1
|
Lapo B, Pavón S, Hoyo J, Fortuny A, Scapan P, Bertau M, Sastre AM. Bioderived Pickering Emulsion Based on Chitosan/Trialkyl Phosphine Oxides Applied to Selective Recovery of Rare Earth Elements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59731-59745. [PMID: 38091526 PMCID: PMC10802976 DOI: 10.1021/acsami.3c10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
A novel biobased pickering emulsion (PE) material was prepared by the encapsulation of Cyanex 923 (Cy923) into chitosan (CS) to selectively recover rare earth elements (REEs) from the aqueous phase. The preparation of PE was optimized through sequentially applying a 23 full factorial design, followed by a 33 Box-Behnken design varying the Cy923 content, CS concentration, and pH of CS. The material was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical microscopy, rheological, compositional, and stability measurements. The resultant material was evaluated in the removal of yttrium by pH influence, nitrate concentration, kinetics, equilibrium isotherms, reusability, and a comparison with liquid-liquid (L-L) extraction and tested in a real scenario to extract Y from a fluorescent lamp powder waste. In addition, the selectivity of PE for REE was investigated with Y/Ca, Gd/Ca, and La/Ni systems. PE extracts REE at 1 ≤ pH ≤ 5 at nitrate concentrations up to 2 mol/L. The kinetics and equilibrium studies showed reaction times <5 min and a maximum sorption capacity of 89.98 mg/g. Compared with L-L extraction, PE consumed 48% less Cy923 without using organic diluents. PE showed a remarkable selectivity for REE in the systems evaluated, showing separation factors of 22.62, 9.35, and 504.64 for the blends Y/Ca, Gd/Ca/Mg, and La/Ni, respectively. PE showed excellent selectivity extracting Y from a real aqueous liquor from the fluorescent lamp powder. PE demonstrates to be an effective and sustainable alternative for REE recovering due to its excellent efficiency in harsh conditions, favorable green chemistry metrics, and use of a biopolymer material in its composition avoiding the use of organic solvents used in L-L extraction.
Collapse
Affiliation(s)
- Byron Lapo
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
- School
of Chemical Engineering, Technical University
of Machala, UACQS, BIOeng, 070151 Machala, Ecuador
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Sandra Pavón
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Javier Hoyo
- Department
of Physical-Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Agustín Fortuny
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
| | - Paul Scapan
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Martin Bertau
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Ana María Sastre
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Atanassova M, Kurteva V. Mutual Solubilities between Ethylene Glycol and Organic Diluents: Gas Chromatography and NMR. Molecules 2023; 28:5121. [PMID: 37446785 DOI: 10.3390/molecules28135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, the mutual solubilities of sets of organic diluents (CHCl3, C6H6, C2H4Cl2, CCl4, C6H12, and n-hexane) with the organic compound ethylene glycol are investigated via gas chromatography (GC). The experimental data measured for these binary organic systems are used to adjust the future nonaqueous systems for the solvent extraction of various metals with ligands. The obtained results showed that the solubility of ethylene glycol decreased in the order CHCl3 > C6H6 > C2H4Cl2 > CCl4(0%) ≈ C6H12 ≈ n-hexane. On the other hand, the solubility of the tested traditional organic diluents in ethylene glycol decreased in the following order: C6H6 > CHCl3 > C2H4Cl2 > n-hexane > C6H12 > CCl4. 1H NMR was also used as an analytic method in order to compare the obtained results for the samples showing significant solubility only, including an additional study with 1,2- or 1,3-propanediol. The enhanced solubility of the C6H6 compound in ethylene glycol was identified here as critical due to the GC technique, which will be without future consequences in chemical technology. Therefore, it was found that the best molecular diluent for the recovery of metals among the tested ones is C6H12, with a green protocol as the new paradigm, replacing the aqueous phase with another nonaqueous phase, i.e., a second organic diluent.
