the vertebra level, in general, no statistical difference was found in PTV coverage between all TPS. Conversely, PTV and CTV D50% were found significantly higher for the dedicated TPS compared to others. In addition, the dedicated TPS also resulted in better gradient index (GI) than clinical VMAT TPS, whatever the vertebral level, and better GI than Cyberknife TPS for the thoracic level only. The D2% to the spinal cord was generally significantly lower with the dedicated TPS compared with others. No significant difference was found in the MCS between both VMAT TPS. All QA were clinically acceptable. CONCLUSION The Elements Spine SRS TPS offers very effective and user-friendly semi-automated planning tools and is secure and promising for gantry-based LINAC spinal SBRT.
Collapse
Affiliation(s)
- Pauline Dupuis
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France.
| | - Madani François
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France
| | - Thomas Baudier
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Tristan Brahmi
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France
| | - Myriam Ayadi
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France
| | - Marie-Claude Biston
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
40
|
Camps-Malea A, Pointreau Y, Chapet S, Calais G, Barillot I. Stereotactic body radiotherapy for mediastinal lymph node with CyberKnife®: Efficacy and toxicity. Cancer Radiother 2023; 27:225-232. [PMID: 37080855 DOI: 10.1016/j.canrad.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/22/2023]
Abstract
PUPRPOSE Stereotactic body radiotherapy is more and more used for treatment of oligometastatic mediastinal lymph nodes. The objective of this single-centre study was to evaluate its efficacy in patients with either a locoregional recurrence of a pulmonary or oesophageal cancer or with distant metastases of extrathoracic tumours. PATIENTS AND METHODS Patients with oligometastatic mediastinal lymph nodes treated with CyberKnife from June 2010 to September 2020 were screened. The primary endpoint was to assess local progression free survival and induced toxicity. Secondary endpoints were overall survival and progression free survival. The delay before introduction of systemic treatment in the subgroup of patients who did not receive systemic therapy for previous progression was also evaluated. RESULTS Fifty patients were included: 15 with a locoregional progression of a thoracic primary tumour (87% pulmonary) and 35 with mediastinal metastasis of especially renal tumour (29%). Median follow-up was 27 months (6-110 months). Local progression free survival at 6, 12 and 18 months was respectively 94, 88 and 72%. The rate of local progression was significantly lower in patients who received 36Gy in six fractions (66% of the cohort) versus other treatment schemes. Two grade 1 acute oesophagitis and one late grade 2 pulmonary fibrosis were described. Overall survival at 12, 18 and 24 months was respectively 94, 85 and 82%. Median progression free survival was 13 months. Twenty-one patients were treated by stereotactic body irradiation alone without previous history of systemic treatment. Among this subgroup, 11 patients (52%) received a systemic treatment following stereotactic body radiotherapy with a median introduction time of 17 months (5-52 months) and 24% did not progress. CONCLUSION Stereotactic body irradiation as treatment of oligometastatic mediastinal lymph nodes is a well-tolerated targeted irradiation that leads to a high control rate and delay the introduction of systemic therapy in selected patients.
Collapse
Affiliation(s)
- A Camps-Malea
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France.
| | - Y Pointreau
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France; Institut Inter-régional de cancérologie, centre Jean-Bernard, clinique Victor-Hugo, Le Mans, France
| | - S Chapet
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - G Calais
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - I Barillot
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| |
Collapse
|
41
|
Tallet A, Boher JM, Tyran M, Mailleux H, Piana G, Benkreira M, Fau P, Salem N, Gonzague L, Petit C, Darréon J. Is MRI-Linac helpful in SABR treatments for liver cancer? Front Oncol 2023; 13:1130490. [PMID: 37007109 PMCID: PMC10061121 DOI: 10.3389/fonc.2023.1130490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveTo determine the MRI-Linac added value over conventional image-guided radiation therapy (IGRT) in liver tumors Stereotactic ablative radiation therapy (SABR).Materials and methodsWe retrospectively compared the Planning Target Volumes (PTVs), the spared healthy liver parenchyma volumes, the Treatment Planning System (TPS) and machine performances, and the patients’ outcomes when using either a conventional accelerator (Versa HD®, Elekta, Utrecht, NL) with Cone Beam CT as the IGRT tool or an MR-Linac system (MRIdian®, ViewRay, CA).ResultsFrom November 2014 to February 2020, 59 patients received a SABR treatment (45 and 19 patients in the Linac and MR-Linac group, respectively) for 64 primary or secondary liver tumors. The mean tumor size was superior in the MR-Linac group (37,91cc vs. 20.86cc). PTV margins led to a median 74%- and 60% increase in target volume in Linac-based and MRI-Linac-based treatments, respectively. Liver tumor boundaries were visible in 0% and 72% of the cases when using CBCT and MRI as IGRT tools, respectively. The mean prescribed dose was similar in the two patient groups. Local tumor control was 76.6%, whereas 23.4% of patients experienced local progression (24.4% and 21.1% of patients treated on the conventional Linac and the MRIdian system, respectively). SABR was well tolerated in both groups, and margins reduction and the use of gating prevented ulcerous disease occurrence.ConclusionThe use of MRI as IGRT allows for the reduction of the amount of healthy liver parenchyma irradiated without any decrease of the tumor control rate, which would be helpful for dose escalation or subsequent liver tumor irradiation if needed.
