1
|
Butar Butar DC, Alakangas L, Kaasalainen H, Ronne E. Prevention of acid rock drainage formation through pyrite inhibition by silica coating. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6711-6731. [PMID: 40011335 PMCID: PMC11928364 DOI: 10.1007/s11356-025-36131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Passive treatment of acid rock drainage (ARD) is a sustainable approach to control ARD, with sulfide inhibition by silica being a promising alternative. In a small-scale column leaching, a total of four cells loaded with pyritic waste rock (11 wt% S) from an operating Cu mine in Sweden were kept in a climatic chamber at a controlled temperature and humidity. The waste rock was leached for 11 weeks before treatment using alkaline silicate solution was applied, without pH buffer and adjuster. One cell was left untreated, whereas the others were treated with silicate solution as a source of dissolved silica, with and without H2O2 pre-oxidation. The pH in silica-treated cells generated leachate with circumneutral pH until the end of the leaching cycle, whereas sulfide oxidation accelerated in the absence of treatment. Leachate quality in all Si-treated cells improved, as evidenced by the suppressed release of sulfur and other metals (e.g., Al, Fe, Cu, Co, Mn, and Ni). Upon treatment with a longer contact time, silica (SiO2) layer developed on waste rock and inhibited pyrite. The layer remained stable upon extended exposure to air and water for up to 10 weeks after treatment. Despite forming a siliceous Fe-O phase, H2O2 pre-oxidation resulted in indirect oxidation of sulfides and other phases. With an excess of silicate solution and at alkaline pH, pyrite surfaces are devoid of coating and metal ions were mobilized. Finally, this study suggested that treatment of pyritic waste rock using silica can attenuate ARD formation and prevent metal leaching by pyrite inhibition and maintaining a circumneutral pH environment or both.
Collapse
Affiliation(s)
- Dantie Claudia Butar Butar
- Applied Geochemistry, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| | - Lena Alakangas
- Applied Geochemistry, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Hanna Kaasalainen
- Applied Geochemistry, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
- Geological Survey of Finland, Vuorimiehentie 5, 02150, Espoo, Finland
| | - Erik Ronne
- Boliden AB, SE-101 20, Stockholm, Sweden
| |
Collapse
|
2
|
Shi X, Gao Y, Qian H, Chen J, Li W, Li S, Liu Y. Elucidating the hydrochemistry and REE evolution of surface water and groundwater affected by acid mine drainage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125495. [PMID: 39647767 DOI: 10.1016/j.envpol.2024.125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
The impact of pyrite mining on water quality is a global concern. This study investigates the impact of acid mine drainage (AMD) from an abandoned pyrite mine in the Qinling Mountains on surface and groundwater hydrochemistry and rare earth elements (REEs) evolution. A total of 54 water samples were collected in 2021, of which the Muzi River downstream of the mining area was repeated three times in three sampling periods. Hydrogeochemical methods and stable isotope techniques were used to analyze the impacts of AMD. Results showed that tailing water in comparison to groundwater and surface waters exhibits low pH with high concentrations of SO42-, potentially toxic elements (PTEs), and REEs, and is characterized by normalized middle REE (MREE) enrichment. Groundwater is less influenced by AMD and shows HCO3-Ca and HCO3-Ca·Na types. AMD contaminates surface water to different degrees. Surface water received SO42- input from AMD, exhibited SO4-Ca, SO4·HCO3-Ca, and HCO3·SO4-Ca types within the mining area, and evolved from HCO3·SO4-Ca to HCO3-Ca downstream as AMD influence diminishes. High concentrations of PTEs and REEs are presented in AMD and seepage near the slag heap, and decreased rapidly along the flow path, while SO42- migrated over longer distances. The water in the study area primarily originates from atmospheric precipitation, with close relation among surface water, groundwater, and tailing water. Water-rock interactions and pyrite oxidation governed the hydrochemical composition, with sulfide oxidation facilitated the carbonatite-water reaction, which alleviated sulfide oxidation-induced acidification. The concentrations of PTEs are regulated by adsorption and precipitation, carbonate buffering, and dilution along the flow path. REEs are mainly controlled by pH, inorganic complexation, and secondary mineral adsorption. As the pH changes from acidic to neutral or weakly alkaline, REEs shift from sulfate-complex dominated to carbonate-complex dominated. These insights contribute to a better understanding of AMD impacts on surface and groundwater, providing a basis for the rational management of AMD.