Collapse
Affiliation(s)
- Maria Atanassova
- Department of General and Inorganic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Okhridski Blvd., 1756 Sofia, Bulgaria
| | - Vanya Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 9, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Applied novel functionality in separation procedure from leaching solution of zinc plant residue by using non-aqueous solvent extraction. Sci Rep 2023; 13:1146. [PMID: 36670143 PMCID: PMC9860044 DOI: 10.1038/s41598-023-27646-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Traditional solvent extraction (SX) procedures limit metal separation and purification, which consist of the organic and aqueous phases. Because differences in metal ion solvation lead to distinct distribution properties, non-aqueous solvent extraction (NASX) considerably expands the scope of solvent extraction by replacing the aqueous phase with alternate polar solvents. In this study, an experimental design approach used non-aqueous solvent extraction to extract cobalt from zinc plant residue. The aqueous phase comprises ethylene glycol (EG), LiCl and metal ions. In kerosene, D2EHPA, Cyanex272, Cyanex301, and Cyanex302 extractants were used as a less polar organic phase. Various factors were investigated to see how they affected extraction, including solvent type, extractant type and phase ratio, pH, Co(II) concentration, and temperature. The results revealed that at a concentration of 0.05 M, the Cyanex301 extractant could achieve the requisite extraction efficiency in kerosene. The optimal conditions were chosen as the concentration of Cyanex 301 (0.05 M), the concentration of cobalt (833 ppm), the pH (3.5), and the percent of EG (80%). As a result, during the leaching process, these systems are advised for extracting and separating a combination of various metal ions.
Collapse
|
4
|
Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Dewulf B, Riaño S, Binnemans K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wilfong WC, Ji T, Duan Y, Shi F, Wang Q, Gray ML. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127625. [PMID: 34857400 DOI: 10.1016/j.jhazmat.2021.127625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous and growing global reliance on rare earth elements (REEs) for modern technology and the need for reliable domestic sources underscore the rising trend in REE-related research. Adsorption-based methods for REE recovery from liquid waste sources are well-positioned to compete with those of solvent extraction, both because of their expected lower negative environmental impact and simpler process operations. Functionalized silica represents a rising category of low cost and stable sorbents for heavy metal and REE recovery. These materials have collectively achieved high capacity and/or high selective removal of REEs from ideal solutions and synthetic or real coal wastewater and other leachate sources. These sorbents are competitive with conventional materials, such as ion exchange resins, activated carbon; and novel polymeric materials like ion-imprinted particles and metal organic frameworks (MOFs). This critical review first presents a data mining analysis for rare earth element recovery publications indexed in Web of science, highlighting changes in REE recovery research foci and confirming the sharply growing interest in functionalized silica sorbents. A detailed examination of sorbent formulation and operation strategies to selectively separate heavy (HREE), middle (MREE), and light (LREE) REEs from the aqueous sources is presented. Selectivity values for sorbents were largely calculated from available figure data and gauged the success of the associated strategies, primarily: (1) silane-grafted ligands, (2) impregnated ligands, and (3) bottom-up ligand/silica hybrids. These were often accompanied by successful co-strategies, especially bite angle control, site saturation, and selective REE elution. Recognizing the need to remove competing fouling metals to achieve purified REE "baskets," we highlight techniques for eliminating these species from acid mine drainage (AMD) and suggest a novel adsorption-based process for purified REE extraction that could be adapted to different water systems.
Collapse
Affiliation(s)
- Walter C Wilfong
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA.
| | - Tuo Ji
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Yuhua Duan
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Fan Shi
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Qiuming Wang
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - McMahan L Gray
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| |
Collapse
|
7
|
Amjad RS, Torkaman R, Asadollahzadeh M. Evaluation of effective parameters on the non-aqueous solvent extraction of samarium and gadolinium to n-dodecane/D2EHPA. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2021.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li Z, Dewulf B, Binnemans K. Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms. Ind Eng Chem Res 2021; 60:17285-17302. [PMID: 34898845 PMCID: PMC8662634 DOI: 10.1021/acs.iecr.1c02287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Efficient and sustainable separation of metals is gaining increasing attention, because of the essential roles of many metals in sustainable technologies for a climate-neutral society, such as rare earths in permanent magnets and cobalt, nickel, and manganese in the cathode materials of lithium-ion batteries. The separation and purification of metals by conventional solvent extraction (SX) systems, which consist of an organic phase and an aqueous phase, has limitations. By replacing the aqueous phase with other polar solvents, either polar molecular organic solvents or ionic solvents, nonaqueous solvent extraction (NASX) largely expands the scope of SX, since differences in solvation of metal ions lead to different distribution behaviors. This Review emphasizes enhanced metal extraction and remarkable metal separations observed in NASX systems and discusses the effects of polar solvents on the extraction mechanisms according to the type of polar solvents and the type of extractants. Furthermore, the considerable effects of the addition of water and complexing agents on metal separations in terms of metal ion solvation and speciation are highlighted. Efforts to integrate NASX into metallurgical flowsheets and to develop closed-loop solvometallurgical processes are also discussed. This Review aims to construct a framework of NASX on which many more studies on this topic, both fundamental and applied, can be built.