Collapse
Affiliation(s)
- Agnès Tallet
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
- Centre de Recherche en Cancérologie de Marseille, Unité Mixte de Recherche (UMR1068), Marseille, France
- *Correspondence: Agnès Tallet, ; Julien Darréon,
| | - Jean-Marie Boher
- Department of Biostatistics, Institut Paoli-Calmettes, Marseille, France
| | - Marguerite Tyran
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Hugues Mailleux
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Gilles Piana
- Department of Radiology, Institut Paoli-Calmettes, Marseille, France
| | - Mohamed Benkreira
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Fau
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Naji Salem
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Laurence Gonzague
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Claire Petit
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Julien Darréon
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
- *Correspondence: Agnès Tallet, ; Julien Darréon,
| |
Collapse
|
42
|
Dwivedi S, Kansal S, Shukla J, Bharati A, Dangwal VK. Dosimetric assessment of the mono and dual-isocentric VMAT technique based on flattening filter-free beams for SBRT with non-contiguous spinal targets. Med Dosim 2023; 48:90-97. [PMID: 36842913 DOI: 10.1016/j.meddos.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/28/2023]
Abstract
The study aimed to evaluate the planning characteristics of spinal stereotactic body radiotherapy (SBRT) using mono- and dual-isocentric volumetrically modulated arc therapy (VMAT) techniques. The dosimetric indices were compared between different beam arrangement techniques for spinal SBRT planning, including spinal cord avoidance, planning target volume (PTV) dose coverage, conformity, homogeneity, and gradient index. A total of 8 PTVs were contoured on RANDO phantom computed tomography (CT) images, with 4 PTVs per section of the spine (thoracic and lumbar). VMAT plans for each PTV were generated using 4 different beam arrangement techniques with a 6-MV FFF photon beam, two of which were mono-isocentric (MI) and 2 of which were dual-isocentric (DI). Dose calculations for all plans were performed using the Acuros XB algorithm. The study found that when non-contiguous spinal lesions are widely spaced, it may be more effective to use 4-Arcs DI to generate a better homogeneity index and gradient index, whereas 2-Arcs MI was beneficial for closely spaced lesions. Furthermore, the use of more arcs with a dual isocenter reduced the volume of partial cord receiving 10 Gy (V10Gy), maximum dose to 0.03 cc of partial cord (D0.03cc), and monitor units (MUs). The results showed that DI has a higher plan quality than MI for treating non-contiguous spine SBRT, with better homogeneity and a lower dose to the spinal cord, as well as comparable tumor coverage, delivery accuracy, and adequate tumour coverage. 4-Arcs DI had the sharpest dose falloff and achieved the lowest overall spinal cord doses at the expense of twice the treatment time as 2Arcs-MI. These results could help figure out which VMAT beam arrangements are best for treating non-contiguous spinal tumors.
Collapse
Affiliation(s)
- Shekhar Dwivedi
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India; Department of Medical Physics, Tata Memorial Centre, Homi Bhabha Cancer Hospital and Research, Centre, Mullanpur, Punjab, India
| | - Sandeep Kansal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Jooli Shukla
- Department of Physics, Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India
| | - Avinav Bharati
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
43
|
Huang LH, Gao ZZ, Li WY, Zhang HC, Zheng JW, Liu XP. Stereotactic body radiation therapy for refractory premature ventricular contractions that originate from the left ventricular summit: A case report. Pacing Clin Electrophysiol 2023; 46:190-194. [PMID: 36069105 DOI: 10.1111/pace.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
The case highlights an available method to minimize the target volume and reduce the radiation dose by using a temporary catheter, to reduce the long-term risk of radiotherapy for ventricular arrhythmias.