Collapse
Affiliation(s)
- Xiaoxin Shi
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Yanyan Gao
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China.
| | - Hui Qian
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China.
| | - Jie Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Weiqing Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Siqi Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Yixin Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
3
|
Gebreslassie G, Desta HG, Dong Y, Zheng X, Zhao M, Lin B. Advanced membrane-based high-value metal recovery from wastewater. WATER RESEARCH 2024; 265:122122. [PMID: 39128331 DOI: 10.1016/j.watres.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membrane-based technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
Collapse
Affiliation(s)
- Gebrehiwot Gebreslassie
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Halefom G Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Reig-Valor MJ, Rozas-Martínez J, López-Borrell A, Lora-García J, López-Pérez MF. Experimental Study of a Sequential Membrane Process of Ultrafiltration and Nanofiltration for Efficient Polyphenol Extraction from Wine Lees. MEMBRANES 2024; 14:82. [PMID: 38668110 PMCID: PMC11051934 DOI: 10.3390/membranes14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The wine industry is a sector of great importance in the Spanish economy, contributing substantial annual revenues. However, one challenge facing the industry is the amount of waste generated, reaching millions of tons annually. These residues consist of organic matter of industrial interest, such as polyphenols. These substances are characterised by their excellent antioxidant properties, making them ideal for use in the food, cosmetic, and pharmaceutical industries. Modern techniques, such as membrane technology, are explored for their extraction based on separating compounds according to size. This work studies a sequential filtration process using ultrafiltration (UF) and nanofiltration (NF) membranes at different operating conditions (2 bar and 9.5 bar for UF and NF, respectively, at 20 °C) to extract polyphenols from wine lees. The results show a total polyphenols rejection rate for each process of 54% for UF and 90% for NF. Pore blocking models have been studied for the UF process and an intermediate pore blocking of the membrane upon wine lees filtration has been identified. A mathematical model that justifies the behavior of a polymeric NF membrane with the filtration of pre-treated vinasse residues has been validated. This study shows a viable process for extracting polyphenols from wine lees with sequential membrane technology.
Collapse
Affiliation(s)
- Miguel-Jorge Reig-Valor
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (J.R.-M.); (A.L.-B.); (J.L.-G.); (M.-F.L.-P.)
| | | | | | | | | |
Collapse
|
5
|
Nancucheo I, Segura A, Hernández P, Canales C, Benito N, Arranz A, Romero-Sáez M, Recio-Sánchez G. Bio-recovery of CuS nanoparticles from the treatment of acid mine drainage with potential photocatalytic and antibacterial applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166194. [PMID: 37567303 DOI: 10.1016/j.scitotenv.2023.166194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In the present work, CuS nanoparticles were biorecovered from a real acid mine drainage (AMD) and its photocatalytic and antibacterial activities were studied. CuS were formed by delivering biogenic H2S produced by a continuous sulfidogenic bioreactor to an off-line vessel containing the AMD. The main physico-chemical properties of CuS nanoparticles were analyzed by UV-vis spectroscopy, TEM, FE-SEM, XRD and XPS. Moreover, its photocatalytic activity on the photodegradation of organic dyes in water and its antibacterial activity against several bacterial strains were studied and compared with CuS nanoparticles synthetized from a CuSO4 aqueous solution based on the same synthesis method. CuS nanoparticles from the real AMD showed similar physico-chemical properties and photocatalytic and antibacterial activities in comparison to CuS nanoparticles formed with the copper solutions. These results open the way to recover valorous CuS nanoparticles from AMD with potential industrial applications using a metal bioremediation process based on sulfidogenic bioreactors.
