1
|
Li L, Wang X, Jiang M, Li L, Wang D, Li Y. Advancements in a novel model of autophagy and immune network regulation in radioresistance of cancer stem cells. Biomed Pharmacother 2024; 179:117420. [PMID: 39255736 DOI: 10.1016/j.biopha.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Radiotherapy, a precise modality for treating malignant tumors, has undergone rapid advancements in primary and clinical research. The mechanisms underlying tumor radioresistance have become significant research. With the introduction and in-depth study of cancer stem cells (CSCs) theory, CSCs have been identified as the primary factor contributing to the development of tumor radioresistance. The "stemness" of CSCs is a biological characteristic of a small subset of cells within tumor tissues, characterized by self-renewal solid ability. This characteristic leads to resistance to radiotherapy, chemotherapy, and targeted therapies, driving tumor recurrence and metastasis. Another study revealed that cellular autophagy plays a pivotal role in maintaining the "stemness" of CSCs. Autophagy is a cellular mechanism that degrades proteins and organelles to generate nutrients and energy in response to stress. This process maintains cellular homeostasis and contributes to CSCs radioresistance. Furthermore, ionizing radiation (IR) facilitates epithelial-to-mesenchymal transition (EMT), vascular regeneration, and other tumor processes by influencing the infiltration of M2-type tumor-associated macrophages (TAMs). IR promotes the activation of the classical immunosuppressive "switch," PD-1/PD-L1, which diminishes T-cell secretion, leading to immune evasion and promoting radioresistance. Interestingly, recent studies have found that the immune pathway PD-1/PD-L1 is closely related to cellular autophagy. However, the interrelationships between immunity, autophagy, and radioresistance of CSCs and the regulatory mechanisms involved remain unclear. Consequently, this paper reviews recent research to summarize these potential connections, aiming to establish a theoretical foundation for future studies and propose a new model for the network regulation of immunity, autophagy, and radioresistance of tumor cells.
Collapse
Affiliation(s)
- Leyao Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Mei Jiang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yajun Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Romero Fernandez J, Cordoba Largo S, Benlloch Rodriguez R, Gil Haro B. The Effects of Gynecological Tumor Irradiation on the Immune System. Cancers (Basel) 2024; 16:2804. [PMID: 39199577 PMCID: PMC11352652 DOI: 10.3390/cancers16162804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Radiobiology has evolved from a mechanistic model based on DNA damage and response factors into a more complex model that includes effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes an inflammatory microenvironment through the release of pro-inflammatory cytokines and endothelial damage, which recruit immune system cells to the irradiated area. Radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens, triggers an anti-tumor immune response of both innate and adaptive immunity. Anti-tumor immunity can manifest at a distance from the irradiated area, a phenomenon known as the abscopal effect (AE), which involves dendritic cells and CD8+ T cells. Irradiation also produces an immunosuppressive effect mediated by tumor-associated macrophages (TAMs) and regulatory T lymphocytes (Tregs), which counterbalances the immunostimulatory effect. In this work, we review the mechanisms involved in the radiation-induced immune response, which support the combined treatment of RT and immunotherapy, focusing, where possible, on gynecologic cancer.
Collapse
Affiliation(s)
- Jesus Romero Fernandez
- Radiation Oncology Department, Hospital Universitario Puerta de Hierro, C. Joaquín Rodrigo 1, 28222 Majadahonda, Spain; (S.C.L.); (R.B.R.); (B.G.H.)
| | | | | | | |
Collapse
|
3
|
Yuan J, Zhang M, Wang M, Zhang M, Wu K, Chen H. Neoadjuvant radiochemotherapy is safe and feasible for breast conserving surgery or immediate reconstruction. Sci Rep 2024; 14:9208. [PMID: 38649431 PMCID: PMC11035569 DOI: 10.1038/s41598-024-59961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the survival outcomes of neoadjuvant radiochemotherapy (NARCT) for early breast cancer. Female patients ≤ 80 years old with unilateral T1-T4 invasive ductal breast cancer treated with neoadjuvant chemotherapy (NAC) and radiation therapy (RT) between 2006 and 2015 were enrolled from SEER database. Baseline differences in clinical and pathological characteristics were evaluated using chi-square test. The survival outcomes were estimated by Kaplan-Meier analysis and compared using Cox hazards models. The effects of baseline differences on survival outcome in patients treated with neoadjuvant radiation therapy (NART) and post-operation radiation therapy (PORT) were circumvented by propensity score matching (PSM). Altogether 14,151 patients receiving NAC and RT were enrolled, among whom 386 underwent NART. Based on a 1:4 PSM cohort, NART was an independent unfavorable prognostic factor for breast cancer-specific survival (BCSS) and overall survival (OS) for the whole cohort. However, among patients receiving breast conserving surgery (BCS) (HR 1.029, P = 0.915 for BCSS; HR 1.003, P = 0.990 for OS) or implant-based immediate breast reconstruction (IBR) (HR 1.039, P = 0.921 for BCSS; HR 1.153, P = 0.697 for OS), those treated with NART had similar survival outcomes compared with patients treated with PORT. In conclusion, NARCT was a safe and feasible approach for patients undergoing BCS and IBR.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Meilin Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
4
|
Zhang QS, Hayes JP, Gondi V, Pollack SM. Immunotherapy and Radiotherapy Combinations for Sarcoma. Semin Radiat Oncol 2024; 34:229-242. [PMID: 38508787 DOI: 10.1016/j.semradonc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sarcomas are a heterogeneous group of bone and soft tissue tumors. Survival outcomes for advanced (unresectable or metastatic) disease remain poor, so therapeutic improvements are needed. Radiotherapy plays an integral role in the neoadjuvant and adjuvant treatment of localized disease as well as in the treatment of metastatic disease. Combining radiotherapy with immunotherapy to potentiate immunotherapy has been used in a variety of cancers other than sarcoma, and there is opportunity to further investigate combining immunotherapy with radiotherapy to try to improve outcomes in sarcoma. In this review, we describe the diversity of the tumor immune microenvironments for sarcomas and describe the immunomodulatory effects of radiotherapy. We discuss studies on the timing of radiotherapy relative to immunotherapy and studies on the radiotherapy dose and fractionation regimen to be used in combination with immunotherapy. We describe the impact of radiotherapy on the tumor immune microenvironment. We review completed and ongoing clinical trials combining radiotherapy with immunotherapy for sarcoma and propose future directions for studies combining immunotherapy with radiotherapy in the treatment of sarcoma.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seth M Pollack
- Division of Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL..
| |
Collapse
|
5
|
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1058. [PMID: 38473415 DOI: 10.3390/cancers16051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents significant treatment challenges, especially in its advanced stages. This article delves into the promising approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical research, highlighting the potential synergistic effects of this combinational treatment. Emerging evidence suggests that this synergy enhances tumor control and improves patient survival rates. The combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic, immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each treatment modality when used separately. This integrative approach is especially promising in addressing the complex tumor microenvironment of HCC. However, the treatment landscape is nuanced, with challenges such as patient-specific response variability and potential resistance to therapies. Future research directions should focus on refining these combination strategies, tailoring them to individual patient profiles, and understanding the underlying mechanisms that govern the interaction between immunotherapy and radiation therapy. Such advancements could significantly improve HCC management, setting new standards for patient care and treatment efficacy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
6
|
Kasena A, Antonio F. Antecedents of patient health engagement in the radiotherapy service (evidence from Indonesia). Health SA 2023; 28:2245. [PMID: 38204863 PMCID: PMC10778377 DOI: 10.4102/hsag.v28i0.2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/02/2023] [Indexed: 01/12/2024] Open
Abstract
Background Private radiotherapy (RT) facilities in emerging countries are growing with cancer incidence. Private healthcare providers must provide better care based on patient perspectives to reach more patients. Aim This study investigated the relationship between antecedents of patient health engagement (PHE) with revisit intention (RVI) and intent to recommend (ITR) in private RT facilities. Setting The survey was conducted in a private hospital with a RT service in Central Java province, Indonesia. Methods A quantitative, cross-sectional design with a purposive sampling method was used. Patient questionnaire survey modified from validated self-administered radiotherapy experience (RTEQ) and PHE questionnaire were used to collect data. Partial least squares-structural equation modelling was used to analyse the data. Results In this study, 173 respondents consented to participate, which demonstrated that seven of the eight experience antecedents of PHE measured by reliable and valid RTEQ and were significantly related to PHE (p-value <0.05). At the same time, the degree of PHE has a significant relationship with RVI and ITR (p-value <0.05). Conclusion Patient informational needs elements from the patient experience, followed by situational repose, were shown to have a prominent relation to PHE. The management of private RT facilities needs to focus more on these elements to encourage PHE to establish hospital performance. Contribution The findings denote that six elements of RTEQ relate to PHE and further hospital outcomes. Hospital management could utilise this approach to improve the quality of care in RT facilities, specifically in private hospitals in emerging countries.