Collapse
Affiliation(s)
| | | | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
9
|
|
10
|
Botelho Junior AB, Espinosa DCR, Tenório JAS. Selective separation of Sc(III) and Zr(IV) from the leaching of bauxite residue using trialkylphosphine acids, tertiary amine, tri-butyl phosphate and their mixtures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Rizk S, Gamal R, El-Hefny N. Insights into non-aqueous solvent extraction of gadolinium and neodymium from ethylene glycol solution using Cyanex 572. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Li Z, Binnemans K. Opposite selectivities of tri- n-butyl phosphate and Cyanex 923 in solvent extraction of lithium and magnesium. AIChE J 2021; 67:e17219. [PMID: 34219744 PMCID: PMC8243954 DOI: 10.1002/aic.17219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/31/2020] [Accepted: 01/10/2021] [Indexed: 11/09/2022]
Abstract
The synergic solvent extraction system of tri-n-butyl phosphate (TBP) and FeCl3 (or ionic liquids, ILs) has been extensively studied for selective extraction of Li from Mg-containing brines. However, Cyanex 923 (C923), which extracts many metals stronger than TBP, has not yet been examined for Li/Mg separation. Here, we report on the unexpected observation that the C923/FeCl3 system has opposite Li/Mg selectivity compared to the TBP/FeCl3 system. Detailed investigations show that the opposite selectivity of the C923/FeCl3 (or IL) system is due to three factors: (1) the strong extraction of Fe by C923 leads to a low concentration of [FeCl4]- in the system, which is essential for Li extraction; (2) C923 in combination with an IL extracts Mg strongly by an ion-pair mechanism; (3) most importantly, C923 extracts Mg by solvation, resulting in an insufficient concentration of C923 for Li extraction. The unexpected poor Li/Mg selectivity of C923 highlights the irreplaceable role of TBP in the selective recovery of Li.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry, KU LeuvenHeverleeBelgium
| | | |
Collapse
|
13
|
Li Z, Zhang Z, Onghena B, Li X, Binnemans K. Ethylammonium nitrate enhances the extraction of transition metal nitrates by tri- n-butyl phosphate (TBP). AIChE J 2021; 67:e17213. [PMID: 34219743 PMCID: PMC8244074 DOI: 10.1002/aic.17213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Several molecular polar solvents have been used as solvents of the more polar phase in the solvent extraction (SX) of metals. However, the use of hydrophilic ionic liquids (ILs) as solvents has seldomly been explored for this application. Here, the hydrophilic IL ethylammonium nitrate (EAN), has been utilized as a polar solvent in SX of transition metal nitrates by tri-n-butyl phosphate (TBP). It was found that the extraction from EAN is considerably stronger than that from a range of molecular polar solvents. The main species of Co(II) and Fe(III) in EAN are likely [Co(NO3)4]2- and [Fe(NO3)4]-, respectively. The extracted species are likely Fe(TBP)3(NO3)3 and a mixture of Co(TBP)2(NO3)2 and Co(TBP)3(NO3)2. The addition of H2O or LiCl to EAN reduces the extraction because the metal cations coordinate to water molecules and chloride ions stronger than to nitrate ions. This study highlights the potential of using hydrophilic ILs to enhance SX of metals.
Collapse
Affiliation(s)
- Zheng Li
- Department of ChemistryKU LeuvenHeverleeBelgium
| | - Zidan Zhang
- Department of Chemical EngineeringUniversity of Texas at AustinAustinTexasUSA
| | | | - Xiaohua Li
- Department of ChemistryKU LeuvenHeverleeBelgium
| | | |
Collapse
|
14
|
Batchu NK, Li Z, Verbelen B, Binnemans K. Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Dewulf B, Batchu NK, Binnemans K. Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:19032-19039. [PMID: 33457111 PMCID: PMC7807624 DOI: 10.1021/acssuschemeng.0c07207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Neodymium and dysprosium can be efficiently separated by solvent extraction, using the neutral extractant Cyanex 923, if the conventional aqueous feed phase is largely replaced by the green polar organic solvent polyethylene glycol 200 (PEG 200). While pure aqueous and pure PEG 200 solutions in the presence of LiCl or HCl were not able to separate the two rare earth elements, high separation factors were observed when extraction was performed from PEG 200 chloride solutions with addition of small amounts of water. This addition of water bridges the gap between traditional hydrometallurgy and novel solvometallurgy and overcomes the challenges faced in both methods. The effect of different variables was investigated: water content, chloride concentration, type of chloride salt, Cyanex 923 concentration, scrubbing agent. A Job plot revealed the extraction stoichiometry is DyCl3·4L, where L is Cyanex 923. The McCabe-Thiele diagram for dysprosium extraction showed that complete extraction of this metal can be achieved by a 3-stage counter-current solvent extraction process, leaving neodymium behind in the raffinate. Finally, a conceptual flow sheet for the separation of neodymium and dysprosium including extraction, scrubbing, stripping, and regeneration steps was presented. The nonaqueous solvent extraction process presented in this paper can contribute to efficient recycling of rare earths from end-of-life neodymium-iron-boron (NdFeB) magnets.
