1
|
Grangeat P, Duval Comsa MP, Koenig A, Phlypo R. Dynamic Modeling of Carbon Dioxide Transport through the Skin Using a Capnometry Wristband. SENSORS (BASEL, SWITZERLAND) 2023; 23:6096. [PMID: 37447945 DOI: 10.3390/s23136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The development of a capnometry wristband is of great interest for monitoring patients at home. We consider a new architecture in which a non-dispersive infrared (NDIR) optical measurement is located close to the skin surface and is combined with an open chamber principle with a continuous circulation of air flow in the collection cell. We propose a model for the temporal dynamics of the carbon dioxide exchange between the blood and the gas channel inside the device. The transport of carbon dioxide is modeled by convection-diffusion equations. We consider four compartments: blood, skin, the measurement cell and the collection cell. We introduce the state-space equations and the associated transition matrix associated with a Markovian model. We define an augmented system by combining a first-order autoregressive model describing the supply of carbon dioxide concentration in the blood compartment and its inertial resistance to change. We propose to use a Kalman filter to estimate the carbon dioxide concentration in the blood vessels recursively over time and thus monitor arterial carbon dioxide blood pressure in real time. Four performance factors with respect to the dynamic quantification of the CO2 blood concentration are considered, and a simulation is carried out based on data from a previous clinical study. These demonstrate the feasibility of such a technological concept.
Collapse
Affiliation(s)
- Pierre Grangeat
- CEA, Leti, MINATEC Campus, Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Anne Koenig
- CEA, Leti, MINATEC Campus, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Ronald Phlypo
- CNRS, Grenoble INP, GIPSA-Lab, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
2
|
Vadillo JM, Gomez-Coma L, Garea A, Irabien A. Non-dispersive CO2 separation process using vacuum desorption and ionic liquids as carbon capture and utilization innovative technology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Khalid NA, Shoparwe NF, Yusoff AH, Sulaiman AZ, Ahmad AL, Azmi NA. Fabrication and Characterisation of MWCNT/Polyvinyl (PVC) Polymer Inclusion Membrane for Zinc (II) Ion Removal from Aqueous Solution. MEMBRANES 2022; 12:1020. [PMID: 36295779 PMCID: PMC9607245 DOI: 10.3390/membranes12101020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution has prompted researchers to establish the most effective method to tackle the impacts of heavy metals on living things and the environment, which include by applying nanoparticles. An example is the employment of multi-walled carbon nanotubes (MWCNTs) as an additive in an intermediate membrane or polymer inclusion membrane (PIM). The MWCNTs were added to enhance the properties and reinforce the transport performance of zinc (II) ion (Zn2+) removal from the source phase to the receiver phase by the PIMs. The present study constructed a membrane with a poly(vinyl chloride) (PVC)-based polymer, dioctyl phthalate (DOP) plasticiser, and bis-(2-ethylhexyl) phosphate (B2EHP) carrier incorporated with different concentrations of MWCNTs. The contact angle (CA), water uptake, ion exchange capacity (IEC), and porosity of the fabricated membranes were evaluated. The membrane was also characterised by employing scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Subsequently, the fabricated PIM (W1) and mixed matrix (MM)-PIM (W2−W5) samples were assessed under different parameters to acquire the ideal membrane composition and effectiveness. Kinetic modelling of Zn2+ removal by the fabricated PIMs under similar conditions was performed to reveal the mechanisms involved. The average removal efficiency of the membranes was >99% at different parameter conditions. Nevertheless, the W3 membrane with 1.0 wt% MWCNT immersed in a 5 mg/L initial Zn2+ concentration and 1.0 M receiver solution for seven hours at pH 2 demonstrated the highest percentage of Zn2+ removal. The experimental data were best fitted to the pseudo-first-order kinetic model (PFO) in kinetic modelling, and the permeability and flux of the W3 at optimum conditions were 0.053 m s−1 and 0.0532 mol m−2 s−1, respectively. In conclusion, the transport mechanism of Zn2+ was enhanced with the addition of the MWCNTs.
Collapse
Affiliation(s)
- Nadia Aqilah Khalid
- Gold Rare Earth and Material Technopreneurship Centre, Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli, Kota Bharu 17600, Kelantan, Malaysia
| | - Noor Fazliani Shoparwe
- Gold Rare Earth and Material Technopreneurship Centre, Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli, Kota Bharu 17600, Kelantan, Malaysia
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre, Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli, Kota Bharu 17600, Kelantan, Malaysia
| | - Ahmad Ziad Sulaiman
- Gold Rare Earth and Material Technopreneurship Centre, Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli, Kota Bharu 17600, Kelantan, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Nur Aina Azmi
- Benua Sunda Cari Gali Sdn Bhd. No 6, Medan Pusat Bandar 1, Seksyen 9, Bandar Baru, Bangi 43650, Selangor, Malaysia
| |
Collapse
|
4
|
Vadillo JM, Díaz-Sainz G, Gómez-Coma L, Garea A, Irabien A. Chemical and Physical Ionic Liquids in CO 2 Capture System Using Membrane Vacuum Regeneration. MEMBRANES 2022; 12:785. [PMID: 36005700 PMCID: PMC9413488 DOI: 10.3390/membranes12080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Carbon Capture Utilization and Storage technologies are essential mitigation options to reach net-zero CO2 emissions. However, this challenge requires the development of sustainable and economic separation technologies. This work presents a novel CO2 capture technology strategy based on non-dispersive CO2 absorption and membrane vacuum regeneration (MVR) technology, and employs two imidazolium ionic liquids (ILs), [emim][Ac] and [emim][MS], with different behavior to absorb CO2. Continuous absorption-desorption experiments were carried out using polypropylene hollow fiber membrane contactors. The results show the highest desorption behavior in the case of [emim][Ac], with a MVR performance efficiency of 92% at 313 K and vacuum pressure of 0.04 bar. On the other hand, the IL [emim][MS] reached an efficiency of 83% under the same conditions. The MVR technology could increase the overall CO2 capture performance by up to 61% for [emim][Ac] and 21% for [emim][MS], which represents an increase of 26% and 9%, respectively. Moreover, adding 30%vol. demonstrates that the process was only favorable by using the physical IL. The results presented here indicate the interest in membrane vacuum regeneration technology based on chemical ILs, but further techno-economic evaluation is needed to ensure the competitiveness of this novel CO2 desorption approach for large-scale application.
Collapse
|
5
|
Soroodan Miandoab E, Scholes CA. A Rigorous Membrane Gas-Solvent Contactor Model for Flowsheet Simulation of the Carbon Capture Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ehsan Soroodan Miandoab
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Colin A. Scholes
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
RASOULI H, ILIUTA I, BOUGIE F, GARNIER A, ILIUTA MC. Hybrid enzymatic CO2 capture process in intensified flat sheet membrane contactors with immobilized carbonic anhydrase. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Holistic review on the recent development in mathematical modelling and process simulation of hollow fiber membrane contactor for gas separation process. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Vadillo JM, Hospital-Benito D, Moya C, Gomez-Coma L, Palomar J, Garea A, Irabien A. Modelling and simulation of hollow fiber membrane vacuum regeneration for CO2 desorption processes using ionic liquids. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhu Z, Yu M, Wu Z, Yan Y, Li S. Evaluation of the absorption performance of new compound absorbents for toluene under extremely high load. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52106-52123. [PMID: 34002312 DOI: 10.1007/s11356-021-14281-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Absorption is an effective way to control volatile organic compound (VOC) industrial air pollution, and the key variable in this process is the selection of suitable liquid absorbents to absorb as many organic pollutants as possible. The objective of this study was to prepare a series of high-efficiency absorbents with different proportions of vegetal oil, mineral oil, and waste engine oil, which can be used for toluene absorption. The absorption efficiency (AE), saturated absorption (SA), and effective absorption time (EAT) of various absorbents were systematically analyzed. The results showed that when the inlet concentration of toluene was 8000 mg/m3 and the inlet flow was 1 L/min, the SA capability of vegetal oil, mineral oil, and waste engine oil was 7.15, 12.43, and 18.16 mg/g, respectively. With the 4000 mg/m3 inlet concentration, the SA of the absorber which was made in the ratio of 2:3:1 was increased to 50.93 mg/g. According to the thermodynamic equilibrium and absorption results, it is proved that the influence of the composition of the absorbent on absorption is greater than viscosity. It is also to be noted that the AE of the composite absorbent can still reach more than 80% after three times of heating and air purification.
Collapse
Affiliation(s)
- Zhongyang Zhu
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Mengqi Yu
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Zhenjun Wu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Cao Y, Rehman ZU, Ghasem N, Al-Marzouqi M, Abdullatif N, Nakhjiri AT, Ghadiri M, Rezakazemi M, Marjani A, Pishnamazi M, Shirazian S. Intensification of CO 2 absorption using MDEA-based nanofluid in a hollow fibre membrane contactor. Sci Rep 2021; 11:2649. [PMID: 33514851 PMCID: PMC7846757 DOI: 10.1038/s41598-021-82304-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
Porous hollow fibres made of polyvinylidene fluoride were employed as membrane contactor for carbon dioxide (CO2) absorption in a gas–liquid mode with methyldiethanolamine (MDEA) based nanofluid absorbent. Both theoretical and experimental works were carried out in which a mechanistic model was developed that considers the mass transfer of components in all subdomains of the contactor module. Also, the model considers convectional mass transfer in shell and tube subdomains with the chemical reaction as well as Grazing and Brownian motion of nanoparticles effects. The predicted outputs of the developed model and simulations showed that the dispersion of CNT nanoparticles to MDEA-based solvent improves CO2 capture percentage compared to the pure solvent. In addition, the efficiency of CO2 capture for MDEA-based nanofluid was increased with rising MDEA content, liquid flow rate and membrane porosity. On the other hand, the enhancement of gas velocity and the membrane tortuosity led to reduced CO2 capture efficiency in the module. Moreover, it was revealed that the CNT nanoparticles effect on CO2 removal is higher in the presence of lower MDEA concentration (5%) in the solvent. The model was validated by comparing with the experimental data, and great agreement was obtained.
Collapse
Affiliation(s)
- Yan Cao
- School of Mechatronic Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Zia Ur Rehman
- Department of Chemical & Petroleum Engineering, UAE University, AL-Ain, UAE
| | - Nayef Ghasem
- Department of Chemical & Petroleum Engineering, UAE University, AL-Ain, UAE
| | | | - Nadia Abdullatif
- Department of Chemical & Petroleum Engineering, UAE University, AL-Ain, UAE
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Ghadiri
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.,The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Mahboubeh Pishnamazi
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.,The Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.,The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.,Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080, Chelyabinsk, Russia
| |
Collapse
|
11
|
Xin Q, Li X, Hou H, Liang Q, Guo J, Wang S, Zhang L, Lin L, Ye H, Zhang Y. Superhydrophobic Surface-Constructed Membrane Contactor with Hierarchical Lotus-Leaf-Like Interfaces for Efficient SO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1827-1837. [PMID: 33379865 DOI: 10.1021/acsami.0c17534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An organic-inorganic polyvinylidene fluoride/polyvinylidene fluoride-silica (PVDF/PVDF-SiO2) mixed matrix membrane contactor is fabricated via a facile and efficient hydrophobic modification method. The solubility parameters of the PVDF particle are precisely regulated, the PVDF particles are blended with SiO2 nanoparticles to form PVDF-SiO2 suspension, and then the suspension is introduced onto the surface of the PVDF substrate by an in situ spin coating strategy. The PVDF particles are partly etched and incorporated to construct the adhesive PVDF-SiO2 core-shell layer on the PVDF substrate, which results in a more stable PVDF-SiO2 coating layer on the substrate. The surface structure is precisely regulated by changing the etching morphology of PVDF particles and amount of doped PVDF and SiO2 particles, forming an integrated porous PVDF-SiO2 layer and constructing hierarchical lotus-leaf-like interfaces. The resultant PVDF/PVDF-SiO2 membrane contactors display the relatively regular distribution of pore size with ∼420 nm and excellent hydrophobic property with a water contact angle of ∼158°, which noticeably lightens wetting phenomena of membrane contactors. The SO2 absorption fluxes can reach as high as 1.26 × 10-3 mol·m-2·s-1 using 0.625 M of ethanolamine (EA) as liquid absorbent. The high stability of the SO2 absorption flux test indicates the excellent interface compatibility between the PVDF-SiO2 coating layer and the PVDF substrate. The versatile organic-inorganic layer exhibits super hydrophobic property, which prevents wetting of membrane pores. In addition, the membrane mass transfer resistance (H/Km) and membrane phase transfer coefficient (Km) are explored.
