1
|
Wen H, Cheng D, Chen Y, Yue W, Zhang Z. Review on ultrasonic technology enhanced biological treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171260. [PMID: 38417513 DOI: 10.1016/j.scitotenv.2024.171260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
As a clean, sustainable and efficient technology of wastewater treatment, ultrasonic irradiation has gained special attention in wastewater treatment. It has been widely studied for degrading pollutants and enhancing biological treatment processes for wastewater treatment. This review focuses on the mechanism and updated information of ultrasonic technology to enhance biological treatment of wastewater. The mechanism involved in improving biological treatment by ultrasonic includes: 1) degradation of refractory substances and release carbon from sludges, 2) promotion of mass transfer and change of cell permeability, 3) facilitation of enzyme-catalyzed reactions and 4) influence of cell growth. Based on the above discussion, the effects of ultrasound on the enhancement of wastewater biological treatment processes can be categorized into indirect and direct ways. The indirect effect of ultrasonic waves in enhancing biological treatment is mainly achieved through the use of high-intensity ultrasonic waves. These waves can be used as a pretreatment to improve biodegradability of the wastewater. Moreover, the ultrasonic-treated sludge or its supernatant can serve as a carbon source for the treatment system. Low-intensity ultrasound is often employed to directly enhance the biological treatment of wastewater. The propose of this process is to improve activated sludge, domesticate polyphosphate-accumulating organisms, ammonia-oxidizing bacteria, and anammox bacteria, and achieve speedy start-up of partial nitrification and anammox. It has shown remarkable effects on maintaining stable operation, tolerating adverse conditions (i.e., low temperature, low C/N, etc.), resisting shock load (i.e., organic load, toxic load, etc.), and collapse recovery. These results indicate a promising future for biological wastewater treatment. Furthermore, virous ultrasonic reactor designs were presented, and their potential for engineering application was discussed.
Collapse
Affiliation(s)
- Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Yanlin Chen
- Chongqing Three Gorges Eco-Environmental technology innovation center Co., Ltd, Chongqing 401329, PR China
| | - Wenhui Yue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Liu W, Li T, Wang J, Shen Y, Ji X, Yang D. A new concept of waste iron recycling for the enhancement of the anammox process. CHEMOSPHERE 2022; 307:136151. [PMID: 36028122 DOI: 10.1016/j.chemosphere.2022.136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tianhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Zhang W, Zhou X, Cao X, Li S. Accelerating anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152989. [PMID: 35026268 DOI: 10.1016/j.scitotenv.2022.152989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Efficient enrichment of slow-growing anammox species is essential for rapid start-up and stable operation of high-rate anammox reactors. Herein, a low intensity ultrasound (LIU) was introduced into anaerobic sequencing batch biofilm reactors (ASBBRs) to enhance anammox nitrogen removal from nitrogen-rich wastewater. Operation results demonstrated that the maximum total nitrogen (TN) removal efficiency of 91.5% were achieved under the optimal ultrasonic parameters (32.7 °C water temperature, 0.18 W/cm2 ultrasonic intensity and 25.7 min ultrasonication time). Moreover, significant increases of extracellular polymeric substances (EPS) components and contents were observed via the ultrasonication stimulation. A close correlation between nitrogen removal and shifts in transformation and intensity of spectrum peaks was also verified by three-dimensional excitation-emission matrix spectroscopy (3D-EEM) analysis. High-throughput sequencing revealed that the relative abundance of Candidatus Kuenenia as the key anammox consortium significantly increased after applying optimal ultrasonication condition. Furthermore, enhancement mechanisms and future prospect of the LIU-assisted anammox process was elucidated and discussed. This research provides a viable and promising acceleration strategy for anammox-based process in practice.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China.