Collapse
Affiliation(s)
- Li-Hong Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhi-Zhang Gao
- Department of Radiation Oncology, Sunshine Union Hospital, Weifang, China
| | - Wei-Yong Li
- Department of Radiation Oncology, Sunshine Union Hospital, Weifang, China
| | - Hou-Cai Zhang
- Department of Radiation Oncology, Sunshine Union Hospital, Weifang, China
| | | | - Xing-Peng Liu
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Goc B, Roch-Zniszczoł A, Larysz D, Zarudzki Ł, Stąpór-Fudzińska M, Rożek A, Woźniak G, Boczarska-Jedynak M, Miszczyk L, Napieralska A. The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson's Disease-Phase II Study. Biomedicines 2023; 11:288. [PMID: 36830825 PMCID: PMC9952894 DOI: 10.3390/biomedicines11020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Frame-based stereotactic radiosurgery (SRS) has an established role in the treatment of tremor in patients with Parkinson's disease (PD). The low numbers of studies of frameless approaches led to our prospective phase 2 open-label single-arm clinical trial (NCT02406105), which aimed to evaluate the safety and efficacy of CyberKnife frameless SRS. Twenty-three PD patients were irradiated on the area of the thalamic ventral nuclei complex with gradually increasing doses of 70 to 105 Gy delivered in a single fraction. After SRS, patients were monitored for tremor severity and the toxicity of the treatment. Both subjective improvement and dose-dependent efficacy were analysed using standard statistical tests. The median follow-up was 23 months, and one patient died after COVID-19 infection. Another two patients were lost from follow-up. Hyper-response resulting in vascular toxicity and neurologic complications was observed in two patients irradiated with doses of 95 and 100 Gy, respectively. A reduction in tremor severity was observed in fifteen patients, and six experienced stagnation. A constant response during the whole follow-up was observed in 67% patients. A longer median response time was achieved in patients irradiated with doses equal to or less than 85 Gy. Only two patients declared no improvement after SRS. The efficacy of frameless SRS is high and could improve tremor control in a majority of patients. The complication rate is low, especially when doses below 90 Gy are applied. Frameless SRS could be offered as an alternative for patients ineligible for deep brain stimulation; however, studies regarding optimal dose are required.
Collapse
Affiliation(s)
- Bartłomiej Goc
- Radiotherapy Department, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Agata Roch-Zniszczoł
- Radiotherapy Department, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Dawid Larysz
- Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Łukasz Zarudzki
- Department of Radiology and Diagnostic Imaging, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Stąpór-Fudzińska
- Department of Radiotherapy Planning, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Rożek
- “Kangur” Centre for Treatment of CNS Disorders and Child Development Support in Katowice, 40-594 Katowice, Poland
| | - Grzegorz Woźniak
- Radiotherapy Department, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Magdalena Boczarska-Jedynak
- Neurology and Restorative Medicine Department, Health Institute dr Boczarska-Jedynak, 32-600 Oświęcim, Poland
| | - Leszek Miszczyk
- Radiotherapy Department, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| | - Aleksandra Napieralska
- Radiotherapy Department, MSC National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
45
|
Van Oirschot M, Bergman A, Verbakel WFAR, Ward L, Gagne I, Huang V, Chng N, Houston P, Symes K, Thomas CG, Basran P, Bowes D, Harrow S, Olson R, Senan S, Warner A, Palma DA, Gaede S. Determining Planning Priorities for SABR for Oligometastatic Disease: A Secondary Analysis of the SABR-COMET Phase II Randomized Trial. Int J Radiat Oncol Biol Phys 2022; 114:1016-1021. [PMID: 35031340 DOI: 10.1016/j.ijrobp.2022.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE SABR may improve survival in patients with oligometastases, but for some lesions, safe delivery of SABR may require a reduction in delivered dose or target coverage. This study assessed the association between target coverage compromise and oncologic and survival outcomes. METHODS AND MATERIALS Patients with a controlled primary malignancy and 1 to 5 oligometastases were randomized (1:2) between standard of care (SOC) treatment and SOC plus SABR. In patients receiving SABR, the target dose coverage was reduced to meet organ at risk (OAR) constraints, if necessary. The D99 value (minimum dose received by the hottest 99% of the planning target volume [PTV]) was used as a measure of PTV coverage for each treatment plan, and the relationship between the coverage compromise index (CCI, defined as D99/prescription dose) and patient outcomes was assessed. RESULTS Sixty-two patients in the SABR arm had dosimetric information available and a total of 109 lesions were evaluated. The mean CCI per lesion was 0.96 (95% CI, 0.56-1.61). Of the 109 lesions evaluated, 29.4% (n = 32) required coverage compromise (CCI <0.9). Adrenal metastases required coverage compromise in 100% of analyzed lesions (n = 7). CCI was not significantly associated with lesional control, adverse events, overall survival (OS), or progression-free survival (PFS). CONCLUSIONS Target compromise was required in a substantial minority of cases, but PTV coverage was not associated with OS, progression-free survival, or lesional control. This suggests that OAR constraints used for SABR treatments in the oligometastatic setting should continue to be prioritized during planning.