Collapse
Affiliation(s)
- Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Aileen Segura
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Christian Canales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Noelia Benito
- Departamento de Física, Universidad de Concepción, Concepción, Chile
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Manuel Romero-Sáez
- Grupo Química Básica, Aplicada y Ambiente-ALQUIMIA, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile.
| |
Collapse
|
6
|
Lee J, Shin Y, Boo C, Hong S. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Hussain A, Yan H, Ul Afsar N, Wang H, Yan J, Jiang C, Wang Y, Xu T. Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Abstract
Acid mine drainage (AMD) is a typical type of pollution originating from complex oxidation interactions that occur under ambient conditions in abandoned and active mines. AMD has high acidity and contains a high concentration of heavy metals and metalloids, posing a serious threat to ecological systems and human health. Over the years, great progress has been made in the prevention and treatment of AMD. Remediation approaches like chemical neutralization precipitation, ion exchange, membrane separation processes, and bioremediation have been extensively reported. Nevertheless, some limitations, such as low efficacy, excessive consumption of chemical reagents, and secondary contamination restrict the application of these technologies. The aim of this review was to provide updated information on the sustainable treatments that have been engaged in the published literature on the resource utilization of AMD. The recovery and reuse of valuable resources (e.g., clean water, sulfuric acid, and metal ions) from AMD can offset the cost of AMD remediation. Iron oxide particles recovered from AMD can be applied as adsorbents for the removal of pollutants from wastewater and for the fabrication of effective catalysts for heterogeneous Fenton reactions. The application of AMD in beneficiation fields, such as activating pyrite and chalcopyrite flotation, regulating pulp pH, and leaching copper-bearing waste rock, provides easy access to the innovative utilization of AMD. A review such as this will help researchers understand the progress in research, and identify the strengths and weaknesses of each treatment technology, which can help shape the direction of future research in this area.
Collapse
|
9
|
Song K, Wang F, Peng Y, Liu J, Liu D. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119327. [PMID: 35447254 DOI: 10.1016/j.envpol.2022.119327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
To effectively restore the groundwater environment of the Shiping Mine (SPM) area, which is contaminated by acid mine drainage (AMD), a hydrogeochemical conceptual model was constructed based on groundwater chemistry and environmental stable isotopes. The contribution rate of various pollution sources in the groundwater environment was quantitatively analyzed using an optimized stable isotope mass balance model. A total of 68 groups of water samples were collected. The sampling period covered the dry, intermediate, and wet periods of a complete hydrological year. Samples were taken from rain, springs, mine drainage, tailings leachate, and surface water; and the detection and analysis indicators included 24 parameters, such as inorganic salts, heavy metals, and isotopes. A hydrogeochemical and statistical data analysis was performed. The main source of groundwater replenishment was found to be atmospheric precipitation, with the water-rock interaction of calcite and pyrite, and mining activities being the main controlling factors of hydrogeochemical processes. Acid mine drainage significantly enhanced the dissolution of various minerals, and the detection rate of Zn, Cu, As, Cd, and Pb increased from 0-30%-100% when compared with groundwater in the area upstream of the mines. The optimized mass balance model results revealed that the contribution rates of upstream groundwater, mine water and leachate were 0.78-0.86, 0.08-0.18, and 0.04-0.06 for Heidong underground river, respectively; were 0.27-0.36, 0.62-0.68, and 0.03-0.05 for Tiantang underground river, respectively. Furthermore, based on the water balance analysis, 34-70% of the mine water was found to infiltrate directly through karst fissures and karst pipes and could not be collected at the mine entrance. Acid mine drainage that directly infiltrated through runoff could easily be ignored due to the hidden migration path, which may cause the groundwater environment to be remediated less effectively than expected.
Collapse
Affiliation(s)
- Kai Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Fei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yue Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jian Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Dan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
10
|
Investigations on Strategic Element Recovery by an Underground Membrane Pilot Plant from In-Situ Extracted Bioleaching Solutions. MINERALS 2021. [DOI: 10.3390/min12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Focusing on the selective extraction of the critical raw materials indium and germanium from real bioleaching solutions, extended studies have been carried out using Europe’s first underground hybrid membrane pilot plant (TRL6). In order to transfer former laboratory experiments to pilot scale, NF99 (Alfa Laval) was used for the evaluation of membrane permeance and ion retention. A performance test of microfiltration (MF) and nanofiltration (NF) showed high permeances with low root-mean-square deviation under feed variation (5.2% for MF, 4.7% for NF). Depending on the feed load, a significant permeance drop of up to 57% for MF (3 bar) and 26% for NF (10 bar, 1.1 m s−1) was observed. The NF retention performance showed that, without regular chemical cleaning, the selectivity between the target elements degraded. By introducing acidic-basic cleaning steps, it was possible to keep the retention behavior at an approximately constant level (In 91.0 ± 1.3%; Ge 18.2 ± 5.5%). In relation to the specified target, the best results could be achieved at low pressure (7.5 bar) and a maximum overflow velocity of 1.1 m s−1, with a retention of 88.4% for indium and 8.8% for germanium. Moreover, the investigations proved the functionality and long-term stability of the underground membrane device.