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Shuhan Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| |
Collapse
|
4
|
Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Yuan L, Wang T, Xing F, Wang X, Yun H. Enhancement of Anammox performances in an ABR at normal temperature by the low-intensity ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2021; 73:105468. [PMID: 33517095 PMCID: PMC7848630 DOI: 10.1016/j.ultsonch.2021.105468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
A lab-scale ultrasound enhancing Anammox reactor (ABRU) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25.0 kHz, intensity of 1.00 W cm-2 and exposure time of 36.0 s) obtained by response surface methodology (RSM). ABRU and the controlled Anammox reactor (ABRC) without ultrasonic treatment were operated in parallel. The start-up time of Anammox process in ABRU (59 d) was shorter than that in ABRC (69 d). At the end of the nitrogen load-enhancing period, NLR (0.500 kg N m-3 d-1) and NRR (0.430 kg N m-3 d-1) in ABRU were both higher than NLR (0.400 kg N m-3 d-1) and NRR (0.333 kg N m-3 d-1) in ABRC. The results of RTQ-PCR demonstrated that the specific low-intensity ultrasound irradiation improved the enrichment levels of AnAOB in mature sludge. SEM images and the observation of the macroscopic morphology of mature sludge showed that the ultrasound irradiation strengthened the formation of Anammox granular sludge, thereby improved the interception capacity and impact load resistance of the reactor, and enhanced the nitrogen removal performance in ABRU. The ultrasonic enhanced Anammox reactor based on an ABR with the optimal parameters can promote the rapid start-up and efficient and stable operation of the Anammox process at normal temperature (around 25.0 °C).
Collapse
Affiliation(s)
- Luzi Yuan
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Tao Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Fanghua Xing
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xian Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongying Yun
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
6
|
Choi D, Cho K, Jung J. Optimization of nitrogen removal performance in a single-stage SBR based on partial nitritation and ANAMMOX. WATER RESEARCH 2019; 162:105-114. [PMID: 31255780 DOI: 10.1016/j.watres.2019.06.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 05/12/2023]
Abstract
A partial nitritation (PN)/anaerobic ammonium oxidation (ANAMMOX) process in sequencing batch reactor (SBR) was successfully developed to treat high-strength ammonium wastewater. The feed distribution in the SBR cycle and sub-cycles was considered as the main operating strategy, and was optimized using a response surface methodology (RSM)-based optimization technique. In the SBR cycle, the maximum nitrogen removal rate (NRR) of 0.79 ± 0.01 kg m-3 d-1 was achieved by applying a feed distribution strategy that considered the kinetic characteristics of ANAMMOX and ammonia oxidizing bacteria (AOB). However, this strategy negatively affected the nitrogen removal efficiency (NRE) due to alkalinity loss. Therefore, the feed distribution in the SBR sub-cycles with respect to the NRE and the NRR was further studied. The nitrogen removal performance was optimized in the optimum region and an NRE of 88% and an NRR of 0.84 kg m-3 d-1 were achieved. The optimized model was verified in confirmation test. The RSM-based optimization results provide insights into the feed distribution strategy for achieving single-stage PN/ANAMMOX SBR operation.
Collapse
Affiliation(s)
- Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, Republic of Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
7
|
Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure. WATER 2019. [DOI: 10.3390/w11071341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The anaerobic ammonium oxidation (anammox) reaction removes nitrogen from wastewater, the performance of which is influenced by Ca2+; however, the effect of Ca2+ on microbial community structure is unclear. Therefore, the effects of Ca2+ concentration on the treatment performance of an anammox reactor and microbial community structure of anammox sludge were investigated. Ca2+ concentration minimally influenced the removal efficiency of NO2−–N and NH4+–N, but substantially influenced total N removal. Changing the Ca2+ concentration (between 25 and 125 mg/L) caused the average removal rate of total nitrogen to fluctuate by 3.3 percentage points. There were five major bacterial phyla in the anammox sludge: Proteobacteria, Chloroflexi, Acidobacteria, Planctomycete, and Chlorobi. Microbiological analysis revealed that the genera Acidobacterium, Anaerolinea, and Denitratisoma were positively correlated with Ca2+ concentration, and improved treatment performance of the anammox reactor. Moreover, uncultured Chlorobi bacterium clone RUGL1-218 (GQ421108.1) and uncultured sludge bacterium A21b (KT182572.1) may be key microorganisms for the immobilization of anammox bacteria. These findings offer a theoretical basis for improved wastewater treatment using the anammox process.
Collapse
|
8
|
Zhang ZZ, Deng R, Cheng YF, Zhou YH, Buayi X, Zhang X, Wang HZ, Jin RC. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:838-846. [PMID: 26340551 DOI: 10.1016/j.jhazmat.2015.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L(-1)d(-1)) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell-associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentrations in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies, i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg(-1)SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Rui Deng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Huang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiemuguli Buayi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Hui-Zhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
9
|
The properties of anaerobic ammonium oxidation (anammox) granules: Roles of ambient temperature, salinity and calcium concentration. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|