1
|
Ni Y, Li J, Fan L. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions. Int J Biol Macromol 2024; 259:128796. [PMID: 38104679 DOI: 10.1016/j.ijbiomac.2023.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
A cellulose suspension and tannic acid (TA) were co-sonicated to prepare TA-incorporated nanocellulose hydrogels with the aim of improving the physical and oxidative stability of high-internal-phase emulsions (HIPEs). Cellulose nanocrystal (CNC) hydrogels were used to stabilize HIPEs, relying on the interfacial adsorption behavior of CNCs and the reversible gelation properties of hydrogels. TA was incorporated due to its ability to improve emulsification performance and antioxidant properties. Introducing TA enhanced the gel strength of hydrogels by decreasing the interfibrillar distance. The utilization of CNC-TA hydrogels effectively improved physical properties of HIPEs. This improvement included a reduction in droplet size from the initial 103.41 μm to 39.66 μm, an enhancement of the gel structure, and an improvement in storage stability. A denser and orderly interfacial structure was formed in CNCs-TA hydrogel stabilized HIPEs due to anchoring TA at the interface driven by the hydrogen-bonding interaction between CNCs and TA. This densely interfacial layer with good antioxidant activity markedly enhanced the oxidative stability of emulsions, as evidenced by the low level of oxidation products in HIPEs. This study has the potential to extend the utilization of CNC-stabilized emulsions to new applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yang Ni
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Kinfu HH, Rahman MM. Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. MEMBRANES 2023; 13:membranes13050481. [PMID: 37233542 DOI: 10.3390/membranes13050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Metal-polyphenol networks (MPNs) are being used as versatile coatings for regulating membrane surface chemistry and for the formation of thin separation layers. The intrinsic nature of plant polyphenols and their coordination with transition metal ions provide a green synthesis procedure of thin films, which enhance membrane hydrophilicity and fouling resistance. MPNs have been used to fabricate tailorable coating layers for high-performance membranes desirable for a wide range of applications. Here, we present the recent progress of the use of MPNs in membrane materials and processes with a special focus on the important roles of tannic acid-metal ion (TA-Mn+) coordination for thin film formation. This review introduces the most recent advances in the fabrication techniques and the application areas of TA-Mn+ containing membranes. In addition, this paper outlines the latest research progress of the TA-metal ion containing membranes and summarizes the role of MPNs in membrane performance. The impact of fabrication parameters, as well as the stability of the synthesized films, is discussed. Finally, the remaining challenges that the field still faces and potential future opportunities are illustrated.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
3
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Wang YX, Zhu CY, Lu F, Yu ZF, Yang HC, Xue M, Xu ZK. Metal-Polyphenol Coordination at the Aqueous Contra-diffusion "Interface": A Green Way to High-Performance Iron(III)/Tannic Acid Thin-Film-Composite Nanofiltration Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13793-13802. [PMID: 36327135 DOI: 10.1021/acs.langmuir.2c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin-film-composite (TFC) nanofiltration membranes have found wide uses in environment remediation and industrial separation. There is a growing trend to avoid the use of organic solvents and toxic chemicals during membrane fabrication. Therefore, the aqueous fabrication of TFC membranes receives considerable interest as a green and sustainable process. However, it remains challenging to construct a defect-free and ultrathin film in a homogeneous aqueous phase without the assistance of an interface. The contra-diffusion process provides a special "interface" to confine the film formation within a narrow space by regulating the competition between precursor diffusion and interfacial reactions. Herein, Fe3+/tannic acid (TA) TFC membranes were fabricated by a contra-diffusion process. The effects of fabrication parameters on the Fe3+/TA TFC membrane microstructure and performance were also investigated. The negatively charged membrane performs a competitive Na2SO4 rejection of 95.6% with a permeation flux of 44.3 L m-2 h-1 under 0.6 MPa as well as more than 99.5% rejection to several anionic dyes. The as-prepared membranes perform superior nanofiltration performance compared to other reported Fe3+/TA-based membranes, owing to the thin and defect-free selective layers by self-regulation. Moreover, the membranes exhibit stable rejection during a long-term nanofiltration test.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong519082, People's Republic of China
| | - Cheng-Ye Zhu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang310027, People's Republic of China
| | - Feng Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong519082, People's Republic of China
| | - Zi-Feng Yu
