1
|
Ma L, Li D, Chen X, Xu H, Tian Y. A sustainable carbon aerogel from waste paper with exceptional performance for antibiotics removal from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134738. [PMID: 38815396 DOI: 10.1016/j.jhazmat.2024.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In this work, a sustainable 3D carbon aerogel (AO-WPC) is prepared from waste paper (WP), and used for efficient antibiotics removal from water. The AO-WPC aerogel shows good mechanical property and can recover after 100th of 30 % compression strain. The specific surface area of AO-WPC aerogel is up to 654.58 m2/g. More importantly, this aerogel reveals proper pore size distribution, including micro sized macropores between carbon fibers and intrinsic nano scale mesopores (11.86 nm), which is conducive to remove antibiotics from water. Taking tetracycline (Tc) as an example, the maximum adsorption capacity and adsorption rate of AO-WPC for Tc are as high as 384.6 mg/g and 0.510 g/(mg‧min), respectively, which exhibits significant advantages over most of the recent absorbents, and the adsorption toward Tc reveals good resistance to various environmental factors, including pH, various ions, and dissolved organic matter (DOM). Moreover, good thermal stability enables the AO-WPC aerogel to be regenerated through simple burning, and the adsorption capacity of Tc only decreases by 10.4 % after 10 cycles. Mechanism research shows that hydrogen bonding and π-π electron-donor-acceptor (EDA) interaction play the important role in the adsorption. The excellent mechanical property and adsorption performance imply good practical prospect of the AO-WPC aerogel.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xing Chen
- China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China
| | - Hua Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Takase H, Goya N, Kiyoyama S, Shiomori K, Matsune H. Preparation of Hydrophobic Cryogel Containing Hydroxyoxime Extractant and Its Extraction Properties of Cu(Ⅱ). Gels 2023; 10:9. [PMID: 38275846 PMCID: PMC10815328 DOI: 10.3390/gels10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Hydrophobic cryogels with monolithic supermacropores based on poly-trimethylolpropane trimethacrylate (pTrim) containing 1-(2-Hydroxyl-5-nonyphenyl)ethanone oxime (LIX84-I) were successfully prepared by a cryo-polymerization technique using organic solvents with freezing points between room temperature and around 0 °C as solvents. The prepared cryogels were characterized in terms of macroscopic shape and porous structure. The cryogels had a monolithic supermacroporous structure and high contents of LIX84-I depending on the added amount of the extractant to the monomer solution. The amount of LIX84-I impregnated in the cryogel had a linear relationship with the added amount of LIX84-I in the monomer solution for cryo-polymerization. Cu(II) in the aqueous solution was immediately adsorbed into the cryogel containing LIX84-I.
Collapse
Affiliation(s)
- Hayato Takase
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan;
| | - Naoto Goya
- Department of Applied Chemistry, Graduate School of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan
| | - Shiro Kiyoyama
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshi-cho, Miyakonojo-shi, Miyazaki 885-8567, Japan;
| | - Koichiro Shiomori
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan;
| | - Hideki Matsune
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan;
| |
Collapse
|
3
|
Dumitru MV, Sandu T, Miron A, Zaharia A, Radu IC, Gavrilă AM, Sârbu A, Iovu H, Chiriac AL, Iordache TV. Hybrid Cryogels with Superabsorbent Properties as Promising Materials for Penicillin G Retention. Gels 2023; 9:443. [PMID: 37367113 DOI: 10.3390/gels9060443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan-biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.