Collapse
|
11
|
Bai J, Zhang H, Xiao L. Formation mechanism of carbide slag composite sustained-alkalinity-release particles for the source control of acid mine drainage. Sci Rep 2021; 11:23793. [PMID: 34893655 PMCID: PMC8664932 DOI: 10.1038/s41598-021-03277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Acid mine drainage (AMD) has caused serious and long-lasting damage to the environment in many countries. Preventing AMD formation at the source is considered the most direct and effective method of remediation. Carbide slag, an industrial waste, is a potential AMD treatment material due to its strong alkalinity. However, applying carbide slag at the source carries difficulties due to its rapid release of alkalinity. This is the first attempt to mix carbide slag with bentonite to prepare sustained-alkalinity-release particles for source control of AMD. The size of Ca(OH)2 crystallites is decreased from 267 to 211 nm, and the reduced part forms calcium silicate hydrate gel (C-S-H) between the carbide slag and bentonite. C-S-H encapsulated on the surface of the carbide slag, increasing the mechanical strength of the particles, and achieving slow release of alkalinity. The suggested optimum preparation conditions for the particles are as follows: bentonite-to-carbide slag mass ratio of 3:7, Na2CO3 dose of 10 wt%, and calcination temperature of 500 °C for 1 h. The particles can remove 105 mg/g Cu2+ within 12 h, and the loss rate is only 7.4%. The alkalinity release time of the particles is 4 times greater than that of carbide slag.
Collapse
Affiliation(s)
- Jichi Bai
- grid.464369.a0000 0001 1122 661XSchool of Mines, Liaoning Technical University, Fuxin, 123000 China
| | - Haiqin Zhang
- College of Environmental Science and Engineer, Liaoning Technical University, Fuxin, 123000, China.
| | - Liping Xiao
- School of Mines, Liaoning Technical University, Fuxin, 123000, China. .,School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China.
| |
Collapse
|
12
|
Chen Y, Tian S, Fu J, Lin Y, Huang J, Chen S, Hu X. Study on Tailings Covering System Constructed by Geological Polymerization of Mine Waste, Part 1: Material Characterization and Cover Construction. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1184-1190. [PMID: 34529102 DOI: 10.1007/s00128-021-03372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) is a serious and persistent environmental pollution problem. At present, many studies have focused on the tailings pond's cover systems. This paper introduced the research results of using tin tailings from Laili mountain to make the covering layer of tailings pond. The first part included a detailed description of tailings characterization and acid production potential. On this basis, the hard layer (HL) was prepared and its feasibility as oxidation barrier was evaluated. It was found that when the proportion of tailings waste was 70%, the immobilization efficiency of heavy metals can reach more than 99.45%, and the pH of leaching solution was about 10.8. Moreover, the beneficial effect of solid waste addition on the HL was also verified. This suggests that HL as a post-mining restorative strategy has strong positive influence on pollution control.