- National Engineering Research Center of Near-Net-Shape Forming Technology for Metallic Materials, South China University of Technology, Guangzhou, Guangdong510640, People's Republic of China
| | - Hao-Cheng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong519082, People's Republic of China
| | - Ming Xue
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong519082, People's Republic of China
| | - Zhi-Kang Xu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang310027, People's Republic of China
| |
Collapse
|
5
|
Said SM, Wang T, Feng YN, Ren Y, Zhao ZP. Recent Progress in Membrane Technologies Based on Metal–Phenolic Networks: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seleman Mahamoud Said
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
- University of Dar es Salaam, College of Engineering and Technology, Department of Chemical and Process Engineering, P.O. Box 35131, Dar es Salaam, 16103, United Republic of Tanzania
| | - Tao Wang
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Ying-Nan Feng
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Yongsheng Ren
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Department of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhi-Ping Zhao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| |
Collapse
|
6
|
Zhang Z, Liu C, Zhang H, Xu Z, Ju F, Yu C, Xu Y. Ultrafast Interfacial Self-Assembly toward Supramolecular Metal-Organic Films for Water Desalination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201624. [PMID: 35780496 PMCID: PMC9403643 DOI: 10.1002/advs.202201624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular metal-organic materials are considered as the ideal candidates for membrane fabrication due to their excellent film forming characteristics, diverse metal centers and ligand sources, and designable structure and function. However, it remains challenging to rapidly construct highly permeable supramolecular metal-organic membranes with high salt rejection. Herein, a novel ultrafast interfacial self-assembly strategy to prepare supramolecular metal-organic films through the strong coordination interaction between highly active 1,3,5-triformylphloroglucinol (TFP) ligands and Fe3+ , Sc3+ , or Cu2+ at the organic-aqueous interface is reported. Benefiting from the self-completing and self-limiting characteristics of this interfacial self-assembly, the new kind of supramolecular membrane with optimized composition can be assembled within 3.5 min and exhibits ultrathin, dense, defect-free features, and thus shows an excellent water permeance (21.5 L m-2 h-1 bar-1 ) with a high Na2 SO4 rejection above 95%, which outperforms almost all of the non-polyamide membranes and commercially available nanofiltration membranes. This strong-coordination interfacial self-assembly method will open up a new way for the development of functional metal-organic supramolecular films for high-performance membrane separation and beyond.
Collapse
Affiliation(s)
- Zhao Zhang
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Chang Liu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Huilin Zhang
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Feng Ju
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of EngineeringWestlake University18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| |
Collapse
|
7
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances. MEMBRANES 2022; 12:membranes12030340. [PMID: 35323815 PMCID: PMC8954445 DOI: 10.3390/membranes12030340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022]
Abstract
Metal-phenol coordination is a widely used method to prepare nanofiltration membrane. However, the facile, controllable and scaled fabrication remains a great challenge. Herein, a novel strategy was developed to fabricate a loose nanofiltration membrane via integrating blending and interfacial coordination strategy. Specifically, iron acetylacetonate was firstly blended in Polyether sulfone (PES) substrate via non-solvent induced phase separation (NIPS), and then the loose selective layer was formed on the membrane surface with tannic acid (TA) crosslinking reaction with Fe3+. The surface properties, morphologies, permeability and selectivity of the membranes were carefully investigated. The introduction of TA improved the surface hydrophilicity and negative charge. Moreover, the thickness of top layer increased about from ~30 nm to 119 nm with the increase of TA assembly time. Under the optimum preparation condition, the membrane with assembly 3 h (PES/Fe-TA3h) showed pure water flux of 175.8 L·m−2·h−1, dye rejections of 97.7%, 97.1% and 95.0% for Congo red (CR), Methyl blue (MB) and Eriochrome Black T (EBT), along with a salt penetration rate of 93.8%, 95.1%, 97.4% and 98.1% for Na2SO4, MgSO4, NaCl and MgCl2 at 0.2 MPa, respectively. Both static adhesion tests and dynamic fouling experiments implied that the TA modified membranes showed significantly reduced adsorption and high FRR for the dye solutions separation. The PES/Fe-TA3h membrane exhibited high FRR of 90.3%, 87.5% and 81.6% for CR, EBT and MB in the fouling test, stable CR rejection (>97.2%) and NaCl permeation (>94.6%) in 24 h continuous filtration test. The combination of blending and interfacial coordination assembly method could be expected to be a universal way to fabricate the loose nanofiltration membrane for effective fractionation of dyes and salts in the saline textile wastewater.