Collapse
Affiliation(s)
- Brecht Dewulf
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Nagaphani Kumar Batchu
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| |
Collapse
|
16
|
Macchieraldo R, Ingenmey J, Kirchner B. Understanding the Complex Surface Interplay for Extraction: A Molecular Dynamics Study. Chemistry 2020; 26:14969-14977. [PMID: 32668054 PMCID: PMC7756757 DOI: 10.1002/chem.202002744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/13/2020] [Indexed: 11/22/2022]
Abstract
By means of classical molecular dynamics simulation the interfacial properties of methanol and n‐dodecane, which are two potential candidate solvents for use in non‐aqueous liquid–liquid extraction, were assessed. The question of how the interface changes depending on the concentration of extractant (tri‐n‐butyl phosphate) and salt (LiCl) is addressed. Two different models to represent systems were used to evaluate how LiCl and tri‐n‐butyl phosphate affect mutual miscibility, and how the last‐named behaves depending on the chemical environment. Tri‐n‐butyl phosphate increases the mutual solubility of the solvents, whereas LiCl counteracts it. The extractant was found to be mostly adsorbed on the interface between the solvents, and therefore the structural features of the adsorption were investigated. Adsorption of tri‐n‐butyl phosphate changes depending on its concentration and the presence of LiCl. It exhibits a preferential orientation in which the butyl chains point at the n‐dodecane phase and the phosphate group points at the methanol phase. For high concentrations of tri‐n‐butyl phosphate, its molecular orientation is preserved by diffusion of the excess molecules into both the methanol and n‐dodecane phases. However, LiCl hinders the diffusion into the methanol phase, and thus increases the concentration of tri‐n‐butyl phosphate at the interface and forces a rearrangement with subsequent loss of orientation.
Collapse
Affiliation(s)
- Roberto Macchieraldo
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| |
Collapse
|
17
|
Li Z, Binnemans K. Hydration counteracts the separation of lanthanides by solvent extraction. AIChE J 2020; 66:e16545. [PMID: 35859698 PMCID: PMC9285791 DOI: 10.1002/aic.16545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
The extraction of lanthanides from aqueous nitrate solutions by quaternary ammonium nitrate ionic liquids (e.g., [A336][NO3]) shows a negative sequence (i.e., light lanthanides are more efficiently extracted than heavy lanthanides), which conflicts with the lanthanide contraction. In this study, we explored the origin of the negative sequence by investigating the extraction of lanthanides from ethylammonium nitrate by [A336][NO3]. The extraction shows a positive sequence, which is converted to a negative sequence with the addition of water. The transformation from positive to negative sequences reveals that the negative sequence is caused by the hydration of lanthanide ions: hydration of lanthanide ions counteracts the extraction. Therefore, the use of solvents that have weak solvation with lanthanide ions might enhance the separation of the elements by solvent extraction.
