1
|
Shin H, Chaudhari S, Jeong Y, Jo S, Shon M, Nam S, Park Y. Synergistic pervaporation dehydration of ethanol/water mixture: Exploring the potential of a covalently designed hybrid membrane structure of polyacrylic acid grafted carbon nitride and polyvinyl alcohol. CHEMOSPHERE 2024; 346:140593. [PMID: 37931710 DOI: 10.1016/j.chemosphere.2023.140593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Polyacrylic acid (PAA) grafted CN sheet (P-g-CN) was synthesized to enhance the dispersive properties of carbon nitride (CN) in the membrane. A successful PAA grafting to the CN was confirmed from FTIR, TGA, and Zeta potential and XRD analyses. The A PVA membrane embedded P-g-CN, including a covalently constructed polymer-filler network, was developed to separate ethanol-water mixtures using pervaporation (PV). XPS study has confirmed a covalent attachment of P-g-CN sheets to the PVA matrix. Thereby, a defect-free membrane matrix was observed in the FESEM analysis. A 10 wt% loaded PVA-P-g-CN10 composite membrane was compared to the pristine PVA membrane, demonstrating improved PV dehydration performance. The flux decreased from 0.21 kg/m2h of pristine PVA membrane to 0.17 kg/m2h of PVA-P-g-CN10 membrane, while the separation factor improved from 49 to 176 in a 90/10 wt % ethanol/water feed at 40 °C. This improvement can be attributed to the selective diffusion of water through the P-g-CN interlayer spacing and tiny triangular nanopores in the s-triazine network, along with their dispersibility in the PVA matrix, resulting in well-ordered membrane morphology. Furthermore, PVA-P-g-CN10 exhibited higher water permeance (43.31-86.07 GPU) than ethanol (1.18-10.47 GPU) as the feed temperature increased from 30 to 70 °C, suggesting P-g-CN successfully inhibits swelling in the feed solution through proper interaction with PVA. In a long-term PV test lasting 250 h, the PVA-P-g-CN10 membrane displayed excellent structural stability and maintained its performance.
Collapse
Affiliation(s)
- HyeonTae Shin
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - YeWon Jeong
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - Sewook Jo
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea.
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, South Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, South Korea
| |
Collapse
|
2
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
3
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Wen J, Zhou L, Tang Q, Xiao X, Sun S. Photocatalytic degradation of organic pollutants by carbon quantum dots functionalized g-C 3N 4: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115133. [PMID: 37327524 DOI: 10.1016/j.ecoenv.2023.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has received much attention due to its unique characteristics of stable physicochemical features, facile preparation, and inexpensive cost. However, the bulk g-C3N4 has a weak capacity for pollutant degradation and needs to be modified for real application. Therefore, extensive research has been done on g-C3N4, and the discovery of the novel zero-dimensional nanomaterials known as carbon quantum dots (CQDs) provided it with a unique modification option. In this review, the development for the removal of organic pollutants by g-C3N4/CQDs was discussed. Firstly, the preparation of g-C3N4/CQDs were introduced. Then, the application and the degradation mechanism of g-C3N4/CQDs were briefly described. And the discussion of the influencing factors on g-C3N4/CQDs' ability to degrade organic pollutants came in third. Finally, the conclusions of photocatalytic degradation of organic pollutants by g-C3N4/CQDs and future perspectives followed. This review will strengthen the understanding of the photocatalytic degradation of real organic wastewater by g-C3N4/CQDs, including their preparation, application, mechanism, and influencing factors.