Collapse
|
9
|
Tescione F, Tammaro O, Bifulco A, Del Monaco G, Esposito S, Pansini M, Silvestri B, Costantini A. Silica Meets Tannic Acid: Designing Green Nanoplatforms for Environment Preservation. Molecules 2022; 27:1944. [PMID: 35335307 PMCID: PMC8948831 DOI: 10.3390/molecules27061944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hybrid tannic acid-silica-based porous nanoparticles, TA-SiO2 NPs, have been synthesized under mild conditions in the presence of green and renewable tannic acid biopolymer, a glycoside polymer of gallic acid present in a large part of plants. Tannic acid (TA) was exploited as both a structuring directing agent and green chelating site for heavy metal ions recovery from aqueous solutions. Particles morphologies and porosity were easily tuned by varying the TA initial amount. The sample produced with the largest TA amount showed a specific surface area an order of magnitude larger than silica nanoparticles. The adsorption performance was investigated by using TA-SiO2 NPs as adsorbents for copper (II) ions from an aqueous solution. The effects of the initial Cu2+ ions concentration and the pH values on the adsorption capability were also investigated. The resulting TA-SiO2 NPs exhibited a different adsorption behaviour towards Cu2+, which was demonstrated through different tests. The largest adsorption (i.e., ~50 wt% of the initial Cu2+ amount) was obtained with the more porous nanoplatforms bearing a higher final TA content. The TA-nanoplatforms, stable in pH value around neutral conditions, can be easily produced and their use would well comply with a green strategy to reduce wastewater pollution.
Collapse
Affiliation(s)
- Fabiana Tescione
- Institute for Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), P.le Enrico Fermi 1, 80055 Portici, Italy;
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Aurelio Bifulco
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| | - Giovanni Del Monaco
- Provincial Department of Caserta, Regional Agency for Environmental Protection of Campania (ARPAC), Via Arena-Centro Direzionale (San Benedetto), 81100 Caserta, Italy;
| | - Serena Esposito
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Michele Pansini
- Civil and Mechanical Engineering and INSTM Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, Italy;
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.B.); (A.C.)
| |
Collapse
|
10
|
Maneewan P, Sajomsang W, Singto S, Lohwacharin J, Suwannasilp BB. Fouling mitigation in an anaerobic membrane bioreactor via membrane surface modification with tannic acid and copper. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118205. [PMID: 34583268 DOI: 10.1016/j.envpol.2021.118205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/07/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have recently received a great amount of attention as an alternative anaerobic treatment process due to their superior capability for sludge retention with high effluent quality. Nevertheless, membrane fouling in AnMBRs has been a major concern. In this study, the surfaces of polyvinylidene fluoride (PVDF) ultrafiltration membranes were modified with tannic acid (TA) and Cu(II) at various molar ratios of TA to Cu(II), including 3:1, 2:1, 1:1, 1:2, and 1:3. The hydrophilicity, morphology, chemical structure, elemental composition, and antibacterial properties of the unmodified and modified membranes were analyzed using water contact angle measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), SEM-energy dispersive X-ray spectrometry (SEM-EDX), and the clear zone method, respectively. The modified membrane with a TA-to-Cu(II) molar ratio of 1:3 had high hydrophilicity with certain antibacterial properties; therefore, it was selected to be further tested in an AnMBR along with an unmodified membrane. The chemical oxygen demand (COD) removal efficiencies of the unmodified membrane and modified membrane were 92.2 ± 3.6% and 91.8 ± 4.0%, respectively. The modified membrane had higher permeability after backwashing with less chemical cleaning (CC) than the unmodified membrane. Surface modification with TA and Cu(II) appeared to reduce irreversible fouling on the membranes.