Collapse
Affiliation(s)
| | - Alanah Bergman
- British Columbia Cancer, Vancouver Centre, Vancouver, British Columbia, Canada
| | - Wilko F A R Verbakel
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lucy Ward
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Isabelle Gagne
- British Columbia Cancer, Victoria Centre, Victoria, British Columbia, Canada
| | - Vicky Huang
- British Columbia Cancer, Surrey Centre, Surrey, British Columbia, Canada
| | - Nick Chng
- British Columbia Cancer, Centre for the North, Prince George, British Columbia, Canada
| | - Peter Houston
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Kerry Symes
- British Columbia Cancer, Vancouver Centre, Vancouver, British Columbia, Canada
| | | | | | - David Bowes
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Stephen Harrow
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Robert Olson
- British Columbia Cancer, Centre for the North, Prince George, British Columbia, Canada
| | - Suresh Senan
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrew Warner
- London Health Sciences Centre, London, Ontario, Canada
| | - David A Palma
- London Health Sciences Centre, London, Ontario, Canada
| | - Stewart Gaede
- London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
46
|
Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY, Kang HC. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J 2022; 40:242-250. [PMID: 36606301 PMCID: PMC9830039 DOI: 10.3857/roj.2022.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The safety of online contouring and planning for adaptive radiotherapy is unknown. This study aimed to evaluate the dosimetric difference of the organ-at-risk (OAR) according to the extent of contouring in stereotactic magnetic resonance image-guided adaptive RT (SMART) for pancreatic cancer. MATERIALS AND METHODS We reviewed the treatment plan data used for SMART in patients with pancreatic cancer. For the online contouring and planning, OARs within 2 cm from the planning target volume (PTV) in the craniocaudal direction were re-controlled daily at the attending physician's discretion. The entire OARs were re-contoured retrospectively for data analysis. We termed the two contouring methods the Rough OAR and the Full OAR, respectively. The proportion of dose constraint violation and other dosimetric parameters was analyzed. RESULTS Nineteen patients with 94 fractions of SMART were included in the analysis. The dose constraint was violated in 10.6% and 43.6% of the fractions in Rough OAR and Full OAR methods, respectively (p = 0.075). Patients with a large tumor, a short distance from gross tumor volume (GTV) to OAR, and a tumor in the body or tail were associated with more occult dose constraint violations-large tumor (p = 0.027), short distance from GTV to OAR (p = 0.061), tumor in body or tail (p = 0.054). No dose constraint violation occurred outside 2 cm from the PTV. CONCLUSION More occult dose constraint violations can be found by the Full OAR method in patients with pancreatic cancer with some clinical factors in the online re-planning for SMART. Re-contouring all the OARs would be helpful to detect occult dose constraint violations in SMART planning. Since the dosimetric profile of SMART cannot be represented by a single fraction, patient selection for the Full OAR method should be weighted between the clinical usefulness and the time and workforce required.
