1
|
Alonso-Dasques L, Sacristán I, Galindo-Iranzo P, Gómara B, Lebrón-Aguilar R, Quintanilla-López JE. Application of terpenoids for the remediation of environmental water polluted with bisphenol A and its analogs using an in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175888. [PMID: 39216759 DOI: 10.1016/j.scitotenv.2024.175888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, there is a global concern over water quality and the impact of contamination on both natural ecosystems and human well-being. Plastics, ubiquitous in modern life, may release harmful chemicals when they reach aquatic environments. Among them, bisphenol A (BPA) and its alternatives, such as bisphenol S (BPS), bisphenol F (BPF), and others, are of special concern because their presence in water systems can have detrimental effects on human health and aquatic organisms due to their endocrine-disrupting properties. This study explores the potential of terpenoids, sustainable and environmentally friendly solvents, for efficiently removing bisphenols from contaminated environmental water. Using an in silico approach based on the Conductor-like Screening Model for Realistic Solvents (COSMO-RS) theory, more than 30 terpenoids were screened, and carvone was found to be an excellent candidate due to its high solvent capacity and low toxicity. The impact of pH, temperature, stirring conditions, and sample:extractant phase ratios on the extraction efficiency were investigated. A design of experiments revealed optimal conditions for the extraction process and demonstrated that carvone can effectively extract bisphenols (nearly 100 % for most of them) under a wide range of conditions, showing the robustness and efficiency of the extraction method, even in environmental samples. The paper provides valuable insights into the potential of terpenoids, specifically carvone, as a sustainable and eco-friendly solvent for removing bisphenol contaminants from environmental water bodies. The findings of this study offer a promising solution to address water contamination issues, aligning with the principles of Green Chemistry and contributing to a more environmentally responsible approach to water remediation.
Collapse
Affiliation(s)
- Luz Alonso-Dasques
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, Madrid, Spain
| | - Iván Sacristán
- Institute of General Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain
| | | | - Belén Gómara
- Institute of General Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain
| | - Rosa Lebrón-Aguilar
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, Madrid, Spain
| | | |
Collapse
|
2
|
Husain NAC, Jamaluddin H, Jonet MA. Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05. Int J Biol Macromol 2024; 275:133721. [PMID: 38986972 DOI: 10.1016/j.ijbiomac.2024.133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Flavin reductases play a vital role in catalyzing the reduction of flavin through NADH or NADPH oxidation. The gene encoding flavin reductase from the thermophilic bacterium Geobacillus mahadii Geo-05 (GMHpaC) was cloned, overexpressed in Escherichia coli BL21 (DE3) pLysS, and purified to homogeneity. The purified recombinant GMHpaC (Class II) contains chromogenic cofactors, evidenced by maximal absorbance peaks at 370 nm and 460 nm. GMHpaC stands out as the most thermostable and pH-tolerant flavin reductase reported to date, retaining up to 95 % catalytic activity after incubation at 70 °C for 30 min and maintaining over 80 % activity within a pH range of 2-12 for 30 min. Furthermore, GMHpaC's catalytic activity increases by 52 % with FMN as a co-factor compared to FAD and riboflavin. GMHpaC, coupled with 4-hydroxyphenylacetate-3-monooxygenase (GMHpaB) from G. mahadii Geo-05, enhances the hydroxylation of 4-hydroxyphenylacetate (HPA) by 85 %. The modeled structure of GMHpaC reveals relatively conserved flavin and NADH binding sites. Modeling and docking studies shed light on structural features and amino acid substitutions that determine GMHpaC's co-factor specificity. The remarkable thermostability, high catalytic activity, and general stability exhibited by GMHpaC position it as a promising enzyme candidate for various industrial applications.
Collapse
Affiliation(s)
- Nor Asyikin Che Husain
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohd Anuar Jonet
- Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
3
|
Xie R, Tan Z, Fan W, Qin J, Guo S, Xiao H, Tang Z. Deep-Eutectic-Solvent-in-Water Pickering Emulsions Stabilized by Starch Nanoparticles. Foods 2024; 13:2293. [PMID: 39063377 PMCID: PMC11275509 DOI: 10.3390/foods13142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickering emulsion consisting of a DES (menthol:octanoic acid = 1:1) in water was prepared and stabilized using starch nanoparticles (SNPs). The emulsion was thoroughly characterized using various techniques, including optical microscopy, transmission microscopy, laser particle size analysis, and rheological measurements. The results demonstrated that the DES-in-water Pickering emulsion stabilized by the SNPs had excellent stability and retained its structural integrity for more than 200 days at room temperature (20 °C). This prolonged stability has significant implications for many applications, particularly in the field of storage and transportation. This Pickering emulsion based on DESs and SNPs is sustainable and stable, and it has great potential to improve green chemistry practices in various fields.