Collapse
Affiliation(s)
- Anthony Kasena
- Department of Hospital Administration, Faculty of Medicine, Universitas Pelita Harapan, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Ferdi Antonio
- Department of Hospital Administration, Faculty of Medicine, Universitas Pelita Harapan, Daerah Khusus Ibukota Jakarta, Indonesia
| |
Collapse
|
7
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C. Subverted macrophages in the triple-negative breast cancer ecosystem. Biomed Pharmacother 2023; 166:115414. [PMID: 37660651 DOI: 10.1016/j.biopha.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
Collapse
Affiliation(s)
- Linxiao Shang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yuting Zhong
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, Macau 999078, China
| | - Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
9
|
Wan D, Zhu Z, Zhou J, Deng Z, Lei P, Liu Q, Sun X, Huang B. Astragaloside IV protects LO2 cells from oxidative damage caused by radiation-induced bystander effect through Akt/Nrf2 pathway. Toxicol Res (Camb) 2023; 12:635-647. [PMID: 37663802 PMCID: PMC10470369 DOI: 10.1093/toxres/tfad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 09/05/2023] Open
Abstract
Background The protective effects of astragaloside IV (ASIV) on various diseases are well known, but its potential impact on radiation-induced bystander effect (RIBE) has remained unclear. Objective This study aimed to explore the protective mechanism of ASIV against oxidative damage caused by RIBE in LO2 cells. Methods To construct the RIBE model, the conditioned medium from HepG2 cells irradiated with radiation was transferred to nonirradiated LO2 cells. LY294002, a commonly used phosphatidylinositol 3-kinase/Akt pathway inhibitor, was added to LO2 cells 1 h before exposing HepG2 cells to radiation. LO2 cells were then collected for analyses after RIBE exposure. Results The study found that ASIV significantly improved cell proliferation and promoted the recovery of mitochondrial membrane potential while reducing the rate of apoptosis. Western blot analyses demonstrated that ASIV upregulated B-cell lymphoma 2 and downregulated B-cell lymphoma 2-related X protein and cleaved-caspase 3. Measurement of reactive oxygen species, superoxide dismutase, glutathione peroxidase, and malondialdehyde levels showed that ASIV effectively restored the oxidative stress state induced by RIBE. Additionally, immunofluorescence and western blots analyses confirmed that ASIV enhanced the translocation of Nrf2 to the nucleus and activated downstream nicotinamide adenine dinucleotide phosphate: quinine oxidoreductase 1 and heme oxygenase 1. Importantly, Akt pathway inhibitor repressed ASIV-induced activation of Nrf2 and its protective effect against RIBE. Conclusion This study demonstrates that ASIV protects LO2 cells against oxidative damage caused by RIBE through activation of the Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Danting Wan
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Zihao Zhu
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Jie Zhou
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Zhengzheng Deng
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Pengyuan Lei
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Qi Liu
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Xiaoya Sun
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| | - Bo Huang
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, China
| |
Collapse
|
10
|
Einloth KR, Gayfield S, McMaster T, Didier A, Dworkin L, Creeden JF. The application, safety, and future of ex vivo immune cell therapies and prognosis in different malignancies. BIOIMPACTS : BI 2023; 13:439-455. [PMID: 38022382 PMCID: PMC10676524 DOI: 10.34172/bi.2023.27521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 12/01/2023]
Abstract
Introduction Immunotherapy has revolutionized how cancer is treated. Many of these immunotherapies rely on ex vivo expansion of immune cells, classically T cells. Still, several immunological obstacles remain, including tumor impermeability by immune cells and the immunosuppressive nature of the tumor microenvironment (TME). Logistically, high costs of treatment and variable clinical responses have also plagued traditional T cell-based immunotherapies. Methods To review the existing literature on cellular immunotherapy, the PubMed database was searched for publications using variations of the phrases "cancer immunotherapy", "ex vivo expansion", and "adoptive cell therapy". The Clinicaltrials.gov database was searched for clinical trials related to ex vivo cellular therapies using the same phrases. The National Comprehensive Cancer Network guidelines for cancer treatment were also referenced. Results To circumvent the challenges of traditional T cell-based immunotherapies, researchers have developed newer therapies including tumor infiltrating lymphocyte (TIL), chimeric antigen receptor (CAR), T cell receptor (TCR) modified T cell, and antibody-armed T cell therapies. Additionally, newer immunotherapeutic strategies have used other immune cells, including natural killer (NK) and dendritic cells (DC), to modulate the T cell immune response to cancers. From a prognostic perspective, circulating tumor cells (CTC) have been used to predict cancer morbidity and mortality. Conclusion This review highlights the mechanism and clinical utility of various types of ex vivo cellular therapies in the treatment of cancer. Comparing these therapies or using them in combination may lead to more individualized and less toxic chemotherapeutics.
Collapse
Affiliation(s)
- Katelyn R. Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Scott Gayfield
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Thomas McMaster
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Alexander Didier
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
11
|
Zhuang Y, Wang Y, Liu C, Li S, Du S, Li G. Yes-Associated Protein 1 Inhibition Induces Immunogenic Cell Death and Synergizes With Radiation and PD-1 Blockade. Int J Radiat Oncol Biol Phys 2023; 116:894-905. [PMID: 36608830 DOI: 10.1016/j.ijrobp.2022.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Danger signals released by ionizing radiation (IR) can theoretically stimulate immune activation in the tumor environment (TME), but IR alone is not sufficient to induce an effective immune response in clinical practice. In this study, we investigated whether inhibition of yes-associated protein 1 (YAP1) could induce immunogenic cell death (ICD) and whether the combination of YAP1 inhibition with IR could increase in vivo immune infiltration and thereby boost a tumor response to immunotherapy. METHODS AND MATERIALS First, the expression of ICD markers, markers of T-cell activation, and key proteins involved in innate immune signaling were measured after YAP1 inhibition. Next, the expression level of YAP1 protein was measured after different doses of IR. Then, the antitumor effect of YAP1 inhibition combined with IR was investigated in vivo, and the immune status of the TME was evaluated. Finally, the efficacy of a triple therapy including YAP1 inhibition combined with IR and programmed cell death protein 1 blockade in the treatment of resistant tumors was determined. RESULTS We found that YAP1 inhibition induced ICD and increased the levels of antigen presentation machinery, effectively causing the activation of T cells. Mechanistically, YAP1 inhibition induced cell DNA damage and activated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Surprisingly, IR upregulated YAP1 expression. IR combined with YAP1 inhibition significantly inhibited cancer growth and prolonged survival, which was related to the augmented infiltration, activation, and function of CD8+ T cells in the TME. Moreover, the addition of YAP1 inhibition significantly improved the efficacy of pancreatic cancer treatment when neither radiation nor programmed cell death protein 1 inhibitors were ideal. CONCLUSIONS YAP1 inhibition could trigger ICD and is a potential approach to potentiating the therapeutic efficacy of radiation therapy and anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Yuzi Wang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China; Proton Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Chang Liu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Sihan Li
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Shuyan Du
- Department of Central Laboratory, First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Kumar R, Kim J, Deek MP, Eskander MF, Gulhati P, In H, Kennedy T, Shah MM, Grandhi MS, Berim L, Spencer KR, Langan RC, Hochster HS, Boland PM, Jabbour SK. Combination of Immunotherapy and Radiation Therapy in Gastrointestinal Cancers: An Appraisal of the Current Literature and Ongoing Research. Curr Oncol 2023; 30:6432-6446. [PMID: 37504333 PMCID: PMC10378032 DOI: 10.3390/curroncol30070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Oncological outcomes are improving in gastrointestinal cancer with advancements in systemic therapies, and there is notable potential in combining immunotherapy and radiation therapy (RT) to allow for further improvements. Various preclinical and early phase II studies have shown promising synergy with immunotherapy and RT in gastrointestinal cancer. A few recent phase III studies have shown improved survival with the addition of immunotherapy to standard treatment for gastrointestinal cancer. The timing, duration, sequencing, and integration with other anti-cancer treatments are still areas of ongoing research. We have reviewed the published and ongoing studies of the combinations of immunotherapy and RT in gastrointestinal cancers.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Jongmyung Kim