Collapse
Affiliation(s)
- Marinela Victoria Dumitru
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Teodor Sandu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Andreea Miron
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Ionuț Cristian Radu
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Ana-Mihaela Gavrilă
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Andrei Sârbu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Horia Iovu
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Anita-Laura Chiriac
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Tanța Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| |
Collapse
|
4
|
Chen Q, Gao M, Yu M, Zhang T, Wang J, Bi J, Dong F. Efficient photo-degradation of antibiotics by waste eggshells derived AgBr-CaCO3 heterostructure under visible light. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
High fluorescent nitrogen−doped carbon dots derived from Sanghuangporus lonicericola for detecting tetracyclines in aquaculture water and rat serum samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Yavuz B, Kondolot Solak E, Oktar C. Preparation of biocompatible microsphere-cryogel composite system and controlled release of mupirocin. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Yavuz
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Processing Technologies, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| | - Ceren Oktar
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Liu Y, Fu J, He J, Wang B, He Y, Luo L, Wang L, Chen C, Shen F, Zhang Y. Synthesis of a superhydrophilic coral-like reduced graphene oxide aerogel and its application to pollutant capture in wastewater treatment. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zhong J, Feng Y, Yang B, Xiong Q, Ying GG. Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Construction of UiO-NH2@TiC Schottky Junction and Their Effectively Photocatalytic and Antibacterial Performance. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Kinetic and mechanism studies of tetracycline photodegradation using synthesized ZnAl2O4. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02114-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Zhang J, Zhong T, Xiang Y, Zhang X, Feng X. Microfibrillated cellulose reinforced poly(vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 2021. [DOI: 10.1002/app.51456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinmeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Tianyi Zhong
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yun Xiang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
12
|
Erol K, Bülter MB, Köse DA, Can HK. Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Making cryogels, which are among today’s accepted adsorbents, more functional with different methods, has been one of the subjects spent overtime. In this study, water-soluble poly(maleic anhydride-alt-acrylic acid) polymer embedded in poly(2-hydroxyethyl methacrylate) cryogels. Copper ions were then immobilised to this structure, and this polymer was used for adsorption of haemoglobin from aqueous systems. Adsorption interaction was carried out on an electrostatic basis, and approximately 448.62 mg haemoglobin/g polymer adsorption capacity value was obtained. It was found that the same material has managed to maintain its adsorption ability by 90.3% even after the use of it five times in the adsorption/desorption cycle. The adsorption interaction was determined to be appropriate for the Langmuir model by isotherm studies. The change in Gibbs free energy value was calculated as −2.168 kJ/mol.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Medical Services and Techniques , Vocational School of Health Services, Hitit University , Çorum 19030 , Turkey
| | - Melda Bolat Bülter
- Department of Property Protection and Security , Vocational School of Technical Sciences, Hitit University , Çorum 19900 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Arts and Sciences, Hitit University , Çorum 19040 , Turkey
| | - Hatice Kaplan Can
- Department of Chemistry , Faculty of Science, Hacettepe University , Ankara 06800 , Turkey
| |
Collapse
|
13
|
Yu J, Liu H, Wang Y, Li J, Wu D, Wang X. Fluorescent sensing system based on molecularly imprinted phase-change microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J Colloid Interface Sci 2021; 599:332-350. [PMID: 33957426 DOI: 10.1016/j.jcis.2021.04.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Aiming at enhancing the detection efficiency and identification accuracy of tetracycline under a high-temperature condition, this study focuses on an innovative fluorescent sensing system (MIP@CQD-PCM) based on molecularly imprinted phase-change microcapsules along with the carbon quantum dots (CQDs) embedded in their shell. This system was fabricated by microencapsulating n-eicosane as a phase change material (PCM) core within a CQDs-embedded SiO2 shell, followed by coating a tetracycline-templated molecularly imprinted polymer (MIP) layer onto the surface of the SiO2 shell. The specific recognition sites to tetracycline molecules were finally achieved by removal of tetracycline template from the MIP layer. Comprehensive characterizations and investigations on the structure and performance of the fluorescent sensing system were given to confirm its successful fabrication in accordance to our design strategy. The resultant MIP@CQD-PCM exhibits a satisfactory thermal storage capacity and phase-change cycle stability for temperature regulation and thermal management applications under a phase-change enthalpy of over 162 J/g. Most of all, a typical fluorescence-quenching effect was obtained from the combination of the CQDs embedded in the SiO2 shell and the tetracycline molecules adsorbed in the MIP layer. This makes the MIP@CQD-PCM achieve an enhanced capability for the fluorescence identification of tetracycline in a high-temperature environment through the in situ thermal management of its PCM core. The MIP@CQD-PCM also displays high selectivity and good reusability for tetracycline detection in industrial applications. This work provides a promising strategy for the design and development of fluorescent sensing systems with high recognition efficiency and identification accuracy in the detection of hazardous substances.