Collapse
Affiliation(s)
- Rongzhen Xie
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.X.); (W.F.); (S.G.)
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
| | - Wei Fan
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.X.); (W.F.); (S.G.)
| | - Jingping Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Shiyin Guo
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.X.); (W.F.); (S.G.)
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| | - Zhonghai Tang
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.X.); (W.F.); (S.G.)
| |
Collapse
|
4
|
Bintanel-Cenis J, Fernández MA, Gómara B, Ramos L. Critical overview on the use of hydrophobic (deep) eutectic solvents for the extraction of organic pollutants in complex matrices. Talanta 2024; 270:125599. [PMID: 38199124 DOI: 10.1016/j.talanta.2023.125599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
During the last decades, many efforts have been devoted to the adaptation of sample preparation techniques and methods to the principles of Green Analytical Chemistry. Among them, this article review focusses on those aimed to green the solvents involved in sample treatment. Research in this field started in the late 1990s with the synthesis of room temperature ionic liquids, which were later replaced by the deep eutectic solvents (DESs). During the last years, a subclass of DESs, the so-called hydrophobic deep eutectic solvents (HDESs) have attracted attention. HDESs have contributed to circumventing some of the limitations of early-synthesised hydrophilic DESs regarding the cost of raw materials, the simplicity of synthesis, and the biocompatibility and, apparently, the biodegradability of the mixtures. In addition, these mixtures allowed the treatment of aqueous samples and the extraction of non-polar analytes. This article discusses fundamental aspects regarding the nomenclature used concerning HDESs, summarises the main physicochemical properties of these mixtures, and through discussion of key application studies, describes current progress in the use of these green solvents for the extraction of trace organic contaminants from a variety of matrices. Remaining gaps and possible lines of future development in this emerging, active and attractive research area are also identified and critically discussed.
Collapse
Affiliation(s)
- J Bintanel-Cenis
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - M A Fernández
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - B Gómara
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - L Ramos
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
5
|
Cherniakova M, Varchenko V, Belikov K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. CHEM REC 2024; 24:e202300267. [PMID: 37861277 DOI: 10.1002/tcr.202300267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
In the last 10 years the interest in deep eutectic solvents (DESs) as a new class of green solvents has considerably increased. The emergence of numerous of hydrophobic DESs has stimulated intensive research into their application in extraction technologies, including sample preparation. As the properties of such systems are highly dependent on the properties of their components (hydrogen bond donors and acceptors) and can be finely tuned, DESs can be successfully used for the extraction of both metal ions and organic substances, including biomolecules. Despite the rapidly increasing number of publications on the use of DESs as an extraction medium, including review articles, information on the extraction properties of DESs in terms of their chemical composition has not yet been summarized. This review covers available literature data on the physicochemical properties of menthol-based eutectic solvents and the results of their practical application as an extraction medium. Also, the appropriateness of using the term "DES" for all mixtures with melting points lower than the melting points of their components is discussed.
Collapse
Affiliation(s)
- Marharyta Cherniakova
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Victoria Varchenko
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Konstantin Belikov
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
- School of Chemistry, V.N. Karazin Kharkiv National University, 6 Svobody sq., 61022, Kharkiv, Ukraine
| |
Collapse
|
6
|
Saien J, Bahiraei M, Jafari F. A green hydrophobic deep eutectic solvent for extraction of phenol from aqueous phase. Sci Rep 2023; 13:17449. [PMID: 37838740 PMCID: PMC10576737 DOI: 10.1038/s41598-023-44600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
Deep eutectic solvents (DESs), have been recognized as effective materials for the extraction of different compounds. In this study, the performance of a novel hydrophobic DES was evaluated for the extraction of phenol from aqueous solutions. Octanoic and dodecanoic fatty acid precursors with a definite molar ratio of 3:1, respectively, were used for the DES having a low melting point of 8.3 °C. The purity and stability of the product were confirmed via characterizing by FTIR, 1H and 13C NMR methods. The liquid-liquid equilibrium of the water + phenol + DES ternary system at different temperatures of 293.2, 298.2 and 308.2 K was accordingly studied through cloud point titration method and refractive index measurement. Interestingly, the important parameters of the solute distribution coefficient and the separation factor were, respectively, within the high levels of (6.8321-9.7787) and (895.76-2770.17), indicating the amazing capability of the DES. Reasonably, both of these parameters decreased with temperature. The NRTL and UNIQUAC thermodynamic models were employed to reproduce the obtained tie-lines and to determine the interaction parameters at each temperature. The low level root mean square deviations for the mentioned models were, respectively, within (0.0014-0.0027) and (0.0045-0.0063); confirming satisfactorily agreement with the experimental data.