Collapse
Affiliation(s)
- Yunjian Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jiangli Fu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yichao Lin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Shan Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
13
|
Lebron YAR, Moreira VR, Maia A, Couto CF, Moravia WG, Amaral MCS. Integrated photo-Fenton and membrane-based techniques for textile effluent reclamation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Influence of multivalent-electrolyte metal solutions on the superficial properties and performance of a polyamide nanofiltration membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Asif MB, Price WE, Fida Z, Tufail A, Ren T, Hai FI. Acid mine drainage and sewage impacted groundwater treatment by membrane distillation: Organic micropollutant and metal removal and membrane fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112708. [PMID: 33971511 DOI: 10.1016/j.jenvman.2021.112708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is the dominant source of freshwater in many countries around the globe, and the deterioration in its quality by contaminants originating from anthropogenic sources raises serious concern. In this study, a scenario where groundwater is contaminated by acid mine drainage (AMD) from mining activities and/or sewage was envisaged, and the performance of a direct contact membrane distillation (DCMD) system was investigated comprehensively for different compositions of the AMD- and sewage-impacted groundwater. Regardless of the composition, MD membrane achieved 98-100% removal of metals and bulk organics, while the removal of the selected micropollutants ranged between 80 and 100%. Effective retention of contaminants by the MD led to their accumulation over time, which affected the hydraulic performance of the MD membrane by reducing the permeate flux by 29-76%. When persulfate (PS)-mediated oxidation process was integrated with the DCMD, degradation of bulk organics (50-71%) and micropollutants (50-100%) by PS reduced their accumulation. Characterisation of the fouling layer revealed the occurrence of membrane scaling that was mainly due to the deposition of iron oxide or oxyhydroxide precipitates. For an identical composition of the AMD- and sewage-impacted groundwater, flux decline was 10% less in PS-assisted DCMD as compared to that in the standalone DCMD. However, this did not prevent the formation of iron oxide scales on MD membrane during the operation of PS-assisted DCMD. This study demonstrates the long-term performance of a standalone and PS-assisted DCMD operated in continuous-flow mode to treat AMD- and sewage-impacted groundwater for the first time.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zulqarnain Fida
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Arbab Tufail
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ting Ren
- Mineral and Resource Engineering, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
16
|
Review of Remediation Solutions for Acid Mine Drainage Using the Modified Hill Framework. SUSTAINABILITY 2021. [DOI: 10.3390/su13158118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper reviews the Acid Mine Drainage (AMD) remediation potential and operational costs of twelve existing AMD remediation methods against Class 0 and Class I AMD geochemical characteristics as defined in the Modified Hill Framework. Of the twelve remediation options reviewed in this study, eleven required additional process steps either for further treatment to achieve the discharge limits or for the safe management of hazardous waste by-products. Chemical desalination showed the greatest potential with high quality treated water and operational costs between USD 0.25 and USD 0.75 per cubic meter treated. The management of the toxic metal and sulphide by-products remains a key challenge that requires further research for sustainable mine water remediation. Further development of end-to-end methods suitable for Class 0 AMD with economical operational costs is recommended in order to effectively address the ongoing environmental challenges posed by AMD globally.
Collapse
|
17
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Hegoburu I, Zedda KL, Velizarov S. Treatment of Electroplating Wastewater Using NF pH-Stable Membranes: Characterization and Application. MEMBRANES 2020; 10:E399. [PMID: 33291325 PMCID: PMC7762135 DOI: 10.3390/membranes10120399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/25/2023]
Abstract
Industrial adoption of nanofiltration (NF) for treatment of low-pH wastewater is hindered by the limited membrane lifetime at strongly acidic conditions. In this study, the electroplating wastewater (EPWW) filtration performance of a novel pH-stable NF membrane is compared against a commercial NF membrane and a reverse osmosis (RO) membrane. The presented membrane is relatively hydrophobic and has its isoelectric point (IEP) at pH 4.1, with a high and positive zeta potential of +10 mV at pH 3. A novel method was developed to determine the molecular weight cut-off (MWCO) at a pH of 2, with a finding that the membrane maintains the same MWCO (~500 Da) as under neutral pH operating conditions, whereas the commercial membrane significantly increases it. In crossflow filtration experiments with simulated EPWW, rejections above 75% are observed for all heavy metals (compared to only 30% of the commercial membrane), while keeping the same pH in the feed and permeate. Despite the relatively lower permeance of the prepared membrane (~1 L/(m2·h·bar) versus ~4 L/(m2·h·bar) of the commercial membrane), its high heavy metals rejection coupled with a very low acid rejection makes it suitable for acid recovery applications.