Collapse
Affiliation(s)
- Punika Maneewan
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warayuth Sajomsang
- Nanoengineered Soft Materials for Green Environment Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sudkanueng Singto
- Nanoengineered Soft Materials for Green Environment Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Dai H, Chen Y, Zhang S, Feng X, Cui B, Ma L, Zhang Y. Enhanced Interface Properties and Stability of Lignocellulose Nanocrystals Stabilized Pickering Emulsions: The Leading Role of Tannic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14650-14661. [PMID: 34813326 DOI: 10.1021/acs.jafc.1c04930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellulose and tannin are both abundant and biodegradable biopolymers, whose integrations show great potential in the food field due to their nutritional properties and biological activity. Here, lignocellulose nanocrystals (LCNC) isolated from pineapple peel were complexed with tannic acid (TA) through hydrogen-bonding interaction to prepare the LCNC/TA complex for stabilizing Pickering emulsions. Introducing TA decreased the interfacial tension (23.8-20.1 mN/m) and water contact angle (83.2-56.2°) with the LCNC/TA ratio ranging from 1:0 to 1:0.8 (w/w) but increased the size of the LCNC/TA complex. The droplet size of emulsions decreased from 115.0 to 51.3 μm accompanied by improved rheological properties. The emulsions stabilized by the LCNC/TA complex exhibited higher storage and environmental stabilities than those stabilized by LCNC alone. Interestingly, TA effectively promoted the interfacial adsorption of LCNC to build a stronger interfacial layer. The emulsion network structure was enhanced due to the formation of hydrogen-bonding interaction between LCNC and TA in the continuous phase.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yuan Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shumin Zhang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Liang Ma
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
12
|
Niu J, Wang L, Cui T, Wang Z, Zhao C, Ren J, Qu X. Antibody Mimics as Bio-orthogonal Catalysts for Highly Selective Bacterial Recognition and Antimicrobial Therapy. ACS NANO 2021; 15:15841-15849. [PMID: 34596391 DOI: 10.1021/acsnano.1c03387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infectious diseases seriously threaten public health and life. The specific interaction between an antibody and its multivalent antigen is an attractive way to defeat infectious disease. However, due to the high expense and strict storage and applied conditions for antibodies, it is highly desirable but remains an urgent challenge for disease diagnosis and treatment to construct artificial antibodies with strong stability and binding ability and excellent selectivity. Herein, we designed and synthesized antibody-like bio-orthogonal catalysts with the ability to recognize specific bacteria and accomplish in situ drug synthesis in captured bacteria by using improved bacterial imprinting technology. On one hand, the artificial antibody possesses a matching morphology for binding pathogens, and on the other hand, it acts as a bio-orthogonal catalyst for in situ synthesis of antibacterial drugs in live bacteria. Both in vitro and in vivo experiments have demonstrated that our designed antibody can distinguish and selectively bind to specific pathogens and eliminate them on site with the activated drugs. Therefore, our work provides a strategy for designing artificial antibodies with bio-orthogonal catalytic activity and may broaden the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangpeng Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Liang Y, Song J, Dong H, Huo Z, Gao Y, Zhou Z, Tian Y, Li Y, Cao Y. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147422. [PMID: 33991920 DOI: 10.1016/j.scitotenv.2021.147422] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 05/18/2023]
Abstract
In this work, a pH-responsive pesticide delivery system using mesoporous silica nanoparticles (MSNs) as the porous carriers and coordination complexes of Cu ions and tannic acid (TA-Cu) as the capping agent was established for controlling pyraclostrobin (PYR) release. The results showed the loading capacity of PYR@MSNs-TA-Cu nanoparticles for pyraclostrobin was 15.7 ± 0.5% and the TA-Cu complexes deposited on the MSNs surface could protect pyraclostrobin against photodegradation effectively. The nanoparticles had excellent pH responsive release performance due to the decomposition of TA-Cu complexes under the acid condition, which showed 8.53 ± 0.37%, 82.38 ± 1.67% of the encapsulated pyraclostrobin were released at pH 7.4, pH 4.5 after 7 d respectively. The contact angle and adhesion work of PYR@MSNs-TA-Cu nanoparticles on rice foliage were 86.3° ± 2.7° and 75.8 ± 3.1 mJ/m2 after 360 s respectively, indicating that TA on the surface of the nanoparticles could improve deposition efficiency and adhesion ability on crop foliage. The control effect of PYR@MSNs-TA-Cu nanoparticles against Rhizoctonia solani with 400 mg/L of pyraclostrobin was 85.82% after 7 d, while that of the same concentration of pyraclostrobin EC was 53.05%. The PYR@MSNs-TA-Cu nanoparticles did not show any phytotoxicity to the growth of rice plants. Meanwhile, the acute toxicity of PYR@MSNs-TA-Cu nanoparticles to zebrafish was decreased more than 9-fold compared with that of pyraclostrobin EC. Thus, pH-responsive PYR@MSNs-TA-Cu nanoparticles have great potential for enhancing targeting and environmental safety of the active ingredient.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China; College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiehui Song