Collapse
Affiliation(s)
- Jun Yeong Song
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Hee Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Jun Jeon
- Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Ah Ko
- Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Correspondence: Hyun-Cheol Kang Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. Tel: +82-2-2072-2526 E-mail:
| |
Collapse
|
47
|
Onal C, Oymak E, Guler OC, Tilki B, Yavas G, Hurmuz P, Yavas C, Ozyigit G. Stereotactic body radiotherapy and tyrosine kinase inhibitors in patients with oligometastatic renal cell carcinoma: a multi-institutional study. Strahlenther Onkol 2022; 199:456-464. [PMID: 36450836 DOI: 10.1007/s00066-022-02026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Few studies have determined the viability of stereotactic body radiotherapy (SBRT) and tyrosine kinase inhibitors (TKIs) in the treatment of metastatic renal cell carcinoma (mRCC). We examined the results of RCC patients who had five or fewer lesions and were treated with TKI and SBRT. METHODS The clinical data of 42 patients with 96 metastases treated between 2011 and 2020 were retrospectively evaluated. The prognostic factors predicting overall survival (OS) and progression-free survival (PFS) were assessed in uni- and multivariable analyses. RESULTS Median follow-up and time between TKI therapy and SBRT were 62.3 and 3.7 months, respectively. The 2‑year OS and PFS rates were 58.0% and 51.3%, respectively, and 2‑year local control rate was 94.1% per SBRT-treated lesion. In univariable analysis, the time between TKI therapy and SBRT and treatment response were significant prognostic factors for OS and PFS. In multivariable analysis, a time between TKI therapy and SBRT of less than 3 months and complete response were significant predictors of better OS and PFS. Only 12 patients (28.6%) had a systemic treatment change at a median of 18.2 months after SBRT, mostly in patients with a non-complete treatment response after this therapy. Two patients (4.8%) experienced grade III toxicity, and all side effects observed during metastasis-directed therapy subsided over time. CONCLUSION We demonstrated that SBRT in combination with TKIs is an effective and safe treatment option for RCC patients with ≤ 5 metastases. However, distant metastasis was observed in 60% of the patients, indicating that distant disease control still has room for improvement.
Collapse
Affiliation(s)
- Cem Onal
- Department of Radiation Oncology, Adana Dr. Turgut Noyan Research and Treatment Center, Baskent University Faculty of Medicine, 01120, Adana, Turkey.
- Division of Radiation Oncology, Iskenderun Gelisim Hospital, Hatay, Turkey.
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara, Turkey.
| | - Ezgi Oymak
- Division of Radiation Oncology, Iskenderun Gelisim Hospital, Hatay, Turkey
| | - Ozan Cem Guler
- Department of Radiation Oncology, Adana Dr. Turgut Noyan Research and Treatment Center, Baskent University Faculty of Medicine, 01120, Adana, Turkey
| | - Burak Tilki
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Guler Yavas
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Cagdas Yavas
- Department of Radiation Oncology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
48
|
Kato T, Kazama Y, Matsuura S, Nagaoka S. Surgical treatment of esophageal perforation after stereotactic body radiotherapy: A report of two cases. Int J Surg Case Rep 2022; 102:107805. [PMID: 36502658 PMCID: PMC9758521 DOI: 10.1016/j.ijscr.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION AND IMPORTANCE Esophageal perforation due to stereotactic body radiotherapy (SBRT) is rare, and there is no consensus on the treatment strategy. Here, we report two cases of esophageal perforation caused by CyberKnife irradiation managed with distinct surgical approaches. CASE PRESENTATION Case 1 was a 54-year-old woman who was administered chemotherapy including bevacizumab and underwent CyberKnife SBRT for postoperative ovarian cancer (pStage IIIc) with metastasis in the eighth thoracic vertebra. Thirteen months after irradiation, she suddenly developed right back and anterior thoracic pain and was diagnosed with esophageal perforation. Despite open chest drainage and intercostal muscle (ICM) flap coverage, the fistula could not be closed, leading to pyogenic spondylitis and epidural abscess. Case 2 was of a 58-year-old woman with mediastinal lymph node metastasis 5 years after uterine cancer surgery (pStage Ia) who underwent CyberKnife SBRT. Six months after irradiation, she experienced back pain and was diagnosed with esophageal perforation. After curative esophagectomy, the patient was discharged on postoperative day 22 without any adverse effects. CLINICAL DISCUSSION Esophageal perforation by SBRT with vascular endothelial growth factor inhibitors (VEGFI) such as bevacizumab has rarely been reported. Considering the impaired wound healing system and blood perfusion caused by radiation therapy and VEGFI, difficulty closing the perforation covered with an ICM flap was hypothesized. CONCLUSION Late esophageal toxicity from irradiation may cause impaired blood flow and wound healing; therefore, curative esophagectomy, including at the perforation site, is effective.
