1
|
Xin Y, Wang Y, Jiang Z, Deng B, Jiang ZJ. Advances in the Removal of Organic Pollutants from Water by Photocatalytic Activation of Persulfate: Photocatalyst Modification Strategy and Reaction Mechanism. CHEMSUSCHEM 2024; 17:e202400254. [PMID: 38743510 DOI: 10.1002/cssc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Environmental pollution caused by persistent organic pollutants has imposed big threats to the health of human and ecological systems. The development of efficient methods to effectively degrade and remove these persistent organic pollutants is therefore of paramount importance. Photocatalytic persulfate-based advanced oxidation technologies (PS-AOTs), which depend on the highly reactive SO4 - radicals generated by the activation of PS to degrade persistent organic pollutants, have shown great promise. This work discusses the application and modification strategies of common photocatalysts in photocatalytic PS-AOTs, and compares the degradation performance of different catalysts for pollutants. Furthermore, essential elements impacting photocatalytic PS-AOTs are discussed, including the water matrix, reaction process mechanism, pollutant degradation pathway, singlet oxygen generation, and potential PS hazards. Finally, the existing issues and future challenges of photocatalytic PS-AOTs are summarized and prospected to encourage their practical application. In particular, by providing new insights into the PS-AOTs, this review sheds light on the opportunities and challenges for the development of photocatalysts with advanced features for the PS-AOTs, which will be of great interests to promote better fundamental understanding of the PS-AOTs and their practical applications.
Collapse
Affiliation(s)
- Yue Xin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Yan M, Li Y, Xu Q, Wei X, Xiao P, Chen F, Yang L, Wu XL. Enhanced electron-transfer for peroxymonosulfate activation by Ni single sites adjacent to Ni nanoparticles. J Colloid Interface Sci 2024; 654:979-987. [PMID: 37898081 DOI: 10.1016/j.jcis.2023.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Oriented generation of specific reactive oxygen species (ROS) has been challenging in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). In this work, we constructed a multifunctional catalyst composed of Ni NPs embedded in N-doped carbon nanotubes (NCNTs) with exposed Ni single-atom sites (Ni-NCNTs). The Ni-N4 single sites adjacent to the Ni NPs are more efficient for PMS adsorption and activation, resulting in enhanced production of singlet oxygen (1O2). More interesting, we demonstrated that the superoxide anion radical (O2•-) was generated from 1O2 reduction via the electron transfer from the graphitic-N sites of Ni-NCNTs rather than from O2 reduction or PMS decomposition as reported in previous studies. Thus, Ni-NCNTs can act as both electron acceptor and donor to trigger the cascade production of 1O2 and O2•-, respectively, leading to fast and selective degradation of aqueous organic pollutants. The graphitic-N adjacent to the aromatic π-conjugation of NCNTs facilitated chemisorption of 1O2 onto NCNTs via the strong π*-π interactions, and more importantly, donated the lone pair electrons to trigger the reduction of 1O2 to O2•-. This study unravels the mechanisms for enhanced production of ROS in the nanoconfined Fenton-like systems and shed new light on the application of multifunctional nanocatalyst for rapid wastewater decontamination.
Collapse
Affiliation(s)
- Minjia Yan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qiuyi Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Lining Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Wu S, Shi W, Li K, Cai J, Xu C, Gao L, Lu J, Ding F. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 2023; 239:124264. [PMID: 37003384 DOI: 10.1016/j.ijbiomac.2023.124264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption separation membranes.
Collapse
|
5
|
Rasheed T. Water stable MOFs as emerging class of porous materials for potential environmental applications. CHEMOSPHERE 2023; 313:137607. [PMID: 36566790 DOI: 10.1016/j.chemosphere.2022.137607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are extensively recognized for their wide applications in a variety of fields such as water purification, adsorption, sensing, catalysis and drug delivery. The fundamental characteristics of the majority of MOFs, such as their structure and shape, are known to be sensitively impacted by water or moisture. As a result, a thorough evaluation of the stability of MOFs in respect to factors linked to these property changes is required. It is quite rare for MOFs in their early stages to have strong water-stability, which is necessary for the commercialization and development of wider applications of this interesting material. Also, numerous applications in presence of water have progressed considerably as a "proof of concept" stage in the past and a growing number of water-stable MOFs (WSMOFs) have been discovered in recent years. This review discusses the variables and processes that affect the aqueous stability of several MOFs, including imidazolate and carboxylate frameworks. Accordingly, this article will assist researchers in accurately evaluating how water affects the stability of MOFs so that effective techniques can be identified for the advancement of water-stable metal-organic frameworks (WSMOFs) and for their effective applications toward a variety of fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
6
|
Tan X, Wang S, Han N. Metal organic frameworks derived functional materials for energy and environment related sustainable applications. CHEMOSPHERE 2023; 313:137330. [PMID: 36410510 DOI: 10.1016/j.chemosphere.2022.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
With the vigorous development of industrial economy, energy and environmental problems have become the most serious issues affecting people's production and life. Therefore, the demand for clean energy production, effective separation and storage is growing. Metal-organic frameworks (MOFs), as a kind of porous crystalline materials with large surface area and porosity, which is self-assembled by metal ions or clusters and organic ligands through coordination bonds. Thanks to a number of unique characteristics such as adjustable pore environment, homogeneous void structure, abundant active sites, unprecedented chemical composition tunability and functional versatility, it has been widely studied, especially for the clean energy conversion in catalysis. In this review, we focus on the research progress of clean energy in catalysis based on MOFs. Emphasis is placed on MOFs with different structures of compositions and their applications in catalytic for clean energy conversion, such as CO oxidation, CO2 reduction and H2 evolution. In addition, the situation of MOFs assisting environmental remediation is also briefly described. Finally, the prospects and challenges of MOFs in clean energy and the remaining issues in this field are presented.
Collapse
Affiliation(s)
- Xihan Tan
- Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang, 033001, China
| | - Shuo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| |
Collapse
|
7
|
Jia Y, Yang K, Zhang Z, Gu P, