1
|
Prajapati H, Gosai J, Chaudhari N, Busupalli B. Jute-Copper Nanocomposite Embedded PSf Membrane for Sustainable and Efficient Heavy Metal Removal from Water Sources. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:624-632. [PMID: 39707981 DOI: 10.1021/acs.langmuir.4c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Numerous corporations have overlooked environmental regulations concerning wastewater treatment, leading to a worldwide issue regarding hazardous pollutant discharge, particularly dyes and heavy metal ions, into river sources. Various industries, with water, energy, and biological sectors, actively employ membranes. Membranes capable of showing flux, metal and dye sorption, and catalysis have been developed and are extensively used by functionalizing the pores of ultrafiltration, microfiltration, and nanofiltration membranes with responsive properties. The enhancement of synthetic membrane performance can be achieved by developing new polymers or modifying the surface of existing polymers. In this study, high porosity and large internal pore volume polysulfone (PSf) membrane composites were produced on a laboratory scale by adjusting the polymer coagulation conditions during the phase inversion process, incorporating copper nanoparticles for antifouling properties, and utilizing pretreated natural jute fibers. A comprehensive characterization of the composites was conducted by using FTIR, XRD, XPS, ICP-MS, and SEM techniques. To calculate their possible uses in separation and purification methods, the performance of PSf-based membrane composites was evaluated in terms of heavy metal rejection rates (%) in water.
Collapse
Affiliation(s)
- Harsh Prajapati
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Jeny Gosai
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Nitin Chaudhari
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| |
Collapse
|
2
|
Kong J, Cao H, Qian W, Yu L, Tang A, Feng W, Zhang H, Zheng G. Deep removal of trace arsenic from acidic SbCl 3 solution by in-situ galvanically coupled Cu 2Sb/Cu particles. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133659. [PMID: 38350314 DOI: 10.1016/j.jhazmat.2024.133659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Arsenic is a harmful associated element in antimony ore, which might bring out the risk of leakage during complex industrial production of high-purity antimony. Herein, we reported a novel and efficient way to remove the trace arsenic impurity from acidic SbCl3 solution by utilizing copper-system bimetallic particles. Specifically, galvanically coupled Cu2Sb/Cu was in-situ synthesized by introducing precursor copper powder to the specific SbCl3 solution. DFT studies revealed that Sb(III) was easily reduced by Cu to form Cu2Sb due to the strong adsorption of Sb(III) on Cu (111) crystal plane. The Cu2Sb/Cu coupling exhibited excellent activity for As(III) reduction, over 99.4% arsenic were removed under optimal conditions and residual arsenic concentration dropped to only 2.7 mg L-1. Crucially, Sb(III) concentration changes could be neglected. Besides, the dearsenization residues were extensively characterized to analyze the evolvement and cause in the reaction process. The results confirmed that the arsenic removal mechanisms by Cu2Sb/Cu particles were multi-affected, including adsorption, displacement, and precipitation. And the strong electrostatic attraction of AsO+ under high HCl conditions was identified as a key step to achieving dearsenization. This research will provide a theoretical guidance for the green synthesis of high-purity antimony and related products.
Collapse
Affiliation(s)
- Junfeng Kong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huazhen Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weilun Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lining Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anyang Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenyu Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huibin Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Younas M, Bacha AUR, Khan K, Nabi I, Ullah Z, Humayun M, Hou J. Application of manganese oxide-based materials for arsenic removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170269. [PMID: 38266733 DOI: 10.1016/j.scitotenv.2024.170269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.