Collapse
|
49
|
Olson R, Jiang W, Liu M, Bergman A, Schellenberg D, Mou B, Alexander A, Carolan H, Hsu F, Miller S, Atrchian S, Chan E, Ho C, Mohamed I, Lin A, Berrang T, Bang A, Chng N, Matthews Q, Baker S, Huang V, Mestrovic A, Hyde D, Lund C, Pai H, Valev B, Lefresene S, Tyldesley S. Treatment With Stereotactic Ablative Radiotherapy for Up to 5 Oligometastases in Patients With Cancer: Primary Toxic Effect Results of the Nonrandomized Phase 2 SABR-5 Clinical Trial. JAMA Oncol 2022; 8:1644-1650. [PMID: 36173619 PMCID: PMC9523552 DOI: 10.1001/jamaoncol.2022.4394] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
Importance After the publication of the landmark SABR-COMET trial, concerns arose regarding high-grade toxic effects of treatment with stereotactic ablative body radiotherapy (SABR) for oligometastases. Objective To document toxic effects of treatment with SABR in a large cohort from a population-based, provincial cancer program. Design, Setting, and Participants From November 2016 to July 2020, 381 patients across all 6 cancer centers in British Columbia were treated in this single-arm, phase 2 trial of treatment with SABR for patients with oligometastatic or oligoprogressive disease. During this period, patients were only eligible to receive treatment with SABR in these settings in trials within British Columbia; therefore, this analysis is population based, with resultant minimal selection bias compared with previously published SABR series. Interventions Stereotactic ablative body radiotherapy to up to 5 metastases. Main Outcomes and Measures Rate of grade 2, 3, 4, and 5 toxic effects associated with SABR. Findings Among 381 participants (122 women [32%]), the mean (SD; range) age was 68 (11.1; 30-97) years, and the median (range) follow-up was 25 (1-54) months. The most common histological findings were prostate cancer (123 [32%]), colorectal cancer (63 [17%]), breast cancer (42 [11%]), and lung cancer (33 [9%]). The number of SABR-treated sites were 1 (263 [69%]), 2 (82 [22%]), and 3 or more (36 [10%]). The most common sites of SABR were lung (188 [34%]), nonspine bone (136 [25%]), spine (85 [16%]), lymph nodes (78 [14%]), liver (29 [5%]), and adrenal (15 [3%]). Rates of grade 2, 3, 4, and 5 toxic effects associated with SABR (based on the highest-grade toxic effect per patient) were 14.2%; (95% CI, 10.7%-17.7%), 4.2% (95% CI, 2.2%-6.2%), 0%, and 0.3% (95% CI, 0%-0.8%), respectively. The cumulative incidence of grade 2 or higher toxic effects associated with SABR at year 2 by Kaplan-Meier analysis was 8%, and for grade 3 or higher, 4%. Conclusions and Relevance This single-arm, phase 2 clinical trial found that the incidence of grade 3 or higher SABR toxic effects in this population-based study was less than 5%. Furthermore, the rates of grade 2 or higher toxic effects (18.6%) were lower than previously published for SABR-COMET (29%). These results suggest that SABR treatment for oligometastases has acceptable rates of toxic effects and potentially support further enrollment in randomized phase 3 clinical trials. Trial Registration ClinicalTrials.gov Identifier: NCT02933242.