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hongqiang Dong
- College of Plant Science, Tarim University, Alaer, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Shen YJ, Kong QR, Fang LF, Qiu ZL, Zhu BK. Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Tong X, Liu S, Qu D, Gao H, Yan L, Chen Y, Crittenden J. Tannic acid-metal complex modified MXene membrane for contaminants removal from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
17
|
Kang X, Cheng Y, Wen Y, Qi J, Li X. Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123121. [PMID: 32569981 DOI: 10.1016/j.jhazmat.2020.123121] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The fully separation of dye/salt through loose nanofiltration membranes is of great significance for the sustainable development paradigm of textile wastewater. However, the current loose nanofiltration membranes suffer low separation efficiency and complex preparation. Herein, by one-step co-deposition, we develop graphene oxide (GO) composite loose nanofiltration membranes with low negatively charged surface. Our membrane possesses unconventional high pure water permeation of 71.7 LMH/bar, 92.9 % rejection for Methyl blue (MB) and 98.8 % rejection for Congo red (CR). Benefiting from the large interlayer distance of GO nanosheets and low negatively charged surface, membrane achieves high dyes/salts separation with satisfactory permeation to salts (94.3 % of Na2SO4, 97.6 % of MgSO4, 98.3 % of MgCl2 and 99.0 % of NaCl). The CR/salt mixed solutions exhibit similar removal rates to their constituents' single dye or salt solutions (CR rejection is up to more than 97 % and the permeations of all salts are above 93 %). At the same time, binary dyes mixtures (Congo red and Methyl orange) can also be effectively separated. Furthermore, the membrane shows a relatively desirable antifouling property. The flux recovery still remains at 85.9 % after three cycling filtrations. This study provides a facile approach to prepare highly-efficient loose nanofiltration membranes for wastewater sustainable remediation.
Collapse
Affiliation(s)
- Xu Kang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Cheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Wen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyao Qi
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
18
|
Liu H, Liu G, Zhang M, Zhao H, Jiang Y, Gao J. Rapid preparation of Tannic acid (TA) based zwitterionic nanofiltration membrane via a multiple layer-by-layer (mLBL) assembly strategy for enhanced antifouling performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
He Y, Chen Q, Zhang Y, Zhao Y, Chen L. H 2O 2-Triggered Rapid Deposition of Poly(caffeic acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52104-52115. [PMID: 33156623 DOI: 10.1021/acsami.0c13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-derived polyphenol coating offers a promising route to fabricate functional surfaces for different substrate materials. However, almost all of the deposition approaches are time-consuming and involve inefficient processes, and the mechanisms behind the coating deposition are rarely understood. Herein, we report a rational methodology to achieve the rapid deposition of poly(caffeic acid) (PCA) by using H2O2 as a trigger under the assistance of copper sulfate (CuSO4). The comparative monomer structure of PCA oxidation polymerization has illustrated a significant distinction in the reaction path for PCA coating deposition which has never been reported before. Until now, the unprecedented fast velocity for polyphenol coating has been obtained, and the PCA coating exhibits excellent homogeneity, spatiotemporal tunability, and firm stability. Moreover, three different types of filtration membranes, poly(vinylidene fluoride) microfiltration membrane (PVDF MF membrane), poly(ether sulfone) (PES) ultrafiltration (UF) hollow fiber membrane, and PCA-coated PES nanofiltration (NF) membrane, are all successfully dip-coated using H2O2-triggered PCA coating. Without synthetic complexities and intricate procedures, the formation of hydrophilic and homogeneous PCA aggregates on the surface and/or inside pore walls resulted in various membranes. The as-prepared PCA-coated PVDF MF membrane demonstrates excellent oil/water separation efficiency of less than 150 ppm and a flux recovery rate of approximately 90% even after five cycles. By one-step co-deposition of PCA and poly(2-ethyl-2-oxazoline) (PEtOx) on the PES UF membrane surface, hydrophilicity and biofouling resistance are implemented for efficient protein filtration. The PES NF membrane formed by the PCA layer exhibits high mono-/divalent ion selectivity and excellent chlorine resistance. Overall, these results represent a rapid and sustainable approach to tailor PCA coatings for versatile liquid separation processes.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qi Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongjian Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