Collapse
Affiliation(s)
- Jinghua Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yatao Wang
- Coal Chemical R & D Center, Kailuan Group Limited Liability Corporation, Tangshan, Hebei 063018, China
| | - Jianhua Li
- Coal Chemical R & D Center, Kailuan Group Limited Liability Corporation, Tangshan, Hebei 063018, China
| | - Dezhen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
14
|
Amaly N, El-Moghazy AY, Sun G, Pandey PK. Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl alcohol-co-ethylene)/polyaniline metal complex nanofibrous membranes. J Colloid Interface Sci 2021; 597:9-20. [PMID: 33862449 DOI: 10.1016/j.jcis.2021.03.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Antibiotic residues from animal wastes enter underground and surface water streams, posing high risks to public health. Novel technologies capable of removing the residues from the matrix of concern such as animal waste should be developed. This research investigates the development of nanofiber absorbent for removing tetracycline (TC) antibiotic residues from liquid streams of dairy manure produced in a typical dairy farm. Hierarchically structured nanofibrous adsorbent was developed through growing a uniform polyaniline (PAni) nanodots on poly (vinyl alcohol-co-ethylene) (EVOH) nanofiber membrane (NFM). Moreover, Cu2+ ions were chelated on the developed EVOH/PAni-Cl NFM to improve TC adsorption efficiency and selectivity. The TC adsorption capacities of EVOH/PAni-Cl-Cu2+ and EVOH/PAni-Cl) NFM were 1100 mg g-1 and 600 mg g-1 within 120 min., respectively. The NFMs adsorption efficiency was investigated using dairy wastewater. Initial TC concentrations in dairy wastewater sample varied between 20 and 50 ppm. The EVOH/PAni-Cl-Cu2+ NFM showed TC removal of 86% from dairy manure samples at 25 ppm initial TC concentration within 60 min. during batch mode treatment. Results showed that the dynamic binding efficiency of 450 mg g-1 can be achieved at an initial TC concentration of 50 ppm. Furthermore, the NFM displayed efficient chemical and physical stability even after 8 cycles of reusing without significant changes in its performance or hazardous Cu2+ leaching.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA
| | - Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA.
| |
Collapse
|
15
|
Yang G, Li Y, Yang S, Liao J, Cai X, Gao Q, Fang Y, Peng F, Zhang S. Surface oxidized nano-cobalt wrapped by nitrogen-doped carbon nanotubes for efficient purification of organic wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Wang W, Deng P, Liu X, Ma Y, Yan Y. A CsPbBr3 quantum dots/ultra-thin BN fluorescence sensor for stability and highly sensitive detection of tetracycline. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Hu L, Ren X, Yang M, Guo W. Facet-controlled activation of persulfate by magnetite nanoparticles for the degradation of tetracycline. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Sümbelli Y, Keçili R, Hür D, Ersöz A, Say R. Molecularly imprinted polymer embedded-cryogels as selective genotoxic impurity scavengers. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1869259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yiğitcan Sümbelli
- Faculty of Science, Department of Chemistry, Eskişehir Technical University, Eskişehir, Turkey
| | - Rüstem Keçili
- Yunus Emre Vocational School of Health Services, Pharmacy Services Programme, Anadolu University, Eskişehir, Turkey
| | - Deniz Hür
- Faculty of Science, Department of Chemistry, Eskişehir Technical University, Eskişehir, Turkey
| | - Arzu Ersöz
- Faculty of Science, Department of Chemistry, Eskişehir Technical University, Eskişehir, Turkey
- Bionkit Co. Ltd, Eskişehir, Turkey
| | | |
Collapse
|
19
|
Nawaz T, Ahmad M, Yu J, Wang S, Wei T. A recyclable tetracycline imprinted polymeric SPR sensor: in synergy with itaconic acid and methacrylic acid. NEW J CHEM 2021. [DOI: 10.1039/d0nj05364c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tetracycline (TC) imprinted polymer was prepared in visible light via synergy of dual functional group monomers methacrylic acid (MAA) and itaconic acid (IA) for selective detection of TC in urine and milk samples.