Collapse
Affiliation(s)
- Zheng Li
- Department of ChemistryKU Leuven Heverlee Belgium
| | | |
Collapse
|
18
|
Batchu NK, Dewulf B, Riaño S, Binnemans K. Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Improved rare earth elements recovery from fluorescent lamp wastes applying supported liquid membranes to the leaching solutions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Li Z, Onghena B, Li X, Zhang Z, Binnemans K. Enhancing Metal Separations Using Hydrophilic Ionic Liquids and Analogues as Complexing Agents in the More Polar Phase of Liquid-Liquid Extraction Systems. Ind Eng Chem Res 2019; 58:15628-15636. [PMID: 31598033 PMCID: PMC6776877 DOI: 10.1021/acs.iecr.9b03472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
The separation of metals by liquid-liquid extraction largely relies on the affinity of metals to the extractants, which normally reside in the organic (less polar) phase because of their high hydrophobicity. Following a different route, using aminopoly(carboxylic acid)s (e.g., EDTA) as complexing agents in the aqueous (more polar) phase was found to enhance metal separations by selectively complexing metal cations. In this study, we demonstrate that, hydrophilic ionic liquids and analogues in the more polar phase could also selectively complex with metal cations and hence enhance metal separations. As an example, Cyanex 923 (a mixture of trialkyl phosphine oxides) dissolved in p-cymene extracts CoCl2 more efficiently than SmCl3 from a chloride ethylene glycol (EG) solution. However, when tetraethylammonium chloride is added into the EG solution, CoCl2 is selectively held back (only 1.2% extraction at 3.0 M tetraethylammonium chloride), whereas the extraction of SmCl3 is unaffected (89.9% extraction), leading to reversed metal separation with a separation factor of Sm(III)/Co(II) > 700. The same principle is applicable to a range of hydrophilic ionic liquids, which can be used as complexing agents in the more polar phase to enhance the separations of various metal mixtures by liquid-liquid extraction.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium
| | - Bieke Onghena
- Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium
| | - Xiaohua Li
- Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium
| | - Zidan Zhang
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium
| |
Collapse
|
21
|
Li Z, Zhang Z, Smolders S, Li X, Raiguel S, Nies E, De Vos DE, Binnemans K. Enhancing Metal Separations by Liquid-Liquid Extraction Using Polar Solvents. Chemistry 2019; 25:9197-9201. [PMID: 31141619 PMCID: PMC6771523 DOI: 10.1002/chem.201901800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Abstract
The less polar phase of liquid–liquid extraction systems has been studied extensively for improving metal separations; however, the role of the more polar phase has been overlooked for far too long. Herein, we investigate the extraction of metals from a variety of polar solvents and demonstrate that, the influence of polar solvents on metal extraction is so significant that extraction of many metals can be largely tuned, and the metal separations can be significantly enhanced by selecting suitable polar solvents. Furthermore, a mechanism on how the polar solvents affect metal extraction is proposed based on comprehensive characterizations. The method of using suitable polar solvents in liquid–liquid extraction paves a new and versatile way to enhance metal separations.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Zidan Zhang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Simon Smolders
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Xiaohua Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Stijn Raiguel
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Erik Nies
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Dirk E De Vos
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
22
|
Macchieraldo R, Gehrke S, Batchu NK, Kirchner B, Binnemans K. Tuning Solvent Miscibility: A Fundamental Assessment on the Example of Induced Methanol/ n-Dodecane Phase Separation. J Phys Chem B 2019; 123:4400-4407. [PMID: 31032613 PMCID: PMC6590496 DOI: 10.1021/acs.jpcb.9b00839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
In
this work, we assess the fundamental aspects of mutual miscibility
of solvents by studying the mixing of two potential candidates, methanol
and n-dodecane, for nonaqueous solvent extraction.
To do so, 1H NMR spectroscopy and molecular dynamics simulations
are used jointly. The NMR spectra show that good phase separation
can be obtained by adding LiCl and that the addition of a popular
extractant (tri-n-butyl phosphate) yields the opposite
effect. It is also demonstrated that in a specific case the poor phase
separation is not due to the migration of n-dodecane
into the more polar phase, but due to the transfer of the extractant
into it, which is especially relevant when considering industrial
applications of solvent extraction. With the aid of molecular dynamics
simulations, explanations of this behavior are given. Specifically,
an increase of all hydrogen-bond lifetimes is found to be consequent
to the addition of LiCl which implies an indirect influence on the
methanol liquid structure, by favoring a stronger hydrogen-bond network.
Therefore, we found that better phase separation is not directly due
to the presence of LiCl, but due to the “hardening”
of the hydrogen-bond network.