Collapse
Affiliation(s)
- Ignacio Hegoburu
- Associated Laboratory for Green Chemistry—Clean Technologies and Processes (LAQV), REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | | | - Svetlozar Velizarov
- Associated Laboratory for Green Chemistry—Clean Technologies and Processes (LAQV), REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
20
|
Su G, Deng X, Hu L, Praburaman L, Zhong H, He Z. Comparative analysis of early-stage adsorption and biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite and pyrite surfaces. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Ding C, Yi M, Liu B, Han C, Yu X, Wang Y. Forward osmosis-extraction hybrid process for resource recovery from dye wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Recovery of iron(II) and aluminum(III) from acid mine drainage by sequential selective precipitation and fluidized bed homogeneous crystallization (FBHC). J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Rezaie B, Anderson A. Sustainable resolutions for environmental threat of the acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137211. [PMID: 32062234 DOI: 10.1016/j.scitotenv.2020.137211] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Acid Mine Drainage (AMD) caused by abandoned mines is an enormous source of negative impact on the environment and the species that inhabit it. The low levels of pH and high concentration of metals and metalloids (copper, gadolinium, lithium, etc.) in mining pits with standing water lead to changing the balance of surrounding organisms and ecosystems. The scale of the issue and the quantity of AMD sites throughout the globe are factors that make AMD a critical environmental threat. Many AMD treatments have been implemented to reduce the negative impact of AMD, with many solutions being very costly and only suited for particular project situations. Policymakers have strong leverage in correcting AMD problems by developing regulations and laws. This study proposes three more sustainable solutions for reducing and eventually eliminating the impact of AMD with less capital investment while also resolving the landfill problem as well. Also, some governmental strategies are suggested for forming collaborative relationships between industry professionals from different perspectives with the goal to resolve the AMD issue through innovative ideas. Implementation of previous strategies and suggested ones, as well as the further involvement of more communities, can enhance the sustainability of life exposed to AMD.
Collapse
Affiliation(s)
- Behnaz Rezaie
- Applied Energy Research Laboratory (AERL), Department of Mechanical Engineering, College of Engineering, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844-0902, USA.
| | - Austin Anderson
- Applied Energy Research Laboratory (AERL), Department of Mechanical Engineering, College of Engineering, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844-0902, USA.
| |
Collapse
|
25
|
Wang Y, Ju L, Xu F, Tian L, Jia R, Song W, Li Y, Liu B. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. ENVIRONMENTAL RESEARCH 2020; 182:109063. [PMID: 31896469 DOI: 10.1016/j.envres.2019.109063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The quality of raw water and the current high level of pollution presents a phenomenon of high hardness and micropollution. An experimental study was conducted of the nanofiltration (NF) pilot-scale process combined with biological contact oxidation precipitation and ultrafiltration (UF) as the pretreatment process to treat this water. The study investigated the removal efficiency and membrane fouling of the NF process under the continuous and stable operating conditions of the combination process and studied the influence of high-hardness water on the membrane pollution of the combination process. The results showed that the combined process had a positive removal effect on conventional pollutants and characteristic pollutants, and the removal rates of conventional pollutants, such as turbidity, UV254 and CODMn, were 95%, 90% and 85%, respectively. The removal efficiency of total hardness, total alkalinity and soluble total solids reached 98%, 86% and 91%, respectively, and that of total desalination was above 95%. The removal rates of fluorescent organic substances, such as tryptophan, tyrosine, soluble microbial products (SMPs), fulvic acid and humus-like substances, as well as the precursors of disinfection byproducts reached over 88% and 50%, respectively. The pollutant removal efficiency of the combined process was mainly concentrated in the NF unit. The pretreatment process had certain removal effects on turbidity and macromolecular organic substances in the raw water, which provided a perfect operating environment for the NF process. Under long-term operation, the main elements of scaling on the surface of the NF membrane included C, O, Na, Mg, Al, Si, S, Cl, Ca, Ti and Fe, which were mainly concentrated at the outlet of the membrane and mainly came from monomers or compounds composed of inorganic salts in the raw water and some organic compounds. High-hardness water accelerated the change in membrane process parameters, and the surface of the membrane had abundant inorganic scaling. The inorganic scale on the surface of the NF membrane increased noticeably when filtering water with high hardness. Regular cleaning of the UF and NF membranes could effectively restore the parameters of the process and prolong the service life of the membrane process.