20
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
21
|
Tham HM, Chung TS. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
In-situ coating TiO 2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance. J Colloid Interface Sci 2020; 572:114-121. [PMID: 32234587 DOI: 10.1016/j.jcis.2020.03.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022]
Abstract
A major issue hindering development of thin film nanocomposite (TFN) nanofiltration (NF) membrane is the interfacial defects induced by nanomaterial aggregation in top layer. Although various nanomaterials surface modification strategies have been developed to eliminate the interfacial defects, they usually involve extra modification steps and complex post-treatments. Inspired by the substrate-independent coating ability of tannic acid (TA) and the fact that the phenolic hydroxyl groups in TA can react with acyl chloride group in trimesoyl chloride, a TA coating solution containing TiO2 nanoparticles was used as an aqueous phase of interfacial polymerization to prepare interfacial modified TFN NF membranes in this study. Surface modification of TiO2 nanoparticles and interfacial polymerization can be carried out in a single step without any extra pre-modification step. It was found that the TA coating on TiO2 nanoparticles surface could decrease TiO2 aggregations and enhance interfacial compatibility between TiO2 and polyester matrix. The TFN NF membrane prepared at a TiO2 loading of 0.020 wt% exhibited a pure water flux of 28.8 L m-2 h-1 (284% higher than that of the controlled TFC membrane), and possessed enhanced NaCl and Na2SO4 rejections of 57.9% and 94.6%, respectively, breaking through the trade-off between permeability and selectivity.
Collapse
|
23
|
Bandehali S, Parvizian F, Moghadassi AR, Hosseini SM, Shen JN. Fabrication of thin film-PEI nanofiltration membrane with promoted separation performances: Cr, Pb and Cu ions removal from water. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02056-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Lv X, Wang L, Fu J, Li Y, Yu L. A one-step tannic acid coating to improve cell adhesion and proliferation on polydimethylsiloxane. NEW J CHEM 2020. [DOI: 10.1039/d0nj02663h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A green and straightforward tannic acid functionalization can enhance cell adhesion and proliferation on PDMS, and thus, can be potentially used for microfluidic cell assay devices for cellular physiological study or drug screening.
Collapse
Affiliation(s)
- Xiaohui Lv
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Linxiang Wang
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Jingjing Fu
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yuan Li
- Central Laboratory of Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402160
- P. R. China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
26
|
Moradi S, Khodaiyan F, Hadi Razavi S. Green construction of recyclable amino-tannic acid modified magnetic nanoparticles: Application for β-glucosidase immobilization. Int J Biol Macromol 2019; 154:1366-1374. [PMID: 31730982 DOI: 10.1016/j.ijbiomac.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
The β-glucosidase (BGL) enzyme in food industry is great interest due to its role in food conversion to produce functional food products. In this study, the BGL was covalently immobilized onto amino-tannic acid modified Fe3O4 magnetic nanoparticles (ATA-Fe3O4 MNPs) as biocompatible nanoplatform by modified poly-aldehyde pullulan (PAP) as a cross-linker to enhance the ability and strength of the nanoparticle connection to the enzyme. The properties of support were subsequently characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The highest percentage of loading and immobilization yield was obtained with 0.1 mg enzyme/mL citrate buffer (pH 6, 1 M) enzyme solution, carrier solution of 10 mg ATA-Fe3O4/3 mL citrate buffer (pH 6, 1 M), and PAP solution of 20% total reaction system volume. Optimum pH and temperature were found for free (pH 5.0 and temperature 30 °C) and immobilized (pH 6.0 and temperature 40 °C) enzyme. The immobilized BGL maintains its activity to 83% after 10 cycles. Therefore, immobilization of BGL by this method is an efficient procedure to improve the properties of enzyme.