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Mariam F. Eskander
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Prateek Gulhati
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Haejin In
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Timothy Kennedy
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Mihir M. Shah
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miral S. Grandhi
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Lyudmyla Berim
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Kristen R. Spencer
- Department of Medicine, Perlmutter Cancer Center of NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Russell C. Langan
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Howard S. Hochster
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Patrick M. Boland
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Salma K. Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| |
Collapse
|
13
|
Zhao F, Yang D, Xu T, He J, Guo J, Li X. New treatment insights into pancreatic acinar cell carcinoma: case report and literature review. Front Oncol 2023; 13:1210064. [PMID: 37465113 PMCID: PMC10351044 DOI: 10.3389/fonc.2023.1210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic malignancy with unique clinical, molecular, and morphologic features. The long-term survival of patients with PACC is substantially better than that of patients with ductal adenocarcinoma of the pancreas. Surgical resection is considered the first choice for treatment; however, there is no standard treatment option for patients with inoperable disease. The patient with metastatic PACC reported herein survived for more than 5 years with various treatments including chemotherapy, radiotherapy, antiangiogenic therapy and combined immunotherapy.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Mukherjee D, Romano E, Walshaw R, Zeef LAH, Banyard A, Kitcatt SJ, Cheadle EJ, Tuomela K, Pendharkar S, Al-Deka A, Salerno B, Raby S, Mills IG, Honeychurch J, Illidge TM. Reprogramming the immunosuppressive tumor microenvironment results in successful clearance of tumors resistant to radiation therapy and anti-PD-1/PD-L1. Oncoimmunology 2023; 12:2223094. [PMID: 37332616 PMCID: PMC10274532 DOI: 10.1080/2162402x.2023.2223094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Despite breakthroughs in immune checkpoint inhibitors (ICI), the majority of tumors, including those poorly infiltrated by CD8+ T cells or heavily infiltrated by immunosuppressive immune effector cells, are unlikely to result in clinically meaningful tumor responses. Radiation therapy (RT) has been combined with ICI to potentially overcome this resistance and improve response rates but reported clinical trial results have thus far been disappointing. Novel approaches are required to overcome this resistance and reprogram the immunosuppressive tumor microenvironment (TME) and address this major unmet clinical need. Using diverse preclinical tumor models of prostate and bladder cancer, including an autochthonous prostate tumor (Pten-/-/trp53-/-) that respond poorly to radiation therapy (RT) and anti-PD-L1 combinations, the key drivers of this resistance within the TME were profiled and used to develop rationalized combination therapies that simultaneously enhance activation of anti-cancer T cell responses and reprogram the immunosuppressive TME. The addition of anti-CD40mAb to RT resulted in an increase in IFN-y signaling, activation of Th-1 pathways with an increased infiltration of CD8+ T-cells and regulatory T-cells with associated activation of the CTLA-4 signaling pathway in the TME. Anti-CTLA-4mAb in combination with RT further reprogrammed the immunosuppressive TME, resulting in durable, long-term tumor control. Our data provide novel insights into the underlying mechanisms of the immunosuppressive TME that result in resistance to RT and anti-PD-1 inhibitors and inform therapeutic approaches to reprogramming the immune contexture in the TME to potentially improve tumor responses and clinical outcomes.
Collapse
Affiliation(s)
- Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Richard Walshaw
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Leo A. H. Zeef
- Bioinformatics Core Facility, Michael Smith Building, The University of Manchester, Manchester, UK
| | - Antonia Banyard
- Mass and Flow Cytometry Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Stephen J. Kitcatt
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Eleanor J. Cheadle
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Karoliina Tuomela
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Swati Pendharkar
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Aws Al-Deka
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Beatrice Salerno
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie Raby
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Patrick G. Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Tim M. Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Civil YA, Jonker LW, Groot Koerkamp MPM, Duvivier KM, de Vries R, Oei AL, Slotman BJ, van der Velde S, van den Bongard HJGD. Preoperative Partial Breast Irradiation in Patients with Low-Risk Breast Cancer: A Systematic Review of Literature. Ann Surg Oncol 2023; 30:3263-3279. [PMID: 36869253 PMCID: PMC10175515 DOI: 10.1245/s10434-023-13233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Preoperative instead of standard postoperative partial breast irradiation (PBI) after breast-conserving surgery (BCS) has the advantage of reducing the irradiated breast volume, toxicity, and number of radiotherapy sessions and can allow tumor downstaging. In this review, we assessed tumor response and clinical outcomes after preoperative PBI. PATIENTS AND METHODS We conducted a systematic review of studies on preoperative PBI in patients with low-risk breast cancer using the databases Ovid Medline, Embase.com, Web of Science (Core Collection), and Scopus (PROSPERO registration CRD42022301435). References of eligible manuscripts were checked for other relevant manuscripts. The primary outcome measure was pathologic complete response (pCR). RESULTS A total of eight prospective and one retrospective cohort study were identified (n = 359). In up to 42% of the patients, pCR was obtained and this increased after a longer interval between radiotherapy and BCS (0.5-8 months). After a maximum median follow-up of 5.0 years, three studies on external beam radiotherapy reported low local recurrence rates (0-3%) and overall survival of 97-100%. Acute toxicity consisted mainly of grade 1 skin toxicity (0-34%) and seroma (0-31%). Late toxicity was predominantly fibrosis grade 1 (46-100%) and grade 2 (10-11%). Cosmetic outcome was good to excellent in 78-100% of the patients. CONCLUSIONS Preoperative PBI showed a higher pCR rate after a longer interval between radiotherapy and BCS. Mild late toxicity and good oncological and cosmetic outcomes were reported. In the ongoing ABLATIVE-2 trial, BCS is performed at a longer interval of 12 months after preoperative PBI aiming to achieve a higher pCR rate.
Collapse
Affiliation(s)
- Yasmin A Civil
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands.
| | - Lysanne W Jonker
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maartje P M Groot Koerkamp
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Katya M Duvivier
- Department of Radiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Berend J Slotman
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Susanne van der Velde
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - H J G Desirée van den Bongard
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Honma R, I T, Seki M, Iwatake M, Ogaeri T, Hasegawa K, Ohba S, Tran SD, Asahina I, Sumita Y. Immunomodulatory Macrophages Enable E-MNC Therapy for Radiation-Induced Salivary Gland Hypofunction. Cells 2023; 12:1417. [PMID: 37408251 DOI: 10.3390/cells12101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.
Collapse
Affiliation(s)
- Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takunori Ogaeri
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Simon D Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
18
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Identification of S100A9 as a Potential Inflammation-Related Biomarker for Radiation-Induced Lung Injury. J Clin Med 2023; 12:jcm12030733. [PMID: 36769382 PMCID: PMC9917937 DOI: 10.3390/jcm12030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced lung injury (RILI), a potentially fatal and dose-limiting complication of radiotherapy for thoracic tumors, is divided into early reversible pneumonitis and irreversible advanced-stage fibrosis. Early detection and intervention contribute to improving clinical outcomes of patients. However, there is still a lack of reliable biomarkers for early prediction and clinical diagnosis of RILI. Given the central role of inflammation in the initiation and progression of RILI, we explored specific inflammation-related biomarkers during the development of RILI in this study. Two expression profiles from the Gene Expression Omnibus (GEO) database were downloaded, in which 75 differentially expressed genes (DEGs) were screened out. Combining Gene Oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analysis, we identified four inflammation-related hub genes in the progression of RILI-MMP9, IL-1β, CCR1 and S100A9. The expression levels of the hub genes were verified in RILI mouse models, with S100A9 showing the highest level of overexpression. The level of S100A9 in bronchoalveolar lavage fluid (BALF) and the expression of S100A9 in lung tissues were positively correlated with the degree of inflammation in RILI. The results above indicate that S100A9 is a potential biomarker for the early prediction and diagnosis of the development of RILI.
Collapse
|
20
|
Chen LN, Wei AZ, Shu CA. Neoadjuvant immunotherapy in resectable non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231163798. [PMID: 37007633 PMCID: PMC10052589 DOI: 10.1177/17588359231163798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
The advent of immune checkpoint inhibition has pushed the treatment paradigm for resectable non-small-cell lung cancer (NSCLC) toward neoadjuvant therapy. A growing number of promising trials have examined the utility of neoadjuvant immunotherapy, both alone and in combination with other modalities such as radiation therapy (RT) and chemotherapy. The phase II LCMC3 and NEOSTAR trials demonstrated a role for neoadjuvant immunotherapy in inducing meaningful pathologic responses, and another phase II trial established the feasibility of combining neoadjuvant durvalumab with RT. Significant interest in neoadjuvant chemoimmunotherapy resulted in the conduct of multiple successful phase II trials including the Columbia trial, NADIM, SAKK 16/14, and NADIM II. Across these trials, neoadjuvant chemoimmunotherapy led to high rates of pathologic response and improved surgical outcomes without compromising surgical timing or feasibility. CheckMate-816, which was a randomized phase III trial studying neoadjuvant nivolumab in addition to chemotherapy, definitively established a benefit for neoadjuvant chemoimmunotherapy compared to chemotherapy alone for resectable NSCLC. Despite the growing literature and success of these trials, several outstanding questions remain, including the relationship between pathologic response and patient survival, the role of biomarkers such as programmed death ligand 1 and circulating tumor DNA in determining patient selection and treatment course, and the utility of additional adjuvant therapies. Longer follow-up of CheckMate-816 and other ongoing phase III trials may help address these questions. Ultimately, the complexity of managing resectable NSCLC highlights the importance of a multidisciplinary approach to patient care.
Collapse
|
21
|
Bao Z, Tang Q, Chen H, Zhang B, Shi W, Gu D. An abscopal effect in a gastric cancer patient treated with combined chemoimmunotherapy and palliative radiotherapy. Immunotherapy 2022; 14:1429-1435. [PMID: 36537254 DOI: 10.2217/imt-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prognosis of advanced gastric cancer remains poor. Palliative radiotherapy has been utilized to palliate bleeding in unresectable gastric cancer. Recent studies have described that a systemic immune response may be induced by local radiotherapy to the primary tumor lesion. Here we report a rare case of an abscopal effect in a patient with inoperable gastric cancer combined with tumor hemorrhage. A short course of radiotherapy was performed to palliate bleeding; additionally, the patient was treated with chemotherapy and immunotherapy. Complete response was achieved in the lung metastasis lesion. The observed abscopal effect suggests that there may be a synergistic effect between immunotherapy and radiotherapy. This case report supports the combination of immunotherapy and radiotherapy in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Zengtao Bao
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Huiyu Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Baoming Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Wenchao Shi
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Dezhi Gu
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| |
Collapse
|
22
|
Daley JD, Olson AC, Bailey KM. Harnessing immunomodulation during DNA damage in Ewing sarcoma. Front Oncol 2022; 12:1048705. [PMID: 36483025 PMCID: PMC9722957 DOI: 10.3389/fonc.2022.1048705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most commonly diagnosed in adolescents. Given the continued poor outcomes for patients with metastatic and relapsed Ewing sarcoma, testing innovative therapeutic approaches is essential. Ewing sarcoma has been categorized as a 'BRCAness' tumor with emerging data characterizing a spectrum of DNA damage repair defects within individual Ewing tumors, including the presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare germline-based defects. It is critical to understand the cumulative impact of various DNA damage repair defects on an individual Ewing tumor's response to therapy. Further, in addition to DNA-damage-directed therapies, subsets of Ewing tumors may be more susceptible to DNA-damage/immunotherapy combinations given the significant cross-talk between DNA damage and inflammatory pathways in the tumor microenvironment. Here we review potential approaches utilizing DNA-damaging agents as modulators of the Ewing tumor immune microenvironment, with a focus on radiation and opportunities during disease metastasis and relapse.
Collapse
Affiliation(s)
- Jessica D. Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adam C. Olson
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Alden RS, Kamran MZ, Bashjawish BA, Simone BA. Glutamine metabolism and radiosensitivity: Beyond the Warburg effect. Front Oncol 2022; 12:1070514. [PMID: 36465373 PMCID: PMC9712788 DOI: 10.3389/fonc.2022.1070514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/03/2024] Open
Abstract
Mounting data suggest that cancer cell metabolism can be utilized therapeutically to halt cell proliferation, metastasis and disease progression. Radiation therapy is a critical component of cancer treatment in curative and palliative settings. The use of metabolism-based therapeutics has become increasingly popular in combination with radiotherapy to overcome radioresistance. Over the past year, a focus on glutamine metabolism in the setting of cancer therapy has emerged. In this mini-review, we discuss several important ways (DNA damage repair, oxidative stress, epigenetic modification and immune modulation) glutamine metabolism drives cancer growth and progression, and present data that inhibition of glutamine utilization can lead to radiosensitization in preclinical models. Future research is needed in the clinical realm to determine whether glutamine antagonism is a feasible synergistic therapy that can be combined with radiotherapy.
Collapse
Affiliation(s)
| | | | | | - Brittany A. Simone
- Radiation Oncology Department, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
24
|
Tailor A, Estephan H, Parker R, Woodhouse I, Abdulghani M, Nicastri A, Jones K, Salatino S, Muschel R, Humphrey T, Giaccia A, Ternette N. Ionizing Radiation Drives Key Regulators of Antigen Presentation and a Global Expansion of the Immunopeptidome. Mol Cell Proteomics 2022; 21:100410. [PMID: 36089194 PMCID: PMC9579046 DOI: 10.1016/j.mcpro.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 01/18/2023] Open
Abstract
Little is known about the pathways regulating MHC antigen presentation and the identity of treatment-specific T cell antigens induced by ionizing radiation. For this reason, we investigated the radiation-specific changes in the colorectal tumor cell proteome. We found an increase in DDX58 and ZBP1 protein expression, two nucleic acid sensing molecules likely involved in induction of the dominant interferon response signature observed after genotoxic insult. We further observed treatment-induced changes in key regulators and effector proteins of the antigen processing and presentation machinery. Differential regulation of MHC allele expression was further driving the presentation of a significantly broader MHC-associated peptidome postirradiation, defining a radiation-specific peptide repertoire. Interestingly, treatment-induced peptides originated predominantly from proteins involved in catecholamine synthesis and metabolic pathways. A nuanced relationship between protein expression and antigen presentation was observed where radiation-induced changes in proteins do not correlate with increased presentation of associated peptides. Finally, we detected an increase in the presentation of a tumor-specific neoantigen derived from Mtch1. This study provides new insights into how radiation enhances antigen processing and presentation that could be suitable for the development of combinatorial therapies. Data are available via ProteomeXchange with identifier PXD032003.