Collapse
Affiliation(s)
- Yonglei Wang
- College of Environmental and Municipal Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| | - Ling Ju
- College of Environmental and Municipal Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China
| | - Fei Xu
- Shandong Province Metallurgical Engineering Co.Ltd, 250101, Jinan, People's Republic of China
| | - Liping Tian
- Weifang Municipal Public Utilities Service Center, 261041, Weifang, People's Republic of China
| | - Ruibao Jia
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, 250021, Jinan, People's Republic of China.
| | - Wuchang Song
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, 250021, Jinan, People's Republic of China
| | - Yanan Li
- College of Environmental and Municipal Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China
| | - Bing Liu
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China
| |
Collapse
|
26
|
Experimental Study on the Optimum Preparation of Bentonite–Steel Slag Composite Particles. SUSTAINABILITY 2019. [DOI: 10.3390/su12010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel multifunctional adsorbent bentonite–steel slag composite particles (BSC) were developed for highly efficient and synergistic treatment of heavy metal ions in acid mine drainage (AMD). Single-factor experiments were performed to examine the influence of different parameters on the adsorption effect, alkalinity release quantity, and loss rate of the composite particles. Based on these results, an L9(43) orthogonal experiment was carried out, and the optimum levels and order of the factors were determined by range analysis. Finally, the optimum preparation process of the composite particles was determined: a bentonite–steel slag proportion of 5:5, Na2CO3 content of 5%, aging time of 12 h, calcination particle size of 2 mm, calcination temperature of 500 °C, and calcination time of 60 min. The isothermal adsorption of optimum BSC fit well with Langmuir and Brunauer–Emmett–Teller (BET) isotherms ( R 2 R 2 > 0.997). A synergistic adsorption–coagulation effect occurs, leading to the appearance of multiple layers locally on the surface of BSC, which satisfies the BET model. To understand the preparation mechanism of the BSC, bentonite, steel slag, uncalcined BSC, and the optimum BSC were characterized using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analysis, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The results indicate that calcination led to an increase in the average pore radius, total pore volume, and specific surface area (SBET) in the optimum BSC; numerous pores were present on its layered surface. Although the layer spacing increased after calcination, the structure of the dioctahedra remained unchanged. Exchangeable Na+, montmorillonite, and alkaline components were present between the optimum BSC layers. Water and impurities were removed after calcination. The BSC not only released an alkalinity-neutralising acid but also induced a synergistic adsorption–coagulation effect that removed heavy metal ions. It is an excellent multifunctional protective material for the mining environment, that can treat AMD-containing heavy metal ions.
Collapse
|
27
|
Werner A, Rieger A, Helbig K, Brix B, Zocher J, Haseneder R, Repke JU. Nanofiltration for the recovery of indium and germanium from bioleaching solutions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
|
29
|
Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wang S, Zhao Y, Li S. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25725-25732. [PMID: 31267388 DOI: 10.1007/s11356-019-05803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
The tailings produce acid mine drainage (AMD) due to sulfide minerals, especially pyrite oxidation. AMD has caused serious pollution to the surrounding aquatic and terrestrial ecosystems because of its famous low pH value and high metal and sulfate concentration, which is an urgent environmental problem faced by the world's ore mining industry. Here, we show that silicic protective surface films can suppress the oxidation of pyrite-bearing tailings for AMD control at-source without pre-oxidation of pyrite and solution pH adjuster and buffer. We found that the silicic protective surface films formed by calcium silicate can inhibit the oxidation of pyrite-bearing tailings and reduce the production of AMD through chemical leaching tests. Fourier transform infrared (FTIR) analyses and scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS) confirmed the presence of silicic protective surface films of calcium silicate on the surface of pyrite-bearing tailings.