Collapse
Affiliation(s)
- Samira Moradi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Hadi Razavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
27
|
Zarghami S, Mohammadi T, Sadrzadeh M, Van der Bruggen B. Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101166] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Yang Y, Li Y, Li Q, Wang Y, Tan CH, Wang R. Rapid co-deposition of graphene oxide incorporated metal-phenolic network/piperazine followed by crosslinking for high flux nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Shen YJ, Fang LF, Yan Y, Yuan JJ, Gan ZQ, Wei XZ, Zhu BK. Metal-organic composite membrane with sub-2 nm pores fabricated via interfacial coordination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Yao Z, Yang Z, Guo H, Ma X, Dong Y, Tang CY. Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. J Colloid Interface Sci 2019; 552:418-425. [DOI: 10.1016/j.jcis.2019.05.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/01/2022]
|
31
|
Jia TZ, Lu JP, Cheng XY, Xia QC, Cao XL, Wang Y, Xing W, Sun SP. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Xu Y, Tognia M, Guo D, Shen L, Li R, Lin H. Facile preparation of polyacrylonitrile-co-methylacrylate based integrally skinned asymmetric nanofiltration membranes for sustainable molecular separation: An one-step method. J Colloid Interface Sci 2019; 546:251-261. [DOI: 10.1016/j.jcis.2019.03.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
|
33
|
Development of ferrofluid mediated CLDH@Fe3O4@Tanic acid- based supramolecular solvent: Application in air-assisted dispersive micro solid phase extraction for preconcentration of diazinon and metalaxyl from various fruit juice samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Chen X, He Y, Fan Y, Zeng G, Zhang L. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Das SK, Manchanda P, Peinemann KV. Solvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Weber F, Barrantes A, Tiainen H. Silicic Acid-Mediated Formation of Tannic Acid Nanocoatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3327-3336. [PMID: 30741549 DOI: 10.1021/acs.langmuir.8b04208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tannic acid (TA) adheres to a broad variety of different materials and forms versatile surface coatings for technical and biological applications. In mild alkaline conditions, autoxidation processes occur and a firm monolayer is formed. Up to now, thicker coatings are obtained in only a cross-linked multilayer fashion. This study presents an alternative method to form continuous TA coatings using orthosilicic acid (Siaq). Adsorption kinetics and physical properties of TA coatings in the presence of Siaq were determined using a quartz-crystal microbalance and nanoplasmonic spectroscopy. An in situ TA layer thickness of 200 nm was obtained after 24 h in solutions supplemented with 80 μM Siaq. Dry-state measurements indicated a highly hydrated layer in situ. Furthermore, chemical analysis by Fourier transform infrared spectroscopy revealed possible complexation of TA by Siaq, whereas UV-vis spectroscopy did not indicate an interaction of Siaq in the autoxidation process of TA. Investigation of additional metalloid ions showed that germanic acid was also able to initiate a continuous coating formation of TA, whereas boric acid prevented the polymerization process. In comparison to that of TA, the coating formation of pyrogallol (PG) and gallic acid (GA) was not affected by Siaq. PG formed continuous coatings also without Siaq, whereas GA formed only a monolayer in the presence of Siaq. However, Siaq induced a continuous layer formation of ellagic acid. These results indicate the specific importance of orthosilicic acid in the coating formation of polyphenolic molecules with multiple ortho-dihydroxy groups and open new possibilities to deposit TA on interfaces.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| | - Alejandro Barrantes
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| |
Collapse
|
37
|
Oxidative Degradation of Tannic Acid in Aqueous Solution by UV/S2O82− and UV/H2O2/Fe2+ Processes: A Comparative Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tannic acid (TA) is a major pollutant present in the wastewater generated from vegetable tanneries process and food processing. This work studied TA degradation by two advanced oxidation processes (APOs): UV irradiation at the wavelength of 254 nm in the presence of hydrogen peroxide (H2O2) and ferrous iron (photo-Fenton) and in the presence of potassium persulfate. The influence of certain experimental parameters such as K2S2O8, H2O2, Fe2+, and TA concentrations, initial pH and temperature was evaluated in order to obtain the highest efficiency in terms of aromatics (decay in UV absorbance at 276 nm) and TOC removals. Chemical oxidation of TA (0.1 mM) by UV/persulfate achieved 96.32% of aromatics removal and 54.41% of TOC removal under optimized conditions of pH = 9 and 53.10 mM of K2S2O8 after 60 min. The treatment of TA by photo-Fenton process successfully led to almost complete aromatics removal (99.32%) and high TOC removal (94.27%) from aqueous solutions containing 0.1 mM of TA at natural pH = 3 using 29.4 mM of H2O2 and 0.18 mM of Fe2+ at 25 °C after 120 min. More efficient degradation of TA by photo-Fenton process than UV/persulfate was obtained, which confirms that hydroxyl radicals are more powerful oxidants than sulfate radicals. The complete removal of organic pollution from natural waters can be accomplished by direct chemical oxidation via hydroxyl radicals generated from photocatalytic decomposition of H2O2.
Collapse
|
38
|
Xu LQ, Neoh KG, Kang ET. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|