Collapse
Affiliation(s)
- Arun Tailor
- Oxford Cancer Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | - Hala Estephan
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert Parker
- Oxford Cancer Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Isaac Woodhouse
- Oxford Cancer Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Majd Abdulghani
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Oxford Cancer Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Keaton Jones
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Silvia Salatino
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford, Unitied Kingdom
| | - Ruth Muschel
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy Humphrey
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Amato Giaccia
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Oxford Cancer Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
25
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Patysheva M, Frolova A, Larionova I, Afanas'ev S, Tarasova A, Cherdyntseva N, Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol 2022; 13:994319. [PMID: 36341366 PMCID: PMC9631446 DOI: 10.3389/fimmu.2022.994319] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 08/27/2023] Open
Abstract
Monocytes in peripheral blood circulation are the precursor of essential cells that control tumor progression, that include tumor-associated macrophages (TAMs), dendritic cells (DCs) and myeloid-derive suppressor cells (MDSC). Monocytes-derived cells orchestrate immune reactions in tumor microenvironment that control disease outcome and efficiency of cancer therapy. Four major types of anti-cancer therapy, surgery, radiotherapy, chemotherapy, and most recent immunotherapy, affect tumor-associated macrophage (TAM) polarization and functions. TAMs can also decrease the efficiency of therapy in a tumor-specific way. Monocytes is a major source of TAMs, and are recruited to tumor mass from the blood circulation. However, the mechanisms of monocyte programming in circulation by different therapeutic onsets are only emerging. In our review, we present the state-of-the art about the effects of anti-cancer therapy on monocyte progenitors and their dedifferentiation, on the content of monocyte subpopulations and their transcriptional programs in the circulation, on their recruitment into tumor mass and their potential to give origin for TAMs in tumor-specific microenvironment. We have also summarized very limited available knowledge about genetics that can affect monocyte interaction with cancer therapy, and highlighted the perspectives for the therapeutic targeting of circulating monocytes in cancer patients. We summarized the knowledge about the mediators that affect monocytes fate in all four types of therapies, and we highlighted the perspectives for targeting monocytes to develop combined and minimally invasive anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Marina Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anastasia Frolova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Sergey Afanas'ev
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Tarasova
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| |
Collapse
|
27
|
Zhang Y, Xu Z, Chen H, Sun X, Zhang Z. Survival comparison between postoperative and preoperative radiotherapy for stage I-III non-inflammatory breast cancer. Sci Rep 2022; 12:14288. [PMID: 35995985 PMCID: PMC9395522 DOI: 10.1038/s41598-022-18251-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
To compare the survival benefit between preoperative and postoperative radiotherapy for stage I-III non-inflammatory breast cancer patients, we conducted a retrospective cohort study using surveillance, epidemiology and end results databases. Our study recruited patients who had been diagnosed with stage I-III breast cancer and underwent surgery and radiotherapy. The overall survival was calculated by Kaplan-Meier method. Cox risk model was used to determine the impact of radiotherapy according to stage, molecular subtype and other risk factors. Propensity score matching was used to balance measurable confounding factors. Of all the 411,279 enrolled patients varying from 1975 to 2016, 1712 patients received preoperative radiotherapy, and 409,567 patients received postoperative radiotherapy. Compared with the postoperative radiotherapy group, the preoperative radiotherapy group showed significantly higher risks of overall mortality and breast cancer-specific mortality. Survival differences in treatment sequences were correlated with stage, molecular subtypes and other risk factors. According to the results of this study, preoperative radiotherapy did not show a survival advantage, and postoperative radiotherapy is still the primary treatment. However, preoperative radiotherapy also has some theoretical advantages, such as phase reduction and recurrence reduction. Therefore, it is still worthy of further exploration.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Hui Chen
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Xinchen Sun
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China.
| | - Zhaoyue Zhang
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
28
|
Current status and future prospects of radiation oncology in Sri Lanka. Phys Med 2022; 100:6-11. [PMID: 35700666 DOI: 10.1016/j.ejmp.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate the current status of radiation treatment facilities in Sri Lanka and to explore future possibilities required to adequately address increasing cancer care. METHODS Hospitals with radiation therapy facilities from across the country were identified. Data pertaining to the types of radiotherapy equipment, radiation oncology staffing, and radiotherapy education were collected by onsite visit, conversation over the phone, and from other available cancer resources in Sri Lanka. RESULTS Seven government hospitals and two private sectors were identified with radiation therapy facilities over nine provinces in Sri Lanka for 21.4 million people. At present, there are twenty megavoltage machines (MVMs) operating. This is 0.93 MVMs per one million people. After completion of proposed radiotherapy facilities, it will be able to provide 1.21 MVMs per million people. In addition, multidisciplinary staffing has also been identified as inadequate. CONCLUSIONS There is a significant shortfall in radiotherapy facilities and workforce in Sri Lanka. The current and future scope of radiation facilities is sub-optimal compared to internationally recognized guidelines.
Collapse
|
29
|
CW. Wong K, Johnson D, Hui EP, CT. Lam R, BY. Ma B, TC. Chan A. Opportunities and Challenges in Combining Immunotherapy and Radiotherapy in Head and Neck Cancers. Cancer Treat Rev 2022; 105:102361. [DOI: 10.1016/j.ctrv.2022.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
|
30
|
Yan C, Ma X, Guo Z, Wei X, Han D, Zhang T, Chen X, Cao F, Dong J, Zhao G, Gao X, Wang T, Jiang Y, Wang P, Pang Q, Zhang W. Time-spatial analysis of T cell receptor repertoire in esophageal squamous cell carcinoma patients treated with combined radiotherapy and PD-1 blockade. Oncoimmunology 2022; 11:2025668. [PMID: 35036077 PMCID: PMC8759588 DOI: 10.1080/2162402x.2022.2025668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
T cell receptor (TCR) repertoire as a biomarker for predicting immunotherapy efficiency has been widely studied. However, its dynamics during radiotherapy combined with PD-1 blockade is little known. Using paired tumor and blood samples from the phase Ib clinical study (NCT03222440), we investigate the time-spatial TCR repertoire in esophageal squamous cell carcinoma (ESCC) patients treated with first-line definitive radiotherapy concurrently with anti-PD-1 antibody camrelizumab, and also evaluate the association between TCR repertoire and clinical outcomes. TCR sequencing was performed on tumor biopsies (n = 34, 15 pairs) and peripheral CD8+ T cells (n = 36, 18 pairs) collected at baseline and during treatment (after 40 Gy radiation and 2 rounds of camrelizumab). Whole exome sequencing was applied to estimate genomic mutations and tumor mutation burden. We show that the intratumoral TCR repertoire at baseline was correlated with tumor microenvironment and presented heterogeneity inter-individually. T-cell clones inflowed mutually between tumors and peripheral blood under combination treatment, resulting in an elevation of intratumoral TCR diversity. The peripheral CD8+ TCR diversity at baseline, increased tumor-peripheral Morisita-Horn overlap during treatment, and expansion of persistent intratumoral T-cell clones during treatment predicted improved survival. While it is unclear whether radiation contributed to the TCR changes versus PD-1 therapy alone, our results firstly reveal radiotherapy combined with PD-1 blockade greatly promoted time-spatial alteration of TCR repertoire between tumor and peripheral blood, which demonstrate the peripheral CD8+ TCR diversity at baseline and dynamic alteration of intratumoral TCRs acted as potential effective biomarkers of radiotherapy combined with immunotherapy in ESCC.
Collapse
Affiliation(s)
- Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoxue Ma
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhoubo Guo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoying Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Han
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Dong
- Department of Nutrition Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuan Gao
- Department of Translational Medicine, GenePlus-Shenzhen Clinical Laboratory, ShenZhen, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Yao Jiang
- Clinical Research & Development, Hengrui Pharmaceuticals Co., Ltd, Lianyungang, Jiangsu, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Huang Q, Wang D, Yao G, Wang H. Impact of General Factors on Glioma Immunotherapy. J Clin Neurol 2022; 18:3-13. [PMID: 35021271 PMCID: PMC8762502 DOI: 10.3988/jcn.2022.18.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma remains the most common malignant tumor in the brain and is also the most difficult to treat. Immunotherapy achieving long-lasting tumor remission in multiple cancer types has received considerable attention due to its potential to improve the treatment outcomes of patients with glioma. However, clinical trials have not yet demonstrated major improvements in prognoses, which might be attributable to the extrinsic components and intrinsic mechanisms involved in the tumor microenvironment and immune system. It is particularly noteworthy that there is emerging evidence that current routine treatment modalities and the physical and psychological characteristics of patients have different impacts on the efficacy of glioma immunotherapy. This article addresses how these factors interact with the host immune system and tumor microenvironment, and highlights their potential roles in glioma immunotherapy, with the ultimate goal of developing better immunotherapy-based personalized medicine strategies.
Collapse
Affiliation(s)
- Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Dongmei Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guojie Yao
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China.
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
32
|
In-vitro 3D modelling for charged particle therapy - Uncertainties and opportunities. Adv Drug Deliv Rev 2021; 179:114018. [PMID: 34688685 DOI: 10.1016/j.addr.2021.114018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Radiation therapy is a critical component of oncologic management, with more than half of all cancer patients requiring radiotherapy at some point during their disease course. Over the last decade, there has been increasing interest in charged particle therapy due to its advantageous physical and radiobiologic properties, with the therapeutic use of proton beam therapy (PBT) expanding worldwide. However, there remain large gaps in our knowledge of the radiobiologic mechanisms that underlie key aspects of PBT, such as variations in relative biologic effectiveness (RBE), radioresistance, DNA damage response and repair pathways, as well as immunologic effects. In addition, while the emerging technique of ultra-high dose rate or FLASH radiotherapy, with its potential to further reduce normal tissue toxicities, is an exciting development, in-depth study is needed into the postulated biochemical mechanisms that underpin the FLASH effect such as the oxygen depletion hypothesis as well as the relative contributions of immune responses and the tumor microenvironment. Further investigation is also required to ensure that the FLASH effect is not diminished or lost in PBT. Current methods to evaluate the biologic effects of charged particle therapy rely heavily on 2D cell culture systems and/or animal models. However, both of these methods have well-recognized limitations which limit translatability of findings from bench to bedside. The advent of novel three-dimensional in-vitro tumor models offers a more physiologically relevant and high throughput in-vitro system for the study of tumor development as well as novel therapeutic approaches such as PBT. Advances in 3D cell culture methods, together with knowledge of disease mechanism, biomarkers, and genomic data, can be used to design personalized 3D models that most closely recapitulate tumor microenvironmental factors promoting a particular disease phenotype, moving 3D models and PBT into the age of precision medicine.