Collapse
Affiliation(s)
- Shuncai Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Yue Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Shuang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
31
|
Removal of Pb(II) from Acid Mine Drainage with Bentonite-Steel Slag Composite Particles. SUSTAINABILITY 2019. [DOI: 10.3390/su11164476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abandoned lead and zinc (Pb-Zn) mines around the world produce large amounts of acid mine drainage (AMD) containing Pb(II), which is toxic and accumulates in the environment and in living organisms. Bentonite-steel slag composite particles (BSC) are a new type of acid mine drainage (AMD) treatment material that can remove heavy metal ions and reduce acidity. To date, there have been no reports on the treatment of Pb(II)-containing AMD using BSC. Therefore, the effects of pH, reaction time, temperature, and Pb(II) concentration on the adsorption of Pb(II) onto BSC were studied. Moreover, the BSC before and after the reaction, as well as the precipitation after the reaction, were characterized by scanning electron microscopy and X-ray diffraction analyses. The effect of pH on the adsorption process is similar to that of the formation of soluble and insoluble hydrolysates of Pb(II) on pH. The adsorption mechanism includes ion exchange, complexation, precipitation, and synergistic adsorption–coagulation effect. Adsorption kinetics are best-fit with the pseudo-second order kinetics model ( R 2 > 0.98). Furthermore, the total adsorption rate is controlled by liquid film diffusion and in-particle diffusion, the liquid film diffusion rate being higher than the in-particle diffusion rate. The isothermal adsorption of Pb(II) onto BSC fit well with Langmuir and Brunauer Emmett Teller (BET) isotherms ( R 2 > 0.995), and both single layer adsorption and local multilayer adsorption were observed. Thermodynamic analysis revealed that the adsorption process is spontaneous and endothermic, and that the degree of freedom increases with time. In summary, this study provides a theoretical basis for the use of BSC in treating AMD containing Pb(II).
Collapse
|
32
|
Ryu S, Naidu G, Hasan Johir MA, Choi Y, Jeong S, Vigneswaran S. Acid mine drainage treatment by integrated submerged membrane distillation-sorption system. CHEMOSPHERE 2019; 218:955-965. [PMID: 30609501 DOI: 10.1016/j.chemosphere.2018.11.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Acid mine drainage (AMD), an acidic effluent characterized by high concentrations of sulfate and heavy metals, is an environmental and economic concern. The performance of an integrated submerged direct contact membrane distillation (DCMD) - zeolite sorption system for AMD treatment was evaluated. The results showed that modified (heat treated) zeolite achieved 26-30% higher removal of heavy metals compared to natural untreated zeolite. Heavy metal sorption by heat treated zeolite followed the order of Fe > Al > Zn > Cu > Ni and the data fitted well to Langmuir and pseudo second order kinetics model. Slight pH adjustment from 2 to 4 significantly increased Fe and Al removal rate (close to 100%) due to a combination of sorption and partial precipitation. An integrated system of submerged DCMD with zeolite for AMD treatment enabled to achieve 50% water recovery in 30 h. The integrated system provided a favourable condition for zeolite to be used in powder form with full contact time. Likewise, heavy metal removal from AMD by zeolite, specifically Fe and Al, mitigated membrane fouling on the surface of the hollow fiber submerged membrane. The integrated system produced high quality fresh water while concentrating sulfuric acid and valuable heavy metals (Cu, Zn and Ni).
Collapse
Affiliation(s)
- Seongchul Ryu
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Gayathri Naidu
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Md Abu Hasan Johir
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Youngkwon Choi
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Sanghyun Jeong
- Graduate Schoolof Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republicof Korea
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
33
|
Andalaft J, Schwarz A, Pino L, Fuentes P, Bórquez R, Aybar M. Assessment and Modeling of Nanofiltration of Acid Mine Drainage. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Andalaft
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Alex Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Center for Water Resources in Agriculture and Mining, CRHIAM, P.O. Box 160-C, Concepción 4030000, Chile
| | - Luis Pino
- Department of Chemical Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Paula Fuentes
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Rodrigo Bórquez
- Department of Chemical Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Center for Water Resources in Agriculture and Mining, CRHIAM, P.O. Box 160-C, Concepción 4030000, Chile
| | - Marcelo Aybar
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| |
Collapse
|
34
|
He Y, Zhao DL, Chung TS. Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.041] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
He Y, Liu J, Han G, Chung TS. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Aguiar A, Andrade L, Grossi L, Pires W, Amaral M. Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Experimental simulation of continuous nanofiltration processes by means of a single module in batch mode. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Kamal O, Pochat-Bohatier C, Sanchez-Marcano J. Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ambiado K, Bustos C, Schwarz A, Bórquez R. Membrane technology applied to acid mine drainage from copper mining. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:705-715. [PMID: 28192364 DOI: 10.2166/wst.2016.556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes - NF99 and RO98pHt, both from Alfa Laval - were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.
Collapse
Affiliation(s)
- K Ambiado
- Department of Chemical Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - C Bustos
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile E-mail:
| | - A Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile E-mail:
| | - R Bórquez
- Department of Chemical Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| |
Collapse
|