Collapse
Affiliation(s)
- Robert Olson
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Prince George, British Columbia, Canada
| | - Will Jiang
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Prince George, British Columbia, Canada
| | - Mitchell Liu
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Alanah Bergman
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Devin Schellenberg
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Surrey, British Columbia, Canada
| | - Benjamin Mou
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Kelowna, British Columbia, Canada
| | - Abraham Alexander
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Victoria, British Columbia, Canada
| | - Hannah Carolan
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Fred Hsu
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Abbotsford, British Columbia, Canada
| | - Stacy Miller
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Prince George, British Columbia, Canada
| | - Siavash Atrchian
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Kelowna, British Columbia, Canada
| | - Elisa Chan
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Clement Ho
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Surrey, British Columbia, Canada
| | - Islam Mohamed
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Kelowna, British Columbia, Canada
| | - Angela Lin
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Kelowna, British Columbia, Canada
| | - Tanya Berrang
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Victoria, British Columbia, Canada
| | - Andrew Bang
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Nick Chng
- British Columbia Cancer, Prince George, British Columbia, Canada
| | - Quinn Matthews
- British Columbia Cancer, Prince George, British Columbia, Canada
| | - Sarah Baker
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Surrey, British Columbia, Canada
| | - Vicky Huang
- British Columbia Cancer, Surrey, British Columbia, Canada
| | - Ante Mestrovic
- British Columbia Cancer, Victoria, British Columbia, Canada
| | - Derek Hyde
- British Columbia Cancer, Kelowna, British Columbia, Canada
| | - Chad Lund
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Surrey, British Columbia, Canada
| | - Howard Pai
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Victoria, British Columbia, Canada
| | - Boris Valev
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Victoria, British Columbia, Canada
| | - Shilo Lefresene
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Scott Tyldesley
- University of British Columbia, British Columbia, Canada
- British Columbia Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Meattini I, Francolini G, Di Cataldo V, Visani L, Becherini C, Scoccimarro E, Salvestrini V, Bellini C, Masi L, Doro R, Di Naro F, Loi M, Salvatore G, Simontacchi G, Greto D, Bernini M, Nori J, Orzalesi L, Bianchi S, Mangoni M, Livi L. Preoperative robotic radiosurgery for early breast cancer: Results of the phase II ROCK trial (NCT03520894). Clin Transl Radiat Oncol 2022; 37:94-100. [PMID: 36177053 PMCID: PMC9513617 DOI: 10.1016/j.ctro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/04/2022] Open
Abstract
Preoperative partial breast irradiation treats well-defined target. Stereotactic body radiation therapy have been routinely implemented in clinical practice. No acute toxicity greater than grade 2 was recorded. A single 21 Gy dose preoperative robotic radiosurgery represents a feasible technique.
Background and purpose Preoperative partial breast irradiation (PBI) has got the advantage of treating a well-defined target. We report the results of the phase II ROCK trial (NCT03520894), enrolling early breast cancer (BC) patients treated with preoperative robotic radiosurgery (prRS), in terms of acute and early late toxicity, disease control, and cosmesis. Material and methods The study recruited between 2018 and 2021 at our Radiation Oncology Unit. Eligible patients were 50 + years old BC, hormonal receptors positive/human epidermal growth factor receptor 2 negative (HR+/HER2-), sized up to 25 mm. The study aimed to prospectively assess the toxicity and feasibility of a robotic single 21 Gy-fraction prRS in preoperative setting. Results A total of 70 patients were recruited and 22 patients were successfully treated with pRS. Overall, three G1 adverse events (13.6 %) were recorded within 7 days from prRS. Three events (13.6 %) were recorded between 7 and 30 days, one G2 breast oedema and two G1 breast pain. No acute toxicity greater than G2 was recorded. Five patients experienced early late G1 toxicity. One patient reported G2 breast induration. No early late toxicity greater than G2 was observed. At a median follow up of 18 months (range 6–29.8), cosmetic results were scored excellent/good and fair in 14 and 5 patients, respectively, while 3 patients experienced a poor cosmetic outcome. Conclusions ROCK trial showed that a single 21 Gy dose prRS represents a feasible technique for selected patients affected by early BC, showing an acceptable preliminary toxicity profile.
Collapse
Affiliation(s)
- Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy.,Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Vanessa Di Cataldo
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Luca Visani
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.,CyberKnife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Erika Scoccimarro
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Viola Salvestrini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.,CyberKnife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), Florence, Italy
| | - Chiara Bellini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy.,Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Laura Masi
- CyberKnife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), Florence, Italy
| | - Raffaela Doro
- CyberKnife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), Florence, Italy
| | - Federica Di Naro
- Diagnostic Senology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Mauro Loi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Giulia Salvatore
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Gabriele Simontacchi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Daniela Greto
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Marco Bernini
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jacopo Nori
- Diagnostic Senology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Lorenzo Orzalesi
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Monica Mangoni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy.,Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy.,Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|