Collapse
Affiliation(s)
- Javad Saien
- Department of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Mansoureh Bahiraei
- Department of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farnaz Jafari
- Department of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
7
|
Dou J, Tang Y, Lu Z, He G, Xu J, He Y. Neglected but Efficient Electron Utilization Driven by Biochar-Coactivated Phenols and Peroxydisulfate: Polyphenol Accumulation Rather than Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5703-5713. [PMID: 36932960 DOI: 10.1021/acs.est.3c00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report an unrecognized but efficient nonradical mechanism in biochar-activated peroxydisulfate (PDS) systems. Combining a newly developed fluorescence trapper of reactive oxygen species with steady-state concentration calculations, we showed that raising pyrolysis temperatures of biochar (BC) from 400 to 800 °C remarkably enhanced trichlorophenol degradation but inhibited the catalytic production of radicals (SO4•- and •OH) in water and soil, thereby switching a radical-based activation into an electron-transfer-dominated nonradical pathway (contribution increased from 12.9 to 76.9%). Distinct from previously reported PDS* complex-determined oxidation, in situ Raman and electrochemical results of this study demonstrated that the simultaneous activation of phenols and PDS on the biochar surface triggers the potential difference-driven electron transfer. The formed phenoxy radicals subsequently undergo coupling and polymerization reactions to generate dimeric and oligomeric intermediates, which are eventually accumulated on the biochar surface and removed. Such a unique nonmineralizing oxidation achieved an ultrahigh electron utilization efficiency (ephenols/ePDS) of 182%. Through biochar molecular modeling and theoretical calculations, we highlighted the critical role of graphitic domains rather than redox-active moieties in lowering band-gap energy to facilitate electron transfer. Our work provides insights into outstanding contradictions and controversies related to nonradical oxidation and inspiration for more oxidant-saving remediation technologies.
Collapse
Affiliation(s)
- Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, Michigan 48201, United States
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
8
|
Mamman S, Yaacob SFFS, Raoov M, Mehamod FS, Zain NNM, Suah FBM. Exploring the performance of magnetic methacrylic acid-functionalized β-cyclodextrin adsorbent toward selected phenolic compounds. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractIn this study, the removal of bisphenol A (BPA), 2,4-dinitrophenol (2,4-DNP), and 2,4-dichlorophenol (2,4-DCP) using a new magnetic adsorbent methacrylic acid-functionalized β-cyclodextrin (Fe3O4@MAA-βCD) was evaluated. The materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, and X-ray diffraction. The batch adsorption experiments optimized and evaluated various operational parameters such as pH, contact time, sorbent dosage, initial concentration, and temperature. The result shows that DNP possessed the most excellent affinity toward Fe3O4@MAA-βCD adsorbents compared to BPA and DCP. Also, BPA showed the lowest removal and was used as a model analyte for further study. The adsorption kinetic data revealed that the uptake of these compounds follows the pseudo-second order. Freundlich and Halsey isotherms best-fitted the adsorption equilibrium data. The desorption process was exothermic and spontaneous, and a lower temperature favored the adsorption. Furthermore, hydrogen bonding, inclusion complexion, and π–π interactions contributed to the selected phenolic compound’s adsorption.
Collapse
|
9
|
Biribicchi C, Macchia A, Favero G, Strangis R, Gabriele B, Mancuso R, La Russa MF. Sustainable solutions for removing aged wax-based coatings from cultural heritage: exploiting hydrophobic deep eutectic solvents (DESs). NEW J CHEM 2023. [DOI: 10.1039/d3nj00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Hydrophobic deep eutectic solvents as suitable alternatives to toxic solvents used in the conservation of Cultural Heritage sector.