Collapse
Affiliation(s)
- Tehseen Nawaz
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Muhammad Ahmad
- Department of Mechanical Engineering
- City University Hong Kong
- Hong Kong
| | - Jieying Yu
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Shiqi Wang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Tianxin Wei
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
20
|
Öztürk G, Saylan Y, Denizli A. Designing composite cryogel carriers for tyrosine adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Vu TH, Ngo TMV, Duong TTA, Nguyen THL, Mai XT, Pham THN, Le TP, Tran TH. Removal of Tetracycline from Aqueous Solution Using Nanocomposite Based on Polyanion-Modified Laterite Material. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:6623511. [PMID: 33489413 PMCID: PMC7787789 DOI: 10.1155/2020/6623511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 05/26/2023]
Abstract
This work investigated the removal of antibiotic tetracycline (TC) from wastewater using nanocomposite material based on laterite modified with polyanion, polystyrene sulfonate (PSS). The effective factors influenced on the TC removal using nanocomposite PSS-modified laterite (NCPML) were optimized and found to be pH 4, solid-liquid ratio 5 mg/mL, and contact time 180 min. The highest removal of TC reached about 88% under the optimum adsorption conditions. The adsorption isotherm and kinetics of TC adsorption onto NCPML were in good agreement with the Langmuir and pseudo-second-order models, respectively. The characteristics of the NCPML material before and after TC adsorption were examined by zeta (ζ) potential measurements, Brunauer-Emmett-Teller (BET) method, and Fourier transform infrared spectroscopy (FT-IR). The TC adsorption onto NCPML was induced by electrostatic interaction, hydrogen bonding, and diffusion interaction. The TC removal from wastewater was approximately 94% while efficiency still reached 66% after five regenerations. Our research reveals that NCPML is a high-performance adsorbent for TC removal from wastewater.
Collapse
Affiliation(s)
- Thi Hau Vu
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Mai Viet Ngo
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Tu Anh Duong
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Hien Lan Nguyen
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Xuan Truong Mai
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Hong Nguyet Pham
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Phuong Le
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| | - Thi Hue Tran
- Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Quang Trung, Thai Nguyen, Vietnam
| |
Collapse
|
22
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|
23
|
Zhao M, Hou Z, Lian Z, Qin D, Ge C. Direct extraction and detection of malachite green from marine sediments by magnetic nano-sized imprinted polymer coupled with spectrophotometric analysis. MARINE POLLUTION BULLETIN 2020; 158:111363. [PMID: 32568079 DOI: 10.1016/j.marpolbul.2020.111363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
This research describes the application of magnetic molecularly imprinted nano-sized polymers (MMIPs) for the selective extraction and fast detection of malachite green (MG) from marine sediment samples followed by UV-Vis spectrophotometry. The novel material was prepared by surface imprinting using methacrylic acid as the functional monomer for fixing the template molecules. The polymers obtained at each step were thoroughly studied by transmission electron microscopy, FTIR spectroscopy and thermogravimetric analysis. Simultaneously, the adsorption performances of the resulting nanoparticles were analysed in detail and an excellent affinity with the MG was revealed. Further, the main parameters of magnetic molecular imprinted solid-phase extraction (MMIP-SPE) were screened via multivariate optimization methods. The magnetic nanoparticles were used as special adsorbents to directly extract MG from crude marine sediment extracts. The developed method exhibits satisfactory recoveries from the spiked samples, ranging from 80.40 to 92.96% with an RSD of less than 5.18% (n = 3).