Collapse
|
33
|
Abstract
More than 40% of men with intermediate-risk or high-risk prostate cancer will experience a biochemical recurrence after radical prostatectomy. Clinical guidelines for the management of these patients largely focus on the use of salvage radiotherapy with or without systemic therapy. However, not all patients with biochemical recurrence will go on to develop metastases or die from their disease. The optimal pre-salvage therapy investigational workup for patients who experience biochemical recurrence should, therefore, include novel techniques such as PET imaging and genomic analysis of radical prostatectomy specimen tissue, as well as consideration of more traditional clinical variables such as PSA value, PSA kinetics, Gleason score and pathological stage of disease. In patients without metastatic disease, the only known curative intervention is salvage radiotherapy but, given the therapeutic burden of this treatment, importance must be placed on accurate timing of treatment, radiation dose, fractionation and field size. Systemic therapy also has a role in the salvage setting, both concurrently with radiotherapy and as salvage monotherapy.
Collapse
|
34
|
Kang MK, Lee SY, Choi JE, Do SK, Cho MJ, Kim JS, Park JY. Prognostic implication of PD-L1 polymorphisms in non-small cell lung cancer treated with radiotherapy. Cancer Med 2021; 10:8071-8078. [PMID: 34612596 PMCID: PMC8607250 DOI: 10.1002/cam4.4329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background To investigate the impact of programmed death‐ligand 1 (PD‐L1) polymorphisms on the prognosis of non‐small cell lung cancer (NSCLC) patients treated with curative radiotherapy. Methods Four single nucleotide polymorphisms (SNPs) (rs822336G>C, rs822337T>A, rs822338C>T, and rs2297136A>G) in the PD‐L1 gene were evaluated in 124 NSCLC patients. Clinical stage was I in 28, II in 17, and III in 79 patients. Fifty‐seven patients received radiotherapy alone, including 28 patients who received stereotactic body radiotherapy. Sixty‐seven patients received sequential or concurrent chemoradiotherapy. Risk factors for survival outcomes were analyzed with the log‐rank test and multivariate Cox proportional hazards models. Results The rs822336GC+CC genotype was associated with better overall survival (OS) (hazard ratio [HR] = 0.60, 95% confidence interval [CI] = 0.37–0.97, p = 0.036) and regional failure‐free survival (RFFS) (HR = 0.32, 95% CI = 0.14–0.76, p = 0.009), compared with rs822336GG genotype. The rs822337TA+AA genotype was associated with better OS (HR =0.54, 95% CI = 0.34–0.88, p = 0.014), progression‐free survival (PFS) (HR = 0.64, 95% CI = 0.41–0.99, p = 0.046), and RFFS (HR = 0.38, 95% CI = 0.17–0.81, p = 0.013), compared with rs822337TT genotype. Three SNPs (rs822336, rs822337, and rs822338) were in linkage disequilibrium. Combined GTC and GTT (GT*) haplotype was associated with significantly worse OS (p = 0.018), PFS (p = 0.044), and RFFS (p = 0.038), compared with those with other combined haplotypes. Patients with diplotypes of two GT* haplotypes showed significantly worse OS (p = 0.023) and RFFS (p = 0.014) than those with other diplotypes. Conclusions These findings suggest that PD‐L1 polymorphisms could be predictive markers for NSCLC patients receiving radiotherapy.
Collapse
Affiliation(s)
- Min Kyu Kang
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sook Kyung Do
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon-June Cho
- Department of Radiation Oncology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jun-Sang Kim
- Department of Radiation Oncology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
35
|
Aryafar T, Amini P, Rezapoor S, Shabeeb D, Eleojo Musa A, Najafi M, Shirazi A. Modulation of Radiation-Induced NADPH Oxidases in Rat's Heart Tissues by Melatonin. J Biomed Phys Eng 2021; 11:465-472. [PMID: 34458194 PMCID: PMC8385219 DOI: 10.31661/jbpe.v0i0.1094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022]
Abstract
Background Experimental studies have shown that infiltration of inflammatory cells as well as upregulation of some cytokines play a central role in the development of late effects of ionizing radiation in heart tissues. Evidences have shown that an increased level of TGF-β has a direct correlation with late effects of exposure to ionizing radiation such as chronic oxidative stress and fibrosis. Recent studies have shown that TGF-β, through upregulation of pro-oxidant enzymes such as NOX2 and NOX4, promotes continuous ROS production and accumulation of fibrosis. Objective In present study, we aimed to evaluate the expression of NOX2 and NOX4 signaling pathways as well as possible modulatory effects of melatonin on the expression of these genes. Material and Methods In this experimental study, four groups of 20 rats (5 in each) were used as follows; G1: control; G2: melatonin; G3: radiation; G4: radiation + melatonin. 100 mg/kg of melatonin was administrated before irradiation of heart tissues with 15 Gy gamma rays. 10 weeks after irradiation, heart tissues were collected for real-time Polymerase chain reaction (PCR). Results Results showed a significant increase in the expression of TGF-β, Smad2, NF-kB, NOX2 and NOX4. The upregulation of NOX2 was more obvious by 20-fold compared to other genes. Except for TGF-β, melatonin could attenuate the expression of other genes. Conclusion This study indicated that exposure of rat's heart tissues to radiation leads to upregulation of TGF-β-NOX4 and TGF-β-NOX2 pathways. Melatonin, through modulation of these genes, may be able to alleviate radiation-induced chronic oxidative stress and subsequent consequences.
Collapse
Affiliation(s)
- Tayebeh Aryafar
- PhD, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- MSc, Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapoor
- MSc, Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- PhD, Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- PhD, Research Center of Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- PhD, Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Shirazi
- PhD, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD, Cancer Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Biological consequences of cancer radiotherapy in the context of oral squamous cell carcinoma. Head Face Med 2021; 17:35. [PMID: 34446029 PMCID: PMC8390213 DOI: 10.1186/s13005-021-00286-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Approximately 50% of subjects with cancer have been treated with ionizing radiation (IR) either as a curative, adjuvant, neoadjuvant or as a palliative agent, at some point during the clinical course of their disease. IR kills cancer cells directly by injuring their DNA, and indirectly by inducing immunogenic cell killing mediated by cytotoxic T cells; but it can also induce harmful biological responses to non-irradiated neighbouring cells (bystander effect) and to more distant cells (abscopal effect) outside the primary tumour field of irradiation.Although IR can upregulate anti-tumour immune reactions, it can also promote an immunosuppressive tumour microenvironment. Consequently, radiotherapy by itself is seldom sufficient to generate an effective long lasting immune response that is capable to control growth of metastasis, recurrence of primary tumours and development of second primary cancers. Therefore, combining radiotherapy with the use of immunoadjuvants such as immune checkpoint inhibitors, can potentiate IR-mediated anti-tumour immune reactions, bringing about a synergic immunogenic cell killing effect.The purpose of this narrative review is to discuss some aspects of IR-induced biological responses, including factors that contributes to tumour radiosensitivity/radioresistance, immunogenic cell killing, and the abscopal effect.
Collapse
|
37
|
Radiation Oncology Applications in Plastic and Reconstructive Surgery: A Nonsystematic Review of Concepts and Principles. Plast Reconstr Surg 2021; 147:314e-324e. [PMID: 33565838 DOI: 10.1097/prs.0000000000007582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SUMMARY Careful consideration of radiotherapy can determine the success of reconstructive therapy. There is a broad spectrum of radiotherapy modalities, both benign and malignant. Delivery mechanisms differ in the physical design, setup, radiation source, administrable dosage, and mode of delivery. This range of options allows radiation oncologists to tailor individualized treatment; however, radiotherapy concepts can be challenging for nonspecialists. The purpose of this article is to review general radiation oncology concepts, including essential equipment and radiobiology, and provide plastic surgeons with a basic conceptual understanding to facilitate effective multidisciplinary collaboration with radiation oncologists.