Collapse
Affiliation(s)
- Chiara Biribicchi
- Department of Earth Sciences, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy
| | - Andrea Macchia
- YOCOCU, Youth in Conservation of Cultural Heritage, Via T. Tasso 108, 00185 Rome, Italy
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via Pietro Bucci 12/B, 87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Favero
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romina Strangis
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via Pietro Bucci 12/B, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
10
|
Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, Campone L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022; 12:foods12010056. [PMID: 36613272 PMCID: PMC9818194 DOI: 10.3390/foods12010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Usual extraction processes for analyzing foods, supplements, and nutraceutical products involve massive amounts of organic solvents contributing to a negative impact on the environment and human health. In recent years, a new class of green solvents called natural deep eutectic solvents (NADES) have been considered a valid alternative to conventional solvents. Compared with conventional organic solvents, NADES have attracted considerable attention since they are sustainable, biodegradable, and non-toxic but also are easy to prepare, and have low production costs. Here we summarize the major aspects of NADEs such as the classification, preparation method physicochemical properties, and toxicity. Moreover, we provide an overview of novel extraction techniques using NADES as potential extractants of bioactive compounds from foods and food by-products, and application of NADEs in food analysis. This review aims to be useful for the further development of NAES and for broadening the knowledge of these new green solvents in order to increase their use for the extraction of bioactive compounds and in food analysis.
Collapse
|
11
|
Cheng H, Huang Y, Lv H, Li L, Meng Q, Yuan M, Liang Y, Jin M. Insights into the liquid extraction mechanism of actual high-strength phenolic wastewater by hydrophobic deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Hložek T, Bosáková T, Bosáková Z, Tůma P. Hydrophobic eutectic solvents for endocrine disruptors purification from water: Natural and synthetic estrogens study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Liquid-liquid extraction of phenolic compounds from aqueous solution using hydrophobic deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sáenz de Miera B, Cañadas R, Santiago R, Díaz I, González-Miquel M, González EJ. A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zhao Z, Ren D, Zhuang M, Wang Z, Zhang X, Zhang S, Chen W. Degradation of 2,4-DCP by the immobilized laccase on the carrier of sodium alginate-sodium carboxymethyl cellulose. Bioprocess Biosyst Eng 2022; 45:1739-1751. [PMID: 36121508 DOI: 10.1007/s00449-022-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 12/07/2022]
Abstract
In this paper, sodium alginate-sodium carboxymethyl cellulose (SA-CMC) composite material was used as a carrier, and sodium alginate-embedded laccase (Lac@SC) was prepared by traditional embedding method. After that, ethylene glycol diglycidyl ether (EGDE) and glutaraldehyde (GLU) were used as cross-linking agents, two different cross-linking-embedded co-immobilized laccases (Lac@SCG and Lac@SCE) were innovatively prepared, respectively, and then these immobilized laccases were characterized by SEM, FT-IR and XRD, and the stability of the three immobilized laccases was explored. In addition, the effects of different factors on the removal of 2,4-DCP by immobilized laccase were studied, and the degradation kinetic models of three immobilized laccases on 2,4-DCP were summarized, the possible degradation pathways of pollutants were also given. Experimental results showed that compared to free laccase, the pH stability, thermal stability and storage stability of immobilized laccase were greatly improved. These immobilized laccases could maintain high activity at pH3~6, 45~55 °C. Lac@SCG had the best storage stability. After 30 days of storage, the relative enzyme activity was still more than 40%. Lac@SC had good reusability, the relative enzyme activity was still more than 50% after 5 uses. In the degradation of 2,4-DCP, all three immobilized laccases showed good performance, when Lac@SCE was at pH5, 35 °C, 25 h, the removal rate of 2,4-DCP could reach 95.2%; When at 45 °C, Lac@SC had the highest degradation rate which reach to 94%; At 45 °C, the degradation rate of Lac@SCG reached 83.2%.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China. .,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Mengjuan Zhuang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
16
|
Bragagnolo FS, Socas-Rodríguez B, Mendiola JA, Cifuentes A, Funari CS, Ibáñez E. Pressurized natural deep eutectic solvents: An alternative approach to agro-soy by-products. Front Nutr 2022; 9:953169. [PMID: 36159477 PMCID: PMC9493435 DOI: 10.3389/fnut.2022.953169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 – molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | | | - Jose A. Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
- *Correspondence: Elena Ibáñez,
| |
Collapse
|
17
|
Interaction Mechanisms and Application of Ozone Micro/Nanobubbles and Nanoparticles: A Review and Perspective. NANOMATERIALS 2022; 12:nano12121958. [PMID: 35745296 PMCID: PMC9228162 DOI: 10.3390/nano12121958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Ozone micro/nanobubbles with catalytic processes are widely used in the treatment of refractory organic wastewater. Micro/nanobubble technology overcomes the limitations of ozone mass transfer and ozone utilization in the application of ozone oxidation, and effectively improves the oxidation efficiency of ozone. The presence of micro/nanobubbles keeps the catalyst particles in a dynamic discrete state, which effectively increases the contact frequency between the catalyst and refractory organic matter and greatly improves the mineralization efficiency of refractory organic matter. This paper expounds on the characteristics and advantages of micro/nanobubble technology and summarizes the synergistic mechanism of microbubble nanoparticles and the mechanism of catalyst ozone micro/nanobubble systems in the treatment of refractory organics. An interaction mechanism of nanoparticles and ozone microbubbles is suggested, and the proposed theories on ozone microbubble systems are discussed with suggestions for future studies on systems of nanoparticles and ozone microbubbles.