Collapse
Affiliation(s)
- Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan China
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology Wuhan, 430074, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
4
|
Huang X, Jin K, Yang S, Zeng J, Zhou H, Zhang R, Xue J, Liu Y, Liu G, Peng H. Fabrication of polyvinylidene fluoride and acylthiourea composite membrane and its adsorption performance and mechanism on silver ions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Adam MR, Hubadillah SK, Aziz MHA, Jamalludin MR. The emergence of adsorptive membrane treatment for pollutants removal – A mini bibliometric analysis study. MATERIALS TODAY: PROCEEDINGS 2023; 88:15-22. [DOI: 10.1016/j.matpr.2023.03.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Construction of membrane formation system with low critical solution temperature for preparing hydrophilic polysulfone membrane via modified reverse thermally induced phase separation process. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Moreno-Bárcenas A, Arizpe-Zapata JA, Rivera Haro JA, Sepúlveda P, Garcia-Garcia A. Jute Fibers Synergy with nZVI/GO: Superficial Properties Enhancement for Arsenic Removal in Water with Possible Application in Dynamic Flow Filtration Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3974. [PMID: 36432260 PMCID: PMC9697694 DOI: 10.3390/nano12223974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Groundwater is one of the primary sources of water for both drinking and industrial use in northeastern Mexican territory, around 46% of the total, due to the lack of precipitation during the year and solar radiation index. The presence of arsenic in brackish soil and groundwater is a severe health issue, specifically in semi-arid and arid regions in the north of Mexico. Additionally, it represents the only source of drinking water in communities far from big cities, mainly due to the absence of hydric infrastructure. This work presents a new approach to treating polluted water with arsenic. The system based on activating jute fiber with nanoparticles of zero-valent iron immobilized over graphene oxide will allow nZVI particles to preserve their unique qualities for water sanitization. A dynamic flow test was designed to determine the effectivity of activated jute fibers as a water sanitation system. The results showed a reduction in the total arsenic content from 350 ppb to 34 ppb with a filtrate flow of 20 mL/min. The above represents 90% adsorption by the activated fiber. The analyzed sample corresponds to contaminated groundwater taken from Coahuila, Mexico. This sanitation system could be applied to low-income populations lacking robust infrastructure, such arsenic treatment plants.
Collapse
Affiliation(s)
- Alejandra Moreno-Bárcenas
- Advanced Materials Research Center, Design and Synthesis of Nanostructures and Bidimensional Materials Group, Apodaca 66628, NL, Mexico
- FCQ, Autonomous University of Nuevo León, San Nicolás de los Garza 64570, NL, Mexico
| | - Jesús Alejandro Arizpe-Zapata
- Advanced Materials Research Center, Design and Synthesis of Nanostructures and Bidimensional Materials Group, Apodaca 66628, NL, Mexico
| | - Julio Alejandro Rivera Haro
- Advanced Materials Research Center, Design and Synthesis of Nanostructures and Bidimensional Materials Group, Apodaca 66628, NL, Mexico
| | - Pamela Sepúlveda
- Faculty of Chemistry and Biology and Faculty of Science, Physics Department, University of Santiago of Chile (USACH), Santiago 9170022, Chile
- Centro para el Desarrollo de Nanociencia y Nanotecnología CEDENNA, Santiago 9170022, Chile
| | - Alejandra Garcia-Garcia
- Advanced Materials Research Center, Design and Synthesis of Nanostructures and Bidimensional Materials Group, Apodaca 66628, NL, Mexico
| |
Collapse
|
8
|
Iqbal A, Jalees MI, Farooq MU, Cevik E, Bozkurt A. Superfast adsorption and high-performance tailored membrane filtration by engineered Fe-Ni-Co nanocomposite for simultaneous removal of surface water pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Nasir AM, Adam MR, Mohamad Kamal SNEA, Jaafar J, Othman MHD, Ismail AF, Aziz F, Yusof N, Bilad MR, Mohamud R, A Rahman M, Wan Salleh WN. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep Purif Technol 2022; 286:120454. [PMID: 35035270 PMCID: PMC8741333 DOI: 10.1016/j.seppur.2022.120454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Consumption of pathogenic contaminated water has claimed the lives of many people. Hence, this scenario has emphasized the urgent need for research methods to avoid, treat and eliminate harmful pathogens in wastewater. Therefore, effective water treatment has become a matter of utmost importance. Membrane technology offers purer, cleaner, and pathogen-free water through the water separation method via a permeable membrane. Advanced membrane technology such as nanocomposite membrane, membrane distillation, membrane bioreactor, and photocatalytic membrane reactor can offer synergistic effects in removing pathogen through the integration of additional functionality and filtration in a single chamber. This paper also comprehensively discussed the application, challenges, and future perspective of the advanced membrane technology as a promising alternative in battling pathogenic microbial contaminants, which will also be beneficial and valuable in managing pandemics in the future as well as protecting human health and the environment. In addition, the potential of membrane technology in battling the ongoing global pandemic of coronavirus disease 2019 (COVID-19) was also discussed briefly.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Juhana Jaafar
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Roil Bilad
- Department of Chemistry Education, Universitas Pendidikan Mandalika (UNDIKMA), Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus,Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Ndlovu LN, Malatjie KI, Chabalala MB, Mishra AK, Mishra SB, Nxumalo EN. Beta cyclodextrin modified polyvinylidene fluoride adsorptive mixed matrix membranes for removal of Congo red. J Appl Polym Sci 2022. [DOI: 10.1002/app.52302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Shivani B. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| |
Collapse
|
11
|
Li Y, Li S, Hu B, Zhao X, Guo P. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Egbosiuba TC, Egwunyenga MC, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS, Krikstolaityte V, Veksha A, Wagner M, Lisak G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126993. [PMID: 34530269 DOI: 10.1016/j.jhazmat.2021.126993] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nickel nanoparticles (NiNPs) supported on activated multi-walled carbon nanotubes (MWCNTs) were used as an adsorbent applied towards Pb(II), As(V) and Cd(II) remediation from industrial wastewater. The result revealed the hydrophilic surface of MWCNTs-KOH was enhanced with the incorporation of NiNPs enabling higher surface area, functional groups and pore distribution. Comparatively, the removal of Pb(II), As(V) and Cd(II) on the various adsorbents was reported as NiNPs (58.6 ± 4.1, 46.8 ± 3.7 and 40.5 ± 2.5%), MWCNTs-KOH (68.4 ± 5.0, 65.5 ± 4.2 and 50.7 ± 3.4%) and MWCNTs-KOH@NiNPs (91.2 ± 8.7, 88.5 ± 6.5 and 80.6 ± 5.8%). Using MWCNTs-KOH@NiNPs, the maximum adsorption capacities of 481.0, 440.9 and 415.8 mg/g were obtained for Pb(II), As(V) and Cd(II), respectively. The experimental data were best suited to the Langmuir isotherm and pseudo-second order kinetic model. The fitness of experimental data to the kinetic models in a fixed-bed showed better fitness to Thomas model. The mechanism of metal ion adsorption onto MWCNTs-KOH@NiNPs show a proposed electrostatic attraction, surface adsorption, ion exchange, and pore diffusion due to the incorporated NiNPs. The nanocomposite was highly efficient for 8 adsorption cycles. The results of this study indicate that the synthesized nanocomposite is highly active with capacity for extended use in wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Michael Chika Egwunyenga
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Delta State Polytechnic, PMB 1030, Ogwashi-Uku, Delta State, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Vida Krikstolaityte
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Michal Wagner
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
13
|
Kamali N, Ghasemi JB, Mohamadi Ziarani G, Moradian S, Badiei A. Design, Synthesis, and Nanoengineered Modification of Spherical Graphene Surface by LDH for Removal of As(III) from Aqueous Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lyonga FN, Hong SH, Cho EJ, Kang JK, Lee CG, Park SJ. As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3303-3321. [PMID: 33034807 DOI: 10.1007/s10653-020-00739-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3- above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.