Collapse
|
38
|
Weinfurtner RJ, Raghunand N, Stringfield O, Abdalah M, Niell BL, Ataya D, Williams A, Mooney B, Rosa M, Lee MC, Khakpour N, Laronga C, Czerniecki B, Diaz R, Ahmed K, Washington I, Montejo M. MRI Response to Pre-operative Stereotactic Ablative Body Radiotherapy (SABR) in Early Stage ER/PR+ HER2- Breast Cancer correlates with Surgical Pathology Tumor Bed Cellularity. Clin Breast Cancer 2021; 22:e214-e223. [PMID: 34384695 DOI: 10.1016/j.clbc.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study evaluates breast MRI response of ER/PR+ HER2- breast tumors to pre-operative SABR with pathologic response correlation. METHODS Women enrolled in a phase 2 single institution trial of SABR for ER/PR+ HER2- breast cancer were retrospectively evaluated for radiologic-pathologic correlation of tumor response. These patients underwent baseline breast MRI, SABR (28.5 Gy in 3 fractions), follow-up MRI 5 to 6 weeks post-SABR, and lumpectomy. Tumor size and BI-RADS descriptors on pre and post-SABR breast MRIs were compared to determine correlation with surgical specimen % tumor cellularity (%TC). Reported MRI tumor dimensions were used to calculate percent cubic volume remaining (%VR). Partial MRI response was defined as a BI-RADs descriptor change or %VR ≤ 70%, while partial pathologic response (pPR) was defined as %TC ≤ 70%. RESULTS Nineteen patients completed the trial, and %TC ranged 10% to 80%. For BI-RADS descriptor analysis, 12 of 19 (63%) showed change in lesion or kinetic enhancement descriptors post-SABR. This was associated with lower %TC (29% vs. 47%, P = .042). BI-RADS descriptor change analysis also demonstrated high PPV (100%) and specificity (100%) for predicting pPR to treatment (sensitivity 71%, accuracy 74%), but low NPV (29%). MRI %VR demonstrated strong linear correlation with %TC (R = 0.70, P < .001, Pearson's Correlation) and high accuracy (89%) for predicting pPR (sensitivity 88%, specificity 100%, PPV 100%, and NPV 50%). CONCLUSION Evaluating breast cancer response on MRI using %VR after pre-operative SABR treatment can help identify patients benefiting the most from neoadjuvant radiation treatment of their ER/PR+ HER2- tumors, a group in which pCR to neoadjuvant therapy is rare.
Collapse
Affiliation(s)
| | | | - Olya Stringfield
- Post-doctoral Fellow, Quantitative Imaging Core, Moffitt Cancer Center, Tampa, FL
| | - Mahmoud Abdalah
- Post-doctoral Fellow, Quantitative Imaging Core, Moffitt Cancer Center, Tampa, FL
| | - Bethany L Niell
- Associate Member of Radiology, Moffitt Cancer Center, Tampa, FL
| | - Dana Ataya
- Assistant Member of Radiology, Moffitt Cancer Center, Tampa, FL
| | - Angela Williams
- Assistant Member of Radiology, Moffitt Cancer Center, Tampa, FL
| | - Blaise Mooney
- Assosciate Member of Radiology, Moffitt Cancer Center, Tampa, FL
| | - Marilin Rosa
- Associate Member of Pathology, Moffitt Cancer Center, Tampa, FL
| | - Marie C Lee
- Associate Member of Breast Surgery, Moffitt Cancer Center, Tampa, FL
| | - Nazanin Khakpour
- Senior Member of Breast Surgery, Moffitt Cancer Center, Tampa, FL
| | - Christine Laronga
- Associate Member of Breast Surgery, Moffitt Cancer Center, Tampa, FL
| | - Brian Czerniecki
- Associate Member of Breast Surgery, Moffitt Cancer Center, Tampa, FL
| | - Roberto Diaz
- Senior Member of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Kamran Ahmed
- Assistant Member of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Iman Washington
- Assistant Member of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Michael Montejo
- Assistant Member of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
39
|
Turchan WT, Pitroda SP, Weichselbaum RR. Radiotherapy and Immunotherapy Combinations in the Treatment of Patients with Metastatic Disease: Current Status and Future Focus. Clin Cancer Res 2021; 27:5188-5194. [PMID: 34140404 DOI: 10.1158/1078-0432.ccr-21-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Radiotherapy and immunotherapy benefit subsets of patients with metastatic cancer. Here, we review selected laboratory and clinical studies investigating the utility of combining radiotherapy and immunotherapy in metastatic patients. We examine potential approaches to increase the therapeutic ratio of radioimmunotherapy in the treatment of metastatic cancers moving forward.
Collapse
Affiliation(s)
- William Tyler Turchan
- University of Chicago, Department of Radiation and Cellular Oncology, Chicago, Illinois
| | - Sean P Pitroda
- University of Chicago, Department of Radiation and Cellular Oncology, Chicago, Illinois
| | - Ralph R Weichselbaum
- University of Chicago, Department of Radiation and Cellular Oncology, Chicago, Illinois.
| |
Collapse
|
40
|
Wang Q, Li S, Qiao S, Zheng Z, Duan X, Zhu X. Changes in T Lymphocyte Subsets in Different Tumors Before and After Radiotherapy: A Meta-analysis. Front Immunol 2021; 12:648652. [PMID: 34220806 PMCID: PMC8242248 DOI: 10.3389/fimmu.2021.648652] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Radiation therapy (RT) induces an immune response, but the relationship of this response with tumor type is not fully understood. This meta-analysis further elucidated this relationship by analyzing the changes in T lymphocyte subsets in different tumors before and after radiotherapy. Methods We searched English-language electronic databases including PubMed, EMBASE, and the Cochrane Library to collect studies on the changes in peripheral blood CD3+ T lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes before and after radiotherapy in tumor patients from January 2015 to April 2021. The quality of the included literature was evaluated using the NOS scale provided by the Cochrane Collaboration, and statistical software RevMan 5.4 was used to analyze the included literature. P<0.05 was considered to indicate statistical significance. Results A total of 19 studies in 16 articles involving 877 tumor patients were included. All data were collected within 1 month before or after radiotherapy. Meta-analysis showed that numbers of CD3+ T lymphocytes (SMD: -0.40; 95% CI [-0.75, -0.04]; p = 0.03) and CD4+ T lymphocytes (SMD: -0.43; 95% CI: [-0.85, -0.02]; p = 0.04) were significantly reduced after radiotherapy compared with before treatment, but there was no statistically significant difference for CD8+ T lymphocytes (SMD: 0.33; 95% CI: [-0.88, 0.74]; p = 0.12). Subgroup analysis showed that peripheral blood T lymphocytes decreased in head and neck cancer. However, in prostate cancer and breast cancer, there was no significant change in peripheral blood. 1 month after radiotherapy, it has a potential proliferation and activation effect on lymphocytes in esophageal cancer and lung cancer. The results showed that CD8+T lymphocytes increased in peripheral blood after SBRT. Radiotherapy alone reduced CD3+ T lymphocyte numbers. Conclusions Within 1 month of radiotherapy, patients have obvious immunological changes, which can cause apoptosis and reduction of T lymphocytes, and affect the balance of peripheral blood immune cells. The degree of immune response induced by radiotherapy differed between tumor types.