Collapse
|
18
|
Arroyo-Avirama AF, Ormazábal-Latorre S, Jogi R, Gajardo-Parra NF, Pazo-Carballo C, Ascani M, Virtanen P, Garrido JM, Held C, Mäki-Arvela P, Canales RI. Improving the separation of guaiacol from n-hexane by adding choline chloride to glycol extracting agents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Ncanana ZS, Vashistha VK, Singh PP, Pullabhotla RV. Degradation of o-, m-, p-cresol isomers using ozone in the presence of V 2O 5-supported Mn, Fe, and Ni catalysts. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oxidative degradation of o-, m- and p-cresols using ozone in the presence of V2O5-supported metal (Mn, Fe, Ni) catalysts was studied under ambient reaction conditions. Metal (Mn, Fe, Ni) loaded V2O5 catalysts were prepared using a wet-impregnation method, thereafter, characterized, and analyzed by use of the XRD, FT-IR, SEM-EDX, TEM, and ICP-OES. Results show the effect of the amount of a metal that was loaded on the support, particularly, how it affects the resultant catalysts’ (i) crystallite size, (ii) dispersion of an active metal over the surface of a support, and (iii) catalytic activity. Mn-loaded catalysts were found to be relatively more active for the conversion of individual cresol isomers and the activity of this catalyst was significantly enhanced at a lower Mn to V2O5 ratio (2.5 wt%). Mn(2.5 %)/V2O5 catalyst led to conversions of 66.78, 71.01 and 73.68 % with o-, m-, and p-cresols respectively within 24 h of oxidation. Oxidation products were derivatized by ethanol and a few were positively detected using GC-MS. o-Tolyl acetate and 2,5-dihydroxy toluene were detected from o-cresol, m-tolyl acetate, and 2,3-dihydroxy toluene from m-cresol and p-tolyl acetate and 3,4-dihydroxy toluene from p-cresol oxidation. Dimethyl maleate and dimethyl oxalate were detected as common products in all three isomers’ oxidation.
Collapse
Affiliation(s)
- Zamani S. Ncanana
- Department of Chemistry , University of Zululand , Private Bag X1001 , Kwa-Dlangezwa 3886 , South Africa
| | - Vinod K. Vashistha
- Department of Chemistry , GLA University , Mathura , Uttar Pradesh 281406 , India
| | - Prabal P. Singh
- Department of Chemistry , GLA University , Mathura , Uttar Pradesh 281406 , India
| | | |
Collapse
|
20
|
Bergua F, Castro M, Muñoz-Embid J, Lafuente C, Artal M. L-menthol-based eutectic solvents: Characterization and application in the removal of drugs from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Amino Acid-Based Natural Deep Eutectic Solvents for Extraction of Phenolic Compounds from Aqueous Environments. Processes (Basel) 2021. [DOI: 10.3390/pr9101716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The environmental pollution of phenol-containing wastewater is an urgent problem with industrial development. Natural deep eutectic solvents provide an environmentally friendly alternation for the solvent extraction of phenol. This study synthesized a series of natural deep eutectic solvents with L-proline and decanoic acid as precursors, characterized by in situ infrared spectrometry, Fourier transform infrared spectrometry, hydrogen nuclear magnetic resonance spectrometry, and differential thermogravimetric analysis. Natural deep eutectic solvents have good thermal stability. The high-efficiency extraction of phenol from wastewater by natural deep eutectic solvents was investigated under mild conditions. The effects of natural deep eutectic solvents, phenol concentration, reaction temperature, and reaction time on phenol extraction were studied. The optimized extraction conditions of phenol with L-prolin/decanoic acid were as follows: molar ratio, 4.2:1; reaction time, 60 min; and temperature, 50 °C. Extraction efficiency was up to 62%. The number of extraction cycles can be up to 6, and extraction rate not less than 57%. The promising results demonstrate that natural deep eutectic solvents are efficient in the field of phenolic compound extraction in wastewater.