Collapse
Affiliation(s)
- Fritz Ndumbe Lyonga
- Department of Chemical Engineering, Hankyong National University, 327 Jungang-ro, Anseong, 17579, Republic of Korea
| | - Seung-Hee Hong
- Department of Integrated Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Gwanak-gu, 08826, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon-si, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
15
|
Nasir AM, Awang N, Hubadillah SK, Jaafar J, Othman MHD, Wan Salleh WN, Ismail AF. A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2021; 42:102111. [PMID: 35592059 PMCID: PMC8084616 DOI: 10.1016/j.jwpe.2021.102111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 05/09/2023]
Abstract
Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined. A wide spectrum of virus degradation by various photocatalysts was then considered to understand the potential mechanism for deactivating this deadly virus. The challenges and future perspectives were comprehensively discussed at the end of this review describing the limitations of current photocatalytic technology and suggesting a realistic outlook on advanced photocatalytic technology as a potential solution in dealing with similar upcoming pandemics. The major finding of this review including discovery of a vision on the possible photocatalytic approaches that have been proven to be outstanding against other viruses and subsequently combatting SARS-CoV-2 in wastewater. This review intends to deliver insightful information and discussion on the potential of photocatalysis in battling COVID-19 transmission through wastewater.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nuha Awang
- Facilities Maintenance Engineering Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Johor, Malaysia
| | - Siti Khadijah Hubadillah
- School of Technology Management and Logistics, Universiti Utara Malaysia, Sintok, Kedah, 06010, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
16
|
Ding W, Wan X, Zheng H, Wu Y, Muhammad S. Sulfite-assisted oxidation/adsorption coupled with a TiO 2 supported CuO composite for rapid arsenic removal: Performance and mechanistic studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125449. [PMID: 33611039 DOI: 10.1016/j.jhazmat.2021.125449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Owing to the lower toxicity and mobility of inorganic As(V), the oxidative removal of As(III) is deemed as the optimal approach for arsenic elimination from water. Herein, a synthetic TiO2-supported CuO material (Cu-TiO2) was coupled with sulfite (S(IV)) to remove As(III) at neutral pH. The combined process coupled oxidation with adsorption (i.e., As(III) removal by Cu-TiO2/S(IV)) was superior than a divided preoxidation-adsorption process (i.e., As(V) removal by Cu-TiO2) for arsenic removal. Attractively, low concentration of As(III) (50-300 μg L-1) could be completely removed by Cu-TiO2 (0.25 g L-1)/S(IV) (0.5 mM) within 60 min. Mechanism investigations revealed that the efficient As(III) removal was attributed to the continuous oxysulfur radicals (SOx•-) oxidation and Cu-TiO2 adsorption. The surface-adsorbed and free sulfate radicals (SO4•-) were further identified as the crucial oxidizing species. The Cu-TiO2 played the dual roles as a catalyst for S(IV) activation and an absorbent for arsenic immobility. The influence of operating parameters (i.e., As(III) concentration and sulfite dosage) and water chemistry (i.e., pH, inorganic anions, dissolved organic matters, and temperature) on As(III) removal were systematically investigated and optimized. Overall, the proposed process has potential application prospects in rehabilitating the As(III)-polluted water environment using industrial waste sulfite.
Collapse
Affiliation(s)
- Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xinyuan Wan
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yuyang Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Salam Muhammad
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Zeng J, Qi P, Wang Y, Liu Y, Sui K. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124633. [PMID: 33243653 DOI: 10.1016/j.jhazmat.2020.124633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
There is a growing demand for heavy metal removal by membrane technology in real applications. However, few studies were reported concerning antimony (Sb) removal by membrane technology. Herein, a novel thin film nanocomposite (TFN) membrane comprising an alginate (SA) selective layer and a polyether sulfone (PSF) support membrane incorporating chitosan functionalized iron nanocomposite has been firstly developed for Sb removal via electrostatic self-assembly. The support matrix membrane contained iron nanocomposite (denoted as CIM) retained high water flux and porosity, and it reached a maximum removal capacity of 16.5 and 13.6 mg/g for Sb(III) and Sb(V) with nanofiller loading rate of 20% during static experiments, respectively. The coated SA top layer endowed the hybrid membrane (denoted as SA-CIM) to have a lower membrane flux, and have stronger retention abilities for Sb species than that by CIM during dynamic filtration experiments. The SA-CIM membranes also possess tolerable reversibility towards Sb removal. Benefiting from the negatively-charged dense selective layer and high adsorption capacity of the iron nanocomposites, the SA-CIM membranes demonstrated an enhanced removal capacity for Sb species via steric hindrance effect, electrostatic repulsion and adsorption. Our study offers a simple method to remove Sb by a novel polysaccharide functionalized hybrid membrane.
Collapse
Affiliation(s)
- Jianqiang Zeng
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Pengfei Qi
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yahui Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| |
Collapse
|
18
|
Shi X, Mai X, Wei R, Ma Y, Naik N, He Z, Chen Y, Wang C, Dong B, Guo Z. Removing Pb2+ and As(V) from polluted water by highly reusable Fe-Mg metal-organic complex adsorbent. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Wang Q, Wei X, Wang GR, Lu TD, Shi Q, Sun SP. Inner-selective coordination nanofiltration hollow fiber membranes from assist-pressure modified substrate. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Chaudhary M, Maiti A. Fe–Al–Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: Removal mechanisms and antibacterial behavior. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118372] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Karimi MB, Mohammadi F, Hooshyari K. Effect of deep eutectic solvents hydrogen bond acceptor on the anhydrous proton conductivity of Nafion membrane for fuel cell applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Polysulfone/amino-silanized poly(methyl methacrylate) dual layer hollow fiber membrane for uremic toxin separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Manirethan V, Raval K, Balakrishnan RM. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113576. [PMID: 31744681 DOI: 10.1016/j.envpol.2019.113576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The metalloid arsenic is one of the most conspicuous groundwater contaminants in the Indian subcontinent and its removal from aqueous medium is the main focus of this study. The study aims at functionalising melanin using iron and copper for the efficient removal of arsenic and rendering water fit for consumption. Melanin obtained from the marine bacteria Pseudomonas stutzeri was functionalised by iron impregnation (Fe-melanin) and copper impregnation (Cu-melanin). Morphological studies using FESEM portrayed the impregnated iron and copper granules on the surface of melanin, while XRD analysis confirmed the presence of Fe2O3 and CuO on melanin. Adsorption studies on As (V) and As (III) were conducted using Fe-melanin and Cu-melanin for different operating variables like pH, temperature and contact time. More than 99% per cent of As (III) and As (V) from water was removed at a pH range between 4 and 6 within 50 min in the case of Fe-melanin and 80 min for Cu-melanin. Adsorption equilibrium studies showed better fit with Langmuir adsorption isotherm and had good agreement with Redlich-Peterson's three-parameter model. The maximum adsorption capacities of Fe-melanin and Cu-melanin obtained from Langmuir adsorption model are 50.12 and 20.39 mg/g, respectively, for As (V) and similarly 39.98 and 19.52 mg/g, respectively, for As (III). Arsenic-binding to the functionalised melanin was confirmed using FT-IR and the XPS analysis. Reuse of the adsorbent was effectively done by desorbing the iron and copper together with the bound As (III) and As (V) and further re-impregnation of iron and copper in melanin. Re-functionalised melanin showed 99% adsorption efficiency up to four cycles of adsorption/desorption.
Collapse
Affiliation(s)
- Vishnu Manirethan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India.
| |
Collapse
|
24
|
Mishra S, Singh AK, Singh JK. Ferrous sulfide and carboxyl-functionalized ferroferric oxide incorporated PVDF-based nanocomposite membranes for simultaneous removal of highly toxic heavy-metal ions from industrial ground water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117422] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Momeni S, Ahmadi R, Nabipour I. Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37162-37173. [PMID: 31749008 DOI: 10.1007/s11356-019-06679-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study aims to illustrate the preparation of a new nanobiocomposite by incorporating copper oxide nanoparticles into cuttlebone matrix (CB/CuO NPs), and it was tested to define how effective it was to adsorb and remove arsenate from aqueous systems. CB is the bone tissue of cuttlefish with high porosity, permeability, and low cost. CuO NPs have been introduced as an effective arsenate adsorbent. Producing nanocomposite by introducing of CuO NPs in the structure of CB enhanced their stability and facilitated their separation from solution. Incorporation of CuO NPs in the structure of CB enhanced the adsorption capacity of CB. The adsorption data were fitted with both Langmuir and Freundlich isotherms, but Langmuir isotherm exhibited better matching rather than Freundlich isotherm. The maximum adsorption capacity (qmax) was calculated from Langmuir adsorption isotherm which was around 25.13 mg g-1. Kinetic data fitted well to the pseudo-second-order reaction model. The results indicate that the possible mechanism of arsenate adsorption on CB/CuO is through development of inner sphere complex. Simple preparation and abundant and good adsorption capacity in the presence of calcium ions indicate that the CB/CuO is suitable for removal of arsenate from contaminated drinking water.
Collapse
Affiliation(s)
- Safieh Momeni
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 75147, Iran.
| | - Raheleh Ahmadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Iraj Nabipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 75147, Iran
| |
Collapse
|
26
|
Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. CHEMOSPHERE 2019; 232:96-112. [PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 05/24/2023]
Abstract
Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Darul Ta'zim, Malaysia.
| |
Collapse
|