Collapse
Affiliation(s)
- Qin Wang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shangbiao Li
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihao Zheng
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotong Duan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
42
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
43
|
Kim KJ, Lee HW, Seong J. Combination therapy with anti-T-cell immunoglobulin and mucin-domain containing molecule 3 and radiation improves antitumor efficacy in murine hepatocellular carcinoma. J Gastroenterol Hepatol 2021; 36:1357-1365. [PMID: 33217056 DOI: 10.1111/jgh.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIM T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM3) has emerged as a promising immune checkpoint inhibitor target; however, immune checkpoint inhibitor monotherapy does not benefit a substantial percentage of patients. Therefore, this study investigated the antitumor effect of anti-TIM3 therapy combined with radiation in a murine hepatocellular carcinoma (HCC) model. METHODS The effect of radiation on TIM3 expression was determined in murine and human HCC cells using western blotting, immunohistochemistry, and flow cytometry. Tumor growth and survival rate were measured to evaluate the antitumor effect of this combination therapy. Tumor immunological parameters were assessed using flow cytometry and histology. RESULTS TIM3 was upregulated in tumor-infiltrating CD8+ and CD4+ T cells in radiation-treated HCa-1-implanted mice. Combination treatment significantly delayed tumor growth compared with monotherapy (P < 0.01). Overall survival was improved in the combination group compared with that in the anti-TIM3 or radiation monotherapy groups (median survival time: 52 days vs 26 or 38 days, respectively, P < 0.001). The antitumor effect of the combination treatment was associated with increased apoptosis and decreased proliferation of tumor cells and reinvigorated CD8+ T-cell activation. CD8+ T-cell depletion reversed the antitumor efficacy of the combination treatment. These findings suggest that CD8+ T cells play key roles in the therapeutic effect of the combination treatment. CONCLUSION Anti-TIM3 and radiation combination therapy significantly improved the antitumor effect in a murine HCC model, as evidenced by inhibited tumor growth and increased overall survival. This approach could be a novel combined immune-radiotherapy strategy for HCC.
Collapse
Affiliation(s)
- Kyoung-Jin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Bassanelli M, Ricciuti B, Giannarelli D, Cecere FL, Roberto M, Giacinti S, Barucca V, Santarelli M, Ruggeri EM, Marchetti P, Cognetti F, Gelibter A, Cortesi E, Chiari R, Milella M, Ceribelli A. Systemic effect of radiotherapy before or after nivolumab in lung cancer: an observational, retrospective, multicenter study. TUMORI JOURNAL 2021; 108:250-257. [PMID: 33818208 DOI: 10.1177/03008916211004733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The combination of radiotherapy (RT) and programmed death 1 inhibitors seems to increase antitumor immune responses. OBJECTIVE To assess the outcome and the role of the best combination sequence, i.e. immunotherapy given before, during, and/or after RT, in patients with non-small cell lung cancer (NSCLC). METHODS We conducted an observational, retrospective analysis of 95 consecutive patients with advanced NSCLC who received any radiotherapy treatment and nivolumab, as clinically indicated. Median overall survival (OS) and the 95% confidence interval (CI) were estimated with the Kaplan-Meier method. Cox model was used to obtain hazard ratio (HR) and associated 95% CI with statistical inference by log-rank statistic. RESULTS Median OS was 11.9 months (95% CI, 6.6-17.2). Patients who received radiotherapy during an immune checkpoint inhibitor treatment started more than 60 days before showed a better outcome than patients who started immunotherapy over 60 days after RT ending (HR, 2.90 [1.37-6.12], p = 0.005; median OS, 22.4 months vs 8.6 months, p = 0.005). Median progression-free survival was 6.3 months (95% CI, 4.6-8.0). CONCLUSIONS This study shows that combining irradiation with nivolumab for the treatment of advanced NSCLC leads to improved OS. The optimal time window for the combination of RT and immunotherapy seems to play a critical role for therapeutic antitumor response derived by abscopal effect.
Collapse
Affiliation(s)
- Maria Bassanelli
- Department of Oncology, San Camillo de Lellis Hospital, Rieti, Italy
| | - Biagio Ricciuti
- Department of Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Diana Giannarelli
- Biostatistic Unit, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Letizia Cecere
- Division of Medical Oncology 1, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Roberto
- Department of Oncology, University of Rome "Sapienza," Rome, Italy
| | - Silvana Giacinti
- Department of Oncology, Belcolle Hospital-Viterbo, Viterbo, Italy
| | - Viola Barucca
- Department of Oncology, Misericordia Hospital, Grosseto, Italy
| | - Mario Santarelli
- Department of Radiotherapy, San Camillo de Lellis Hospital, Rieti, Lazio, Italy
| | | | - Paolo Marchetti
- Department of Oncology, University of Rome "Sapienza," Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology 1, Regina Elena National Cancer Institute, Rome, Italy.,Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
| | - Alain Gelibter
- Medical Oncology Unit, Policlinico Umberto I, Rome, Italy
| | - Enrico Cortesi
- Medical Oncology Unit, Policlinico Umberto I, Rome, Italy
| | - Rita Chiari
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Milella
- Division of Oncology, Integrated University Hospital of Verona, Verona, Italy
| | - Anna Ceribelli
- Department of Oncology, San Camillo de Lellis Hospital, Rieti, Italy
| |
Collapse
|
45
|
Li B, Jiang C, Pang L, Zou B, Ding M, Sun X, Yu J, Wang L. Toxicity Profile of Combining PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy in Non-Small Cell Lung Cancer: A Systematic Review. Front Immunol 2021; 12:627197. [PMID: 33859637 PMCID: PMC8042254 DOI: 10.3389/fimmu.2021.627197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background The combination of immune checkpoint inhibitors (ICIs) and thoracic radiotherapy (TRT) has shown significant clinical activity in patients with non-small cell lung cancer (NSCLC). However, the currently available data on adverse events (AEs) were derived from a small subset of patients included in prospective clinical trials or retrospective studies. Thus, we conducted this systematic review to determine the AEs associated with this combination treatment. Methods An electronic literature search was performed in databases and conference proceedings of prospective clinical trials assessing the combination of ICIs and TRT for patients with NSCLC. The systematic analysis was conducted to determine the profile and incidence of AEs of combination treatment. We further performed the comparison of AEs between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors, and sequential and concurrent administration of ICIs and TRT to help identify high risk patients. The systematic analyses were conducted with the Review Manager (version 5.3; The Cochrane Collaboration, Oxford, United Kingdom) and Stata version 12.0 (StataCorp, College Station, TX, USA) software. Results Eleven clinical trials involving 1,113 patients with NSCLC were eligible for analysis. The incidence of all-grade AEs was 95.5%; that of high-grade AEs (grade ≥3) was 30.2%. The most frequent all-grade AE was fatigue (49.7%), while pneumonitis was the most common high-grade AE (3.8%) and grade 5 AE (0.6%). Notably, the toxicity profiles of PD-1 and PD-L1 inhibitors were similar. Concurrent treatment was associated with a higher incidence of higher-grade AEs (41.6% vs 24.8%, P=0.17) and pneumonitis (7.1% vs 3.9%, P=0.14) compared to sequential treatment, but no significant difference was observed. Conclusion Most AEs of this combination treatment are tolerable; as the most common high-grade AE, pneumonitis deserves the utmost attention of physicians. The toxicity profiles of patients receiving PD-1 or PD-L1 were similar, and no significant difference was observed between concurrent and sequential treatment.
Collapse
Affiliation(s)
- Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Chao Jiang
- Department of Otorhinolaryngology & Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Linlin Pang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Mingjun Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China.,Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
46
|
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020; 9:microorganisms9010031. [PMID: 33374132 PMCID: PMC7824294 DOI: 10.3390/microorganisms9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.
Collapse
Affiliation(s)
- Hwa-Jin Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Yongjoong Kim
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
- Correspondence:
| |
Collapse
|
47
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
48
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
49
|
Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int J Mol Sci 2020; 21:ijms21134767. [PMID: 32635552 PMCID: PMC7369903 DOI: 10.3390/ijms21134767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.
Collapse
|
50
|
Wang H, Li X, Peng R, Wang Y, Wang J. Stereotactic ablative radiotherapy for colorectal cancer liver metastasis. Semin Cancer Biol 2020; 71:21-32. [PMID: 32629077 DOI: 10.1016/j.semcancer.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Survival improvement of colorectal liver metastasis (CRLM) benefits from systemic therapy and metastasis-directed local therapy. Stereotactic ablative body radiotherapy (SABR), as a new efficient metastasis-directed local therapy with a systematic impact, plays a vital role in CRLM multidisciplinary treatment. SABR leads to a dramatic immunological change in the tumor microenvironment (TME) via differential activation of cytoprotective and cytotoxic pathways in malignant and non-malignant cells, in addition to direct tumor cell death. The synergy of SABR and immunotherapy might increase the abscopal response rate of out-field lesions by targeting different steps of the immune-mediated response, in addition to direct intratumoral cell death. The clinical treatment and efficacy of SABR, its influence on TME, and potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xuemin Li
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Ran Peng
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|