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hailong Hou
- CNOOC Gas and Power Group/R & D Center, Chaoyang District Taiyanggong South Street No. 6, Beijing 100028, China
| | - Qingqing Liang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianping Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
12
|
Rosli A, Ahmad AL, Low SC. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ghasem N. Modeling and simulation of the hollow fiber bore size on the CO2 absorption in membrane contactor. CHEMICAL PRODUCT AND PROCESS MODELING 2020. [DOI: 10.1515/cppm-2019-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNatural gas is one of the main sources of energy. It contains mainly methane and less percentage of impurity compound (CO2, H2S, and N2). The existence of these undesired impurity compounds in natural gas are not needed, because the presence of the acid gases in natural gas can cause corrosion and lowering the heating value in addition to their hazardous nature. The compound severely influenced human health and cause global warming. Accordingly, the capture of the acid gases species (i. e., CO2, H2S) from natural gas is essential. There are many techniques used for this purpose, hollow fiber polymeric membrane is a promising technique for this purpose. In this article, a numerical model is developed to study the effect of membrane contacting process with diverse fiber bore diameters on the percent removal of CO2 from a gas mixture by means of aqueous MEA/water solution as a scrubbing solvent. The developed model is validated utilizing data available in literature. The verified model is used to investigate the effect of flow rate of liquid and gas, and membrane total contact area on the CO2 removal efficiency. Results revealed that, membrane bore diameter and liquid flow rate have strong impact on the percent removal of CO2. The membrane with smaller bore diameter performs better than the other modules with greater diameter.
Collapse
Affiliation(s)
- Nayef Ghasem
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
14
|
Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Modeling and Simulation of the Absorption of CO2 and NO2 from a Gas Mixture in a Membrane Contactor. Processes (Basel) 2019. [DOI: 10.3390/pr7070441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The removal of undesirable compounds such as CO2 and NO2 from incineration and natural gas is essential because of their harmful influence on the atmosphere and on the reduction of natural gas heating value. The use of membrane contactor for the capture of the post-combustion NO2 and CO2 had been widely considered in the past decades. In this study, membrane contactor was used for the simultaneous absorption of CO2 and NO2 from a mixture of gas (5% CO2, 300 ppm NO2, balance N2) with aqueous sodium hydroxide solution. For the first time, a mathematical model was established for the simultaneous removal of the two undesired gas solutes (CO2, NO2) from flue gas using membrane contactor. The model considers the reaction rate, and radial and axial diffusion of both compounds. The model was verified and validated with experimental data and found to be in good agreement. The model was used to examine the effect of the flow rate of liquid, gas, and inlet solute mole fraction on the percent removal and molar flux of both impurity species. The results revealed that the effect of the liquid flow rate improves the percent removal of both compounds. A high inlet gas flow rate decreases the percent removal. It was possible to obtain the complete removal of both undesired compounds. The model was confirmed to be a dependable tool for the optimization of such process, and for similar systems.
Collapse
|