Collapse
Affiliation(s)
- Jiahao Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Qingxin Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Xiaozhen Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
5
|
Tong H, Liu Q, Xu N, Wang Q, Fan L, Dong Q, Ding A. Efficient Pervaporation for Ethanol Dehydration: Ultrasonic Spraying Preparation of Polyvinyl Alcohol (PVA)/Ti 3C 2T x Nanosheet Mixed Matrix Membranes. MEMBRANES 2023; 13:430. [PMID: 37103857 PMCID: PMC10146547 DOI: 10.3390/membranes13040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Polyvinyl alcohol (PVA) pervaporation (PV) membranes have been extensively studied in the field of ethanol dehydration. The incorporation of two-dimensional (2D) nanomaterials into the PVA matrix can greatly improve the hydrophilicity of the PVA polymer matrix, thereby enhancing its PV performance. In this work, self-made MXene (Ti3C2Tx-based) nanosheets were dispersed in the PVA polymer matrix, and the composite membranes were fabricated by homemade ultrasonic spraying equipment with poly(tetrafluoroethylene) (PTFE) electrospun nanofibrous membrane as support. Due to the gentle coating of ultrasonic spraying and following continuous steps of drying and thermal crosslinking, a thin (~1.5 μm), homogenous and defect-free PVA-based separation layer was fabricated on the PTFE support. The prepared rolls of the PVA composite membranes were investigated systematically. The PV performance of the membrane was significantly improved by increasing the solubility and diffusion rate of the membranes to the water molecules through the hydrophilic channels constructed by the MXene nanosheets in the membrane matrix. The water flux and separation factor of the PVA/MXene mixed matrix membrane (MMM) were dramatically increased to 1.21 kg·m-2·h-1 and 1126.8, respectively. With high mechanical strength and structural stability, the prepared PGM-0 membrane suffered 300 h of the PV test without any performance degradation. Considering the promising results, it is likely that the membrane would improve the efficiency of the PV process and reduce energy consumption in the ethanol dehydration.
Collapse
Affiliation(s)
| | | | - Nong Xu
- Correspondence: (Q.L.); (N.X.)
| | | | | | | | | |
Collapse
|
6
|
Liu Q, Pan X, Xu N, Wang Q, Qu S, Wang W, Fan L, Dong Q. Hypergravity field induced self‐assembly of
2D MXene
in polyvinyl alcohol membrane matrix and its improvement of alcohol/water pervaporation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Qiao Liu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| | - Xiaojun Pan
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Nong Xu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| | - Qing Wang
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Shenzhen Qu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Weihao Wang
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Long Fan
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Qiang Dong
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| |
Collapse
|
7
|
Gupta O, Roy S, Rao L, Mitra S. Graphene Oxide-Carbon Nanotube (GO-CNT) Hybrid Mixed Matrix Membrane for Pervaporative Dehydration of Ethanol. MEMBRANES 2022; 12:membranes12121227. [PMID: 36557134 PMCID: PMC9783890 DOI: 10.3390/membranes12121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
The pervaporation process is an energy-conservative and environmentally sustainable way for dehydration studies. It efficiently separates close boiling point and azeotrope mixtures unlike the distillation process. The separation of ethanol and water is challenging as ethanol and water form an azeotrope at 95.6 wt.% of ethanol. In the last few decades, various polymers have been used as candidates in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration but have not been able to achieve an enhanced performance both in terms of flux and selectivity. Composite membranes comprising of poly (vinyl alcohol) (PVA) incorporated with carboxylated carbon nanotubes (CNT-COOH), graphene oxide (GO) and GO-CNT-COOH mixtures were fabricated for the dehydration of ethanol by pervaporation (PV). The membranes were characterized with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Raman spectroscopy, Raman imaging, contact angle measurement, and water sorption to determine the effects of various nanocarbons on the intermolecular interactions, surface hydrophilicity, and degrees of swelling. The effects of feed water concentration and temperature on the dehydration performance were investigated. The incorporation of nanocarbons led to an increase in the permeation flux and separation factor. At a feed water concentration of 10 wt.%, a permeation flux of 0.87 kg/m2.h and a separation factor of 523 were achieved at 23 °C using a PVA-GO-CNT-COOH hybrid membrane.