Collapse
Affiliation(s)
- Roberto Macchieraldo
- Mulliken Center for Theoretical Chemistry , University of Bonn , Beringstrasse 4+6 , D-53115 Bonn , Germany
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry , University of Bonn , Beringstrasse 4+6 , D-53115 Bonn , Germany.,Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45413 Mülheim an der Ruhr , Germany
| | - Nagaphani K Batchu
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F, bus 2404 , B-3001 Heverlee , Belgium
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry , University of Bonn , Beringstrasse 4+6 , D-53115 Bonn , Germany
| | - Koen Binnemans
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F, bus 2404 , B-3001 Heverlee , Belgium
| |
Collapse
|
23
|
Bauer A, Jäschke A, Shams Aldin Azzam S, Glasneck F, Ullmann S, Kersting B, Brendler V, Schmeide K, Stumpf T. Multidentate extracting agents based on calix[4]arene scaffold – UVI/EuIII separation studies. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Pavón S, Fortuny A, Coll MT, Sastre AM. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:359-367. [PMID: 29870964 DOI: 10.1016/j.jenvman.2018.05.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The necessity of Rare Earth Elements (REEs) recycling is crucial to minimizing their supply risk and provide an alternative to greener technologies. Hence, the REEs recovery from NdFeB magnet wastes using cationic extractants by solvent extraction technique has been investigated in this research. Due to the difficulty in maintaining the aqueous pH in the industrial counter-current devices when extractants like Cyanex 272 or Cyanex 572 are used, the Primene 81R·Cyanex 572 ionic liquid has been synthesised to overcome this. 99.99% Nd(III) recovery with a purity of 99.7% from an aqueous mixture of Nd/Tb/Dy in chloride medium, the three representative REEs present in the NdFeB magnets wastes, has been achieved after two stages counter-current extraction process using 0.30 M of Primene 81R·Cyanex 572 ionic liquid (1:4 A:O ratio) diluted in Solvesso 100, without any aqueous pH conditioning.
Collapse
Affiliation(s)
- S Pavón
- Chemical Engineering Department, EPSEVG, Universitat Politècnica de Catalunya, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain.
| | - A Fortuny
- Chemical Engineering Department, EPSEVG, Universitat Politècnica de Catalunya, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain
| | - M T Coll
- Agri-Food Engineering and Biotechnology Department, ESAB, Universitat Politècnica de Catalunya, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - A M Sastre
- Chemical Engineering Department, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 2017; 46:7229-7273. [DOI: 10.1039/c7cs00574a] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review describes the latest advances regarding the development, modification and application of suitable ligands for the liquid–liquid extraction of actinides and lanthanides from nuclear waste.
Collapse
Affiliation(s)
- Andrea Leoncini
- Molecular Nanofabrication Group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Willem Verboom
- Molecular Nanofabrication Group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
27
|
Riaño S, Petranikova M, Onghena B, Vander Hoogerstraete T, Banerjee D, Foreman MRS, Ekberg C, Binnemans K. Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Adv 2017. [DOI: 10.1039/c7ra06540j] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neodymium and dysprosium can be separated using a new extraction system based on a deep-eutectic solvent and Cyanex® 923 diluted in toluene.
Collapse
Affiliation(s)
- Sofía Riaño
- KU Leuven
- Department of Chemistry
- 3001 Heverlee
- Belgium
| | - Martina Petranikova
- Chalmers University of Technology
- Nuclear Chemistry and Industrial Materials Recycling
- Department of Chemistry and Chemical Engineering
- SE-412 96 Gothenburg
- Sweden
| | - Bieke Onghena
- KU Leuven
- Department of Chemistry
- 3001 Heverlee
- Belgium
| | | | - Dipanjan Banerjee
- Dutch-Belgian Beamline (DUBBLE)
- ESRF – The European Synchrotron
- F-38043 Grenoble Cedex 9
- France
| | - Mark R. StJ. Foreman
- Chalmers University of Technology
- Nuclear Chemistry and Industrial Materials Recycling
- Department of Chemistry and Chemical Engineering
- SE-412 96 Gothenburg
- Sweden
| | - Christian Ekberg
- Chalmers University of Technology
- Nuclear Chemistry and Industrial Materials Recycling
- Department of Chemistry and Chemical Engineering
- SE-412 96 Gothenburg
- Sweden
| | | |
Collapse
|
28
|
Batchu NK, Vander Hoogerstraete T, Banerjee D, Binnemans K. Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Adv 2017. [DOI: 10.1039/c7ra09144c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mixtures of rare earths are separation by non-aqueous solvent extraction with two immiscible organic phases.
Collapse
Affiliation(s)
| | | | - Dipanjan Banerjee
- Dutch-Belgian Beamline (DUBBLE)
- ESRF – The European Synchrotron
- F-38043 Grenoble Cedex 9
- France
| | | |
Collapse
|