Collapse
|
22
|
Abbas UL, Qiao Q, Nguyen MT, Shi J, Shao Q. Structure and hydrogen bonds of hydrophobic deep eutectic
solvent‐aqueous liquid–liquid
interfaces. AIChE J 2021. [DOI: 10.1002/aic.17427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Usman L. Abbas
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Manh Tien Nguyen
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Qing Shao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
23
|
Pletnev IV, Smirnova SV, Sharov AV, Zolotov YA. New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abbas UL, Qiao Q, Nguyen MT, Shi J, Shao Q. Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AIChE J 2021. [DOI: 10.1002/aic.17382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Usman L. Abbas
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Manh Tien Nguyen
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Qing Shao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
25
|
Kuttiani Ali J, Abi Jaoude M, Alhseinat E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Wazeer I, AlNashef IM, Al-Zahrani AA, Hadj-Kali MK. The subtle but substantial distinction between ammonium- and phosphonium-based deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Ionic liquids as alternative solvents for energy conservation and environmental engineering. ACTA INNOVATIONS 2021. [DOI: 10.32933/actainnovations.38.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because of industrialization and modernization, phenomenal changes have taken place in almost all spheres of life. Consequently, the consumption of energy resources and the cases of environmental hazards have risen to an unprecedentedly high level. A development model with due consideration to nature and an efficient utilization of energy sources has become the need of the hour, in order to ensure a sustainable balance between the environmental and technological needs. Recent studies have identified the suitability of ionic liquids (ILs), often labeled as ‘green solvents’, in the efficient utilization of energy resources and activities such as bio-extraction, pollution control, CO2 capture, waste management etc. in an environmentally friendly manner. The advent of magnetic ionic liquids (MILs) and deep eutectic solvents (DESs) have opened possibilities for a circular economic approach in this filed. This review intends to analyze the environmental and energy wise consumption of a wide variety of ionic liquids and their potential towards future.
Collapse
|
29
|
Khan AS, Ibrahim TH, Jabbar NA, Khamis MI, Nancarrow P, Mjalli FS. Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: effect of ionic liquids structure and process parameters. RSC Adv 2021; 11:12398-12422. [PMID: 35423754 PMCID: PMC8697206 DOI: 10.1039/d0ra10560k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Water pollution is a severe and challenging issue threatening the sustainable development of human civilization. Besides other pollutants, waste fluid streams contain phenolic compounds. These have an adverse effect on the human health and marine ecosystem due to their toxic, mutagenic, and carcinogenic nature. Therefore, it is necessary to remove such phenolic pollutants from waste stream fluids prior to discharging to the environment. Different methods have been proposed to remove phenolic compounds from wastewater, including extraction using ionic liquids (ILs) and deep eutectic solvent (DES), a class of organic salts having melting point below 100 °C and tunable physicochemical properties. The purpose of this review is to present the progress in utilizing ILs and DES for phenolic compound extraction from waste fluid streams. The effects of IL structural characteristics, such as anion type, cation type, alkyl chain length, and functional groups will be discussed. In addition, the impact of key process parameters such as pH, phenol concentration, phase ratio, and temperature will be also described. More importantly, several ideas for addressing the limitations of the treatment process and improving its efficiency and industrial viability will be presented. These ideas may form the basis for future studies on developing more effective IL-based processes for treating wastewaters contaminated with phenolic pollutants, to address a growing worldwide environmental problem.
Collapse
Affiliation(s)
- Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates .,Department of Chemistry, University of Science & Technolgy Banuu-28100 Khyber Pakhthunkhwa Pakistan
| | - Taleb H Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Nabil Abdel Jabbar
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Mustafa I Khamis
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Paul Nancarrow
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Farouq Sabri Mjalli
- Petroleum & Chemical Engineering Department, Sultan Qaboos University Muscat 123 Oman
| |
Collapse
|
30
|
Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Sci Rep 2021; 11:6684. [PMID: 33758262 PMCID: PMC7988013 DOI: 10.1038/s41598-021-85824-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
The urgency of advancing green chemistry from labs and computers into the industries is well-known. The Deep Eutectic Solvents (DESs) are a promising category of novel green solvents which simultaneously have the best advantages of liquids and solids. Furthermore, they can be designed or engineered to have the characteristics desired for a given application. However, since they are rather new, there are no general models available to predict the properties of DESs without requiring other properties as input. This is particularly a setback when screening is required for feasibility studies, since a vast number of DESs are envisioned. For the first time, this study presents five group contribution (GC) and five atomic contribution (AC) models for densities, refractive indices, heat capacities, speeds of sound, and surface tensions of DESs. The models, developed using the most up-to-date databank of various types of DESs, simply decompose the molecular structure into a number of predefined groups or atoms. The resulting AARD% of densities, refractive indices, heat capacities, speeds of sound and surface tensions were, respectively, 1.44, 0.37, 3.26, 1.62, and 7.59% for the GC models, and 2.49, 1.03, 9.93, 4.52 and 7.80% for the AC models. Perhaps, even more importantly for designer solvents, is the predictive capability of the models, which was also shown to be highly reliable. Accordingly, very simple, yet highly accurate models are provided that are global for DESs and needless of any physical property information, making them useful predictive tools for a category of green solvents, which is only starting to show its potentials in green technology.