Collapse
Affiliation(s)
- Min Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Zonghao Hou
- Marine College, Shandong University, Weihai 264209, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, China.
| | - Dan Qin
- Marine College, Shandong University, Weihai 264209, China
| | - Changzi Ge
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
24
|
Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02139-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Liu X, Zhou Z, Wang T, Xu Y, Lu K, Yan Y. Molecularly imprinted polymers-captivity ZnO nanorods for sensitive and selective detecting environmental pollutant. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117785. [PMID: 31767418 DOI: 10.1016/j.saa.2019.117785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
To develop the semiconductor of ZnO nanomaterials as the fluorescence sensor without leakage toxicity. Here, a molecularly imprinted polymer captivity ZnO nanorods (NRs) (MIPs-captivity ZnO NRs) was fabricated by precipitation polymerization. Such traditional technology was not only achieved the specific recognition for direct fluorescent quantification of the target tetracycline (TC) through fluorescence quenching, but also formed the shield to reduce the toxic effects of ZnO towards organisms. Under the optimized experimental conditions, the MIPs-captivity ZnO NRs were effectively applied to the direct fluorescence quantification of TC with excellent stability. Moreover, the practical analytical performance of the MIPs-captivity ZnO NRs was assayed by appraising the detection effects of TC in water sample from the Yangtze River with satisfactory results.
Collapse
Affiliation(s)
- Xiqing Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiping Zhou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
26
|
Farías T, Hajizadeh S, Ye L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for adsorption fouling control. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Zhao X, Pei W, Guo R, Li X. Selective Adsorption and Purification of the Acteoside in Cistanche tubulosa by Molecularly Imprinted Polymers. Front Chem 2020; 7:903. [PMID: 32039143 PMCID: PMC6989468 DOI: 10.3389/fchem.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Acteoside (ACT) is the main component of phenylethanoid glycosides in Cistanche tubulosa, and it is extremely desirable for obtaining high purification of ACT by molecularly imprinted polymers (MIPs) from their extracts. In this study, MIPs were designed and synthetized to adsorb selectively the ACT in C. tubulosa. The effects of different functional monomers, cross-linkers, and solvents of MIPs were investigated. MIPs were studied in terms of static adsorption experiments, dynamic adsorption experiments, and selectivity experiments. The optimal functional monomer, cross-linking agent, and solvent are 4-vinylpyridine, ethylene glycol dimethylacrylate, and the mixed solvent (acetonitrile and N,N-dimethylformamide, 1:1.5, v/v), respectively. Under the optimal conditions, the synthesized MIP1 has a high adsorption performance for ACT. The adsorption capacity of MIP1 to ACT reached 112.60 mg/g, and the separation factor of ACT/echinacoside was 4.68. Because the molecularly imprinted cavities of MIP1 resulted from template molecules of ACT, it enables MIP1 to recognize selectively ACT. Moreover, the N–H groups on MIP1 can form hydrogen bonds with the hydroxyl groups on the ACT; this improves the separation factor of MIP1. The dynamic adsorption of ACT accorded with the quasi-second-order kinetics; it indicated that the adsorption process of MIP1 is the process of chemical adsorption to ACT. MIPs can be applied as a potential adsorption material to purify the active ingredients of herbal medicines.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Wenjing Pei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Ruili Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
29
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
30
|
He Q, Liang JJ, Chen LX, Chen SL, Zheng HL, Liu HX, Zhang HJ. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms. WATER RESEARCH 2020; 168:115164. [PMID: 31629229 DOI: 10.1016/j.watres.2019.115164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 05/17/2023]
Abstract
Carbamazepine (CBZ) is a typical pharmaceutical residue commonly found in aqueous environments, but its removal through activated carbon or advanced oxidation processes is often disrupted by co-existing organic matter. An imprinting system which consisted of the target pollutant CBZ (template molecule) and 10 different kinds of functional monomers was constructed via molecular simulation to screen for appropriate monomers, thereby addressing CBZ removal disruptions. An annealing method simulation was used to search for stable, low-energy conformations of the template-monomer interaction system to calculate the binding energy of these different monomers with CBZ. The order of binding affinity calculated was: 4-vinylbenzoic acid > itaconic acid > methacrylic acid, which was consistent with the experimental observations. The adsorption capacity of the molecular imprinted polymer (MIP) prepared using 4-vinylbenzoic acid reached 28.40 mg/g, and the imprinting factor reached 2.72. The simulation and measurement of the ultraviolet spectrum of the imprinting system showed that a new interaction system was formed between the template and monomers, and that multiple binding conformations between them took place when specific recognition occurred. Energy calculation and hydrogen bond analysis revealed that the van der Waals force, including the π-π conjugate and electrostatic forces including hydrogen bonding, played an important role during selective adsorption, which was confirmed by infrared spectroscopy analysis.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China; Chongqing Planning and Design Institute, Chongqing, 401147, China.
| | - Jian-Jun Liang
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Li-Xi Chen
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Shu-Li Chen
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Huai-Li Zheng
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Hong-Xia Liu
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Hui-Jie Zhang
- Key Laboratory of the Three Gorges Reservoir Region ' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
31
|
Zhang Z, Wang B, Guo J, He Y, Song P, Wang R. In Situ Synthesis of C–Doped BiOBr Micron‐Flower by Structural Induction of Sodium Alginate for Rapid Removal Tetracycline. ChemistrySelect 2019. [DOI: 10.1002/slct.201903827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhancheng Zhang
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Bin Wang
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Junhui Guo
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of the Ministry of EducationInstitute of PolymersCollege of Chemistry & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| |
Collapse
|
32
|
Rizzi V, Lacalamita D, Gubitosa J, Fini P, Petrella A, Romita R, Agostiano A, Gabaldón JA, Fortea Gorbe MI, Gómez-Morte T, Cosma P. Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133620. [PMID: 31635003 DOI: 10.1016/j.scitotenv.2019.133620] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 05/09/2023]
Abstract
This paper focuses on the removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. More specifically, both raw olive solid wastes (olive pomace) and the olive solid wastes/chitosan composite were compared and used for this purpose. Adsorption capacities values of 16 mg × g-1 and 1.6 mg × g-1 were obtained for the two adsorbents respectively. However, chitosan/olive pomace is proposed as suitable for environmental applications avoiding the dispersion of the pomace blocked inside the chitosan film. To detail the adsorption process, the effect of several experimental parameters such as the pH values, ionic strength, amount of adsorbent and pollutant and temperature values was investigated. The results showed that the adsorption process improved increasing the pH values, with a maximum at pH 8, and it was negatively affected by the presence of salts that retarded the adsorption. Indeed, the desorption of tetracycline was obtained in a MgCl2 2 M solution. So, a low-cost and cleaner approach, fundamental for the pollutant recovery and for an adsorbent safe reuse, for several cycles of adsorption/desorption, transforming a waste in resource is presented. The kinetics, isotherms models of adsorption and the thermodynamic parameters (ΔG°, ΔH° and ΔS°) were also evaluated observing that the physisorption of the pollutant occurred with and an endothermic character (ΔH° > 0) with ΔG° < 0 and ΔS° > 0. The use of Advanced Oxidation Processes was proposed as possible alternative to the tetracycline recovery, obtaining its degradation after the desorption. With the present paper, the alternative reuse of olive pomace is reported avoiding its disposal in the environment claiming its potential in the removal/recover of emerging contaminants from water.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Dario Lacalamita
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Jennifer Gubitosa
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Orabona, 4, 70125, Bari, Italy
| | - Roberto Romita
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - José Antonio Gabaldón
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - María Isabel Fortea Gorbe
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Teresa Gómez-Morte
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy.
| |
Collapse
|
33
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
34
|
CuInS 2/Mg(OH) 2 Nanosheets for the Enhanced Visible-Light Photocatalytic Degradation of Tetracycline. NANOMATERIALS 2019; 9:nano9111567. [PMID: 31694259 PMCID: PMC6915496 DOI: 10.3390/nano9111567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/25/2023]
Abstract
CuInS2/Mg(OH)2 (CIS/Mg(OH)2) nanosheets have been prepared for the visible light activated photodegradation of tetracycline hydrochloride (TCH). The introduction of CuInS2 has proven to enhance the photocatalytic activity of Mg(OH)2 nanosheets. It’s ascribed to the enhanced transfer and separation of charge carriers at the junction interface between CuInS2 and Mg(OH)2. The photocatalytic activity of obtained CIS/Mg(OH)2 is greatly affected by CuInS2 content, pH value, and inorganic ions. Among these samples, 2-CIS/Mg(OH)2 exhibits the excellent photocatalytic activity and durability for the visible light driven removal of TCH after five cycle times. Atomic force microscope (AFM) images indicate that the surface roughness of 2-CIS/Mg(OH)2 is intensively influenced in adsorption-photocatalysis process. The •O2− and •OH radicals are vital for the visible light driven photocatalytic activity of 2-CIS/Mg(OH)2 for TCH removal.