Collapse
Affiliation(s)
| | | | | | - Somenath Mitra
- Correspondence: ; Tel.: +1-973-596-5611; Fax: +1-973-596-3586
| |
Collapse
|
8
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
9
|
A study on Gamma radiation shielding performance and characterization of Graphitic Carbon Nitride. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Yang Y, Jiang X, Liu H, Ai G, Shen L, Feng X, Ye F, Zhang Z, Yuan H, Mi Y. Diethylenetriamine modified biological waste for disposing oily wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113395. [PMID: 35513064 DOI: 10.1016/j.envres.2022.113395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Oily wastewater produced in the process of oil extraction has a potential threat to the environment. In this paper, diethylenetriamine was used to modify rice straw powder (RSP) by a solvent-free strategy, and the obtained product (AM-RSP) was utilized to dispose oily wastewater. AM-RSP was characterized by Field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FT-IR) and BET. The factors affecting the demulsification performance (DP) such as dosage, salinity and pH value were detailly investigated. The results indicated that light transmittance (ET) and oil removal rate (ER) of separated water could reach 93.5% and 96.5%, respectively, within 40 min with 150 mg/L of AM-RSP at room temperature. Also, AM-RSP had a good salt resistance. In addition, three-phase contact angle (TCA), formation of interfacial film, interfacial activity, dynamic interfacial tension (IFT), coalescence time of droplets and zeta potential were adopted to probe the demulsification mechanism.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuebin Jiang
- Safety and Environmental Protection Quality Supervision and Testing Research Institute, CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Hanjun Liu
- Safety and Environmental Protection Quality Supervision and Testing Research Institute, CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Guosheng Ai
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
11
|
Burts KS, Plisko TV, Prozorovich VG, Melnikova GB, Ivanets AI, Bildyukevich AV. Modification of Thin Film Composite PVA/PAN Membranes for Pervaporation Using Aluminosilicate Nanoparticles. Int J Mol Sci 2022; 23:ijms23137215. [PMID: 35806220 PMCID: PMC9266310 DOI: 10.3390/ijms23137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
- Correspondence:
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Galina B. Melnikova
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| |
Collapse
|
12
|
Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol. SUSTAINABILITY 2022. [DOI: 10.3390/su14063561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based membrane for isopropanol dehydration. To achieve this goal, two methods were applied: (1) bulk modification of PVA by Pluronic F127 and (2) development of supported PVA-based membrane using polyphenylene isophthalamide (PA) as a substrate with a various porosity. Developed membranes were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), contact angle measurement, and swelling experiments. The concentration influence of PA casting solution (12–20 wt.%) on the performance of porous PA membranes (substrates) was investigated in ultrafiltration of pure water and bovine serum albumin (BSA) solution as well as by microscopic methods (SEM and atomic force microscopy). The developed dense and supported PVA-based membranes were tested in the pervaporation dehydration of isopropanol. Optimal transport characteristics were obtained for a supported membrane with a PVA-based selective layer containing 3 wt.% Pluronic F127 onto an ultrafiltration PA (17 wt.%) substrate: improved permeation flux 0.100–1.164 kg/(m2 h) and 98.8–84.6 wt.% water content in the permeate in pervaporation dehydration of isopropanol (12–80 wt.% water).
Collapse
|
13
|
Hydroxyl-functionalized ultra-thin graphitic-carbon-nitrite nanosheets-accommodated polyvinyl alcohol membrane for pervaporation of isopropanol/water mixture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Catalytically active membranes for esterification: A review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zhao D, Li M, Jia M, Zhou S, Zhao Y, Peng W, Xing W. Asymmetric poly (vinyl alcohol)/Schiff base network framework hybrid pervaporation membranes for ethanol dehydration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zou X, Li M, Xiao H, Zhou S, Chen C, Zhao Y. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Baig U, Faizan M, Sajid M. Semiconducting graphitic carbon nitride integrated membranes for sustainable production of clean water: A review. CHEMOSPHERE 2021; 282:130898. [PMID: 34098310 DOI: 10.1016/j.chemosphere.2021.130898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Semiconducting membranes integrated with nanomaterials have placed themselves in new emerging researches tremendously for seawater desalination, oil-water separation, disinfection, removal of inorganic as well as organic pollutants. Howbeit, only nanoparticles unified membranes show quite a lot lags in their performance, although some of these particles associated with the demerits of high cost. In contrast, graphitic carbon nitride incorporated membranes offered improved aforementioned properties corresponding to absolute essential qualities such as cost-effective, environmentally friendly, easy-to-operate, green manufacturing, anti-fouling, and low energy consumption. Moreover, their high mechanical strength, high stability against harsh environment and long-term utilization without flux reduction are strong plus. Even though there are some undeniable downsides of these membranes in real world applications as bulk synthesis, consistent dispersion of graphitic carbon nitride, low photocatalytic efficiency etc. Accordingly, in the present article, these frailties of the membranes having graphitic carbon nitride as a filler and their respective synthesis procedures and properties are discussed. A comprehensive analysis over the application of semiconducting graphitic carbon nitride incorporated membranes with and without special surface modification; and exploration of the future challenges and difficulties associated to these membranes are also reviewed. Consequently, the current article provides brief overview about graphitic carbon nitride integrated composite membranes as well as their applications, and it finished up with new thoughts of further improvements/modifications to overcome their shortcomings in actual environmental conditions.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes & Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Center for Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - M Faizan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Sajid
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Cui Y, An X, Zhang S, Tang Q, Lan H, Liu H, Qu J. Emerging graphitic carbon nitride-based membranes for water purification. WATER RESEARCH 2021; 200:117207. [PMID: 34020332 DOI: 10.1016/j.watres.2021.117207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.
Collapse
Affiliation(s)
- Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Zheng T, Zou X, Li M, Zhou S, Zhao Y, Zhong Z. Two-dimensional graphitic carbon nitride for membrane separation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Cai W, Cheng X, Chen X, Li J, Pei J. Poly(vinyl alcohol)-Modified Membranes by Ti 3C 2T x for Ethanol Dehydration via Pervaporation. ACS OMEGA 2020; 5:6277-6287. [PMID: 32258862 PMCID: PMC7114143 DOI: 10.1021/acsomega.9b03388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
In this paper, PVA/Ti3C2T x mixed matrix membranes (MMMs) were prepared by mixing the synthesized Ti3C2T x with the PVA matrix, and the pervaporation (PV) performance of the ethanol-water binary system was tested. The morphology, structural properties, and surface characteristics of the membranes were investigated by scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, degree of swelling, and water contact angle. The PVA/Ti3C2T x MMMs exhibit excellent compatibility and swelling resistance. Moreover the effects of the Ti3C2T x filling level, feed concentration, and operating temperature on the ethanol dehydration performance were systematically studied. The results demonstrated that the separation factor of PVA/Ti3C2T x MMMs was significantly increased because of Ti3C2T x promoting the cross-linking density of the membrane. Specifically, the membrane showed the best PV performance when Ti3C2T x loading was 3.0 wt %, achieving a separation factor of 2585 and a suitable total flux of 0.074 kg/m2 h for separating 93 wt % ethanol solution at 37 °C.
Collapse
Affiliation(s)
- Weibin Cai
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xue Cheng
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiaohan Chen
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Jiding Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junqi Pei
- School
of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
24
|
Ang MBMY, Huang SH, Chang MW, Lai CL, Tsai HA, Hung WS, Hu CC, Lee KR. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Han G, Chen Z, Cai L, Zhang Y, Tian J, Ma H, Fang S. Poly(vinyl alcohol)/Carboxyl Graphene Membranes for Ethanol Dehydration by Pervaporation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guanglu Han
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Zhe Chen
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Lifang Cai
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Yonghui Zhang
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Junfeng Tian
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Huanhuan Ma
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Shaoming Fang
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| |
Collapse
|
26
|
Preparation of PVA-PFSA-Si pervaporative hybrid membrane and its dehydration performance. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Li M, Wang J, Zhou S, Xue A, Wu F, Zhao Y. Polyacrylonitrile-supported self-aggregation crosslinked poly (vinyl alcohol) pervaporation membranes for ethanol dehydration. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Han GL, Chen Z, Cai LF, Zhang YH, Tian JF, Ma HH, Fang SM. Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High‐power ultrasonic treatment for enhanced pervaporation performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.48526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guang Lu Han
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
- Henan Engineering Research Center of Chemical Engineering Separation Process IntensificationZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Zhe Chen
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Li Fang Cai
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Yong Hui Zhang
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Jun Feng Tian
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Huan Huan Ma
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| | - Shao Ming Fang
- School of Material and Chemical EngineeringZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
- Henan Engineering Research Center of Chemical Engineering Separation Process IntensificationZhengzhou University of Light Industry Zhengzhou 450001 People's Republic of China
| |
Collapse
|
29
|
Zou X, Li M, Zhou S, Chen C, Zhong J, Xue A, Zhang Y, Zhao Y. Diffusion behaviors of ethanol and water through g–C3N4–based membranes: Insights from molecular dynamics simulation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
31
|
Bansod ND, Roy K, Das C, Vidyasagar D, Potiyaraj P. Development and characterization of graphitic carbon nitride as nonblack filler in natural rubber composites. J Appl Polym Sci 2019. [DOI: 10.1002/app.48136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naresh D. Bansod
- Department of Materials Science, Faculty of ScienceChulalongkorn University Bangkok 10330 Thailand
| | - Kumarjyoti Roy
- Department of Materials Science, Faculty of ScienceChulalongkorn University Bangkok 10330 Thailand
| | - Chayan Das
- Department of ChemistryVisvesvaraya National Institute of Technology Nagpur 440010 India
| | - Devthade Vidyasagar
- Department of ChemistryVisvesvaraya National Institute of Technology Nagpur 440010 India
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of ScienceChulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
32
|
|
33
|
Cheng X, Cai W, Chen X, Shi Z, Li J. Preparation of graphene oxide/poly(vinyl alcohol) composite membrane and pervaporation performance for ethanol dehydration. RSC Adv 2019; 9:15457-15465. [PMID: 35514811 PMCID: PMC9064220 DOI: 10.1039/c9ra01379b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/05/2019] [Indexed: 11/13/2022] Open
Abstract
Although poly(vinyl alcohol) (PVA) membranes are widely used in solvent dehydration by pervaporation, the separation factor is rather limited. Considering this, novel PVA mixed matrix membranes with graphene oxide (GO) nanosheets were prepared. poly(acrylonitrile) ultrafiltration (PAN) membrane was used as support layer. The PVA/GO composite membranes were characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, thermogravimetric analysis and water contact angle. We also explored the pervaporation performance of the membrane for ethanol dehydration. GO slightly improves the thermal stability and crystallinity of the composite membranes. In addition, the hydrophilicity of the composite membranes is weakened after GO addition, but the crosslinking degree is increased, resulting a significant increase in the separation factor and a certain decrease in the total flux. With the amount of GO addition increases, the total flux of the PVA/GO composite membrane decreases, while the separation factor increases first and then decreases, and the preferred amount of GO addition is 2.0 wt%. Especially, the separation factor of the composite membranes with 2.0 wt% GO addition could reach 3 059, which is 16 times higher than PVA membranes, with the corresponding permeability flux is 145 g m−2 h−1. The separation factor of the composite GOP-2.0 membranes could reach 3 059, which is 16 times higher than PVA membranes.![]()