Collapse
|
31
|
Santhi VM, Ramalingam A, Parthasarathy DL, Seshasayee P, Narasimhan SL. Deep eutectic solvents on extraction of bisphenol A from water matrices: COnductor like Screening MOdel for Real Solvents prediction and experimental validation. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vivek Mariappan Santhi
- Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai` India
| | - Anantharaj Ramalingam
- Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai` India
| | | | - Priyadarshini Seshasayee
- Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai` India
| | | |
Collapse
|
32
|
Nguyen VH, Ali Delbari S, Mousavi M, Sabahi Namini A, Ghasemi JB, Van Le Q, Shahedi Asl M, Mohammadi M, Shokouhimehr M. WITHDRAWN: g-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline [Sep. Purif. Technol. (2021) 118511]. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Jakubowska M, Ruzik L. Application of Natural Deep Eutectic Solvents for the metal nanoparticles extraction from plant tissue. Anal Biochem 2021; 617:114117. [PMID: 33485818 DOI: 10.1016/j.ab.2021.114117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The study aimed to use Natural Deep Eutectic Solvents (NADES) as an extractant of metal oxide NPs from plant material. The plant chosen for the study was radish after exposure, growing on media containing: copper(II) oxide, cerium(IV) oxide, and titanium(IV) oxide. The first step of the study was to investigate the influence of NADES on NPs. In the second step, selected NADES solvents were used as extractants of NPs present in radish after exposure. Single-particle Inductively Coupled Plasma Mass Spectrometry technique (SP-ICP-MS) was used to determine the number and size of NPs. As a result of the research, it was found that copper(II) oxide NPs, regardless of the solvent used, is not present in the extract. Only the ionic form of the element was present in the solution. Higher sized cerium(IV) oxide NPs were accumulated in the root, while smaller sized ones were found in radish leaves. The titanium(IV) oxide NPs were agglomerated and were present in a small amount in radish leaves, accumulating mainly in the root. Finally, it can be concluded that NADES allows the extraction of metal oxide NPs from the plant material.
Collapse
Affiliation(s)
- Małgorzata Jakubowska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Poland.
| |
Collapse
|
34
|
Chao SJ, Chung KH, Lai YF, Lai YK, Chang SH. Keratin particles generated from rapid hydrolysis of waste feathers with green DES/KOH: Efficient adsorption of fluoroquinolone antibiotic and its reuse. Int J Biol Macromol 2021; 173:211-218. [PMID: 33482215 DOI: 10.1016/j.ijbiomac.2021.01.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/28/2023]
Abstract
Fluoroquinolone antibiotics are widely used in human and veterinary medicine. However, untreated fluoroquinolone seriously threatens the ecosystem and human health. In this study, deep eutectic solvents (DESs) were applied for the hydrolysis of waste feathers, and the keratin particles (KPs) in a low-cost teabag were utilized to adsorb fluoroquinolone norfloxacin. Results showed that choline chloride/ethylene glycol DES rapidly hydrolyzed feathers within 10 min, and the undissolved particles effectively adsorbed norfloxacin. Adding KOH markedly shortened the hydrolysis time (6 min) and increased the adsorption ability of KPs. The optimum hydrolysis conditions were DES ratio of 1 g: 4.67 g, KOH of 35.68 g L-1, and temperature of 90 °C. When KPDES+KOH of 2 g L-1, norfloxacin of 25 mg L-1, and pH0 7 were used, 94% of norfloxacin was removed in 60 min. A low-cost teabag effectively separated the KPs from the solution after adsorption and did not decrease the adsorption ability of the KPs. The Langmuir isotherm model well described the adsorption behavior of KPsDES+KOH (qmax = 79.36 mg g-1, R2 = 0.9972). In addition, acetone efficiently regenerated the exhausted KPsDES+KOH. The KPs maintained >80% of its adsorption ability after seven cycles of regeneration.