Collapse
|
35
|
Hierarchical macroporous material with dual responsive copolymer brushes and phenylboronic acid ligands for bioseparation of proteins and living cells. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Erol B, Erol K, Gökmeşe E. The effect of the chelator characteristics on insulin adsorption in immobilized metal affinity chromatography. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Pham TD, Tran TT, Le VA, Pham TT, Dao TH, Le TS. Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110900] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Daneshvar E, Zarrinmehr MJ, Hashtjin AM, Farhadian O, Bhatnagar A. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. BIORESOURCE TECHNOLOGY 2018; 268:523-530. [PMID: 30118973 DOI: 10.1016/j.biortech.2018.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 05/15/2023]
Abstract
In this study, freshwater (Scenedesmus quadricauda, Sq) and marine water (Tetraselmis suecica, Ts) microalgae were used for the treatment of dairy wastewater (DWW). Sq and Ts showed the highest biomass productivity as 0.47 and 0.61 g/L, respectively. Removal efficiencies of total nitrogen (TN), phosphate (PO43-), and total organic carbon (TOC) were observed as 86.21, 89.83 and 64.47% by Sq and 44.92, 42.18 and 40.16% by Ts, respectively. After wastewater treatment, lipids were extracted from microalgal biomasses. Fatty acid methyl esters (FAMEs) analysis revealed that saturated fatty acids (SFAs) are dominant in Sq and polyunsaturated fatty acids (PUFAs) in Ts. After lipid extraction, removal of tetracycline (TC) from water by microalgal biomasses was also investigated. Maximum adsorption capacities of Sq and Ts were found to be 295.34 and 56.25 mg/g, respectively. Results of this study revealed the versatile applications of microalgae for wastewater treatment, lipid production and TC removal from water.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mohammad Javad Zarrinmehr
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Atefeh Malekzadeh Hashtjin
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Omidvar Farhadian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
39
|
Zhao S, Wang D, Zhu S, Liu X, Zhang H. 3D cryogel composites as adsorbent for isolation of protein and small molecules. Talanta 2018; 191:229-234. [PMID: 30262055 DOI: 10.1016/j.talanta.2018.08.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
A green and promising sample pretreatment method was successfully established, which efficiently isolated proteins and small molecules in human serum. This method was achieved based on the multifunctional polymer, cryogel, as a solid phase extraction (SPE) monolith easily equipped in a syringe. The cryogel (pDC/GO-DE) was composed of diallyldimethyl ammonium chloride (DC) and 2-hydroxyethyl methacrylate (HE), which was further modified with graphene oxide (GO) and N-diethylethanamine hydrobromide (DE). Various proteins, including bovine serum albumin (BSA), lysozyme (Lys), γ-globulins, immunoglobulin G (IgG), transferrin, small molecules (ribavirin, adenosine, ofloxacin, estriol, rutin, amoxicillin, ibuprofen, 1-methyl-3-phenyl-propylamine, and benzylamine) and their mixtures were successively studied as model analytes to evaluate the new material and demonstrate the isolation mechanism, which was mainly dependent on mixed-mode ion-exchange and the hybrid hydrophobicity-hydrophilicity property of pDC/GO-DE cryogel. Moreover, the three-dimensional macroporous structure contributed to the underlying size-selective isolation. When 10 times diluted human serum was used as the sample, more than 95% of proteins were adsorbed within 10 min under physiological conditions, and the interference matrix in serum was also efficiently reduced. After recycling three times, the extraction ratio of proteins in human serum was still higher than 90%. When four small molecules (camptothecin, ribavirin, 1-methyl-3-phenylpropylamine and ofloxacin) were added to blank human serum, their recoveries were within 65.6-81.8%, and were comparable to those obtained by protein precipitation method (63.7-83.2%).
Collapse
Affiliation(s)
- Shuling Zhao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongdong Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuqiang Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|