Collapse
Affiliation(s)
- Xue Cheng
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- China
| | - Weibin Cai
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- China
| | - Xiaohan Chen
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- China
| | - Zhen Shi
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- China
| | - Jiding Li
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
34
|
Effects of Protonation, Hydroxylamination, and Hydrazination of g-C₃N₄ on the Performance of Matrimid ®/g-C₃N₄ Membranes. NANOMATERIALS 2018; 8:nano8121010. [PMID: 30563112 PMCID: PMC6316444 DOI: 10.3390/nano8121010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
One of the challenges to continue improving polymeric membranes properties involves the development of novel chemically modified fillers, such as nitrogen-rich 2-D nanomaterials. Graphitic carbon nitride (g-C₃N₄) has attracted significant interest as a new class of these fillers. Protonation is known to afford it desirable functionalities to form unique architectures for various applications. In the work presented herein, doping of Matrimid® with protonated g-C₃N₄ to yield Matrimid®/g-C₃N₄ mixed matrix membranes was found to improve gas separation by enhancing the selectivity for CO₂/CH₄ by up to 36.9% at 0.5 wt % filler doping. With a view to further enhancing the contribution of g-C₃N₄ to the performance of the composite membrane, oxygen plasma and hydrazine monohydrate treatments were also assayed as alternatives to protonation. Hydroxylamination by oxygen plasma treatment increased the selectivity for CO₂/CH₄ by up to 52.2% (at 2 wt % doping) and that for O₂/N₂ by up to 26.3% (at 0.5 wt % doping). Hydrazination led to lower enhancements in CO₂/CH₄ separation, by up to 11.4%. This study suggests that chemically-modified g-C₃N₄ may hold promise as an additive for modifying the surface of Matrimid® and other membranes.
Collapse
|
35
|
Novel mixed-matrix membranes based on polyvinyl alcohol modified by carboxyfullerene for pervaporation dehydration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Wang J, Li M, Qian M, Zhou S, Xue A, Zhang L, Zhao Y, Xing W. Simple Synthesis of High Specific Surface Carbon Nitride for Adsorption-Enhanced Photocatalytic Performance. NANOSCALE RESEARCH LETTERS 2018; 13:248. [PMID: 30136161 PMCID: PMC6104408 DOI: 10.1186/s11671-018-2654-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
TMC-incorporated carbon nitride (CN) with hexagonal and quadrangle honeycomb-like structure and having periodic lattice defects linked by -CONH- bond was synthesized through combining the high calcination with the chemical condensation of melamine and 1,3,5-benzenetricarbonyl trichloride. The obtained CN has a tri-s-triazine ring and benzene ring skeleton, which makes it have excellent mechanical and thermal stability. The BET specific surface area was enhanced to about 125.6 m2/g, and the mean pore size is about 3.43 nm. This CN exhibited an excellent adsorption-enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
- College of Chemical Engineering, Nanjing Tech University, No.5 Xinmofan Road, Nanjing, 210009 Jiangsu Province People’s Republic of China
| | - Meisheng Li
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Ming Qian
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Shouyong Zhou
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Ailian Xue
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Lili Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Yijiang Zhao
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300 Jiangsu Province People’s Republic of China
| | - Weihong Xing
- College of Chemical Engineering, Nanjing Tech University, No.5 Xinmofan Road, Nanjing, 210009 Jiangsu Province People’s Republic of China
| |
Collapse
|
37
|
Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Bukusoglu E, Kalıpçılar H, Yılmaz L. Dehydration of Industrial Byproduct Solutions for Recycling via Pervaporation–Adsorption Hybrid Process. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emre Bukusoglu
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| | - Halil Kalıpçılar
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| | - Levent Yılmaz
- Chemical Engineering Department, Middle East Technical University, Üniversiteler Mahallesi Dumlupınar
Bulvarı No:1, 06800 Ankara, Turkey
| |
Collapse
|
39
|
Wu C, Lu S, Zhang J, Xiang Y. Inducing microstructural changes in Nafion by incorporating graphitic carbon nitride to enhance the vanadium-blocking effect. Phys Chem Chem Phys 2018; 20:7694-7700. [DOI: 10.1039/c7cp07744k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets are introduced into a Nafion matrix to prepare a ‘vanadium-blocking’ recast Nafion membrane for vanadium redox flow battery (VRFB) applications.
Collapse
Affiliation(s)
- Chunxiao Wu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing
- China
| |
Collapse
|