Collapse
Affiliation(s)
- Shu-Ju Chao
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Kuo-Hao Chung
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Yi-Fen Lai
- Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC
| | - Yu-Kuei Lai
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC; Department of Family and Community Medicine, Chung-Shan Medical University Hospital, Taichung 402, Taiwan, ROC.
| |
Collapse
|
35
|
González EJ, González-Miquel M, Díaz I, Rodríguez M, Fontela C, Cañadas R, Sánchez J. Enhancing aqueous systems fermentability using hydrophobic eutectic solvents as extractans of inhibitory compounds. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Rodríguez-Llorente D, Cañada-Barcala A, Muñoz C, Pascual-Muñoz G, Navarro P, Santiago R, Águeda VI, Álvarez-Torrellas S, García J, Larriba M. Separation of phenols from aqueous streams using terpenoids and hydrophobic eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Nguyen VH, Mousavi M, Ghasemi JB, Delbari SA, Le QV, Shahedi Asl M, Shokouhimehr M, Mohammadi M, Azizian-Kalandaragh Y, Sabahi Namini A. Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
|
39
|
A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid–liquid Extraction Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8101220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse and abundant applications of the eutectic solvents have appeared in the last years. Their promising tunable properties, eco-friendly character and the possibility of being prepared from numerous compounds have led to the publication of numerous papers addressing their use in different areas. Terpenes and terpenoids have been employed in the formulation of eutectic solvents, though they also have been applied as solvents in extraction processes. For their hydrophobic nature, renewable character, low environmental impact, cost and being non-hazardous, they have also been proposed as possible substitutes of conventional solvents in the separation of organic compounds from aqueous streams, similarly to hydrophobic eutectic solvents. The present work reviews the application of eutectic solvents in liquid–liquid extraction and terpenes and terpenoids in extraction processes. It has been made a research in the current state-of-the-art in these fields, describing the proposed applications of the solvents. It has been highlighted the scale-up feasibility, solvent regeneration and reuse procedures and the comparison of the performance of eutectic solvents, terpenes and terpenoids in extraction with conventional organic solvents or ionic liquids. Ultimately, it has been also discussed the employ of predictive methods in extraction, the reliability of thermodynamic models in correlation of liquid–liquid equilibria and simulation of liquid–liquid extraction processes.
Collapse
|
40
|
Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: Experimental study and COSMO RS evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Paul N, Naik PK, Ribeiro BD, Gooh Pattader PS, Marrucho IM, Banerjee T. Molecular Dynamics Insights and Water Stability of Hydrophobic Deep Eutectic Solvents Aided Extraction of Nitenpyram from an Aqueous Environment. J Phys Chem B 2020; 124:7405-7420. [DOI: 10.1021/acs.jpcb.0c03647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nabendu Paul
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati-781039, Assam, India
| | - Papu Kumar Naik
- Centre for the Environment, Indian Institute of Technology Guwahati Guwahati-781039, Assam, India
| | - Bernardo D. Ribeiro
- Escola de Química, Universidade Federal Do Rio de Janeiro, 21941-598 Rio 16 de Janeiro, Brazil
| | | | - Isabel M. Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati-781039, Assam, India
- Centre for the Environment, Indian Institute of Technology Guwahati Guwahati-781039, Assam, India
| |
Collapse
|
42
|
Riveiro E, González B, Domínguez Á. Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116692] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
A Global Model for the Estimation of Speeds of Sound in Deep Eutectic Solvents. Molecules 2020; 25:molecules25071626. [PMID: 32244826 PMCID: PMC7180493 DOI: 10.3390/molecules25071626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 01/21/2023] Open
Abstract
Deep eutectic solvents (DESs) are newly introduced green solvents that have attracted much attention regarding fundamentals and applications. Of the problems along the way of replacing a common solvent by a DES, is the lack of information on the thermophysical properties of DESs. This is even more accentuated by considering the dramatically growing number of DESs, being made by the combination of vast numbers of the constituting substances, and at their various molar ratios. The speed of sound is among the properties that can be used to estimate other important thermodynamic properties. In this work, a global and accurate model is proposed and used to estimate the speed of sound in 39 different DESs. This is the first general speed of sound model for DESs. The model does not require any thermodynamic properties other than the critical properties of the DESs, which are themselves calculated by group contribution methods, and in doing so, make the proposed method entirely independent of any experimental data as input. The results indicated that the average absolute relative deviation percentages (AARD%) of this model for 420 experimental data is only 5.4%. Accordingly, based on the achieved results, the proposed model can be used to predict the speeds of sound of DESs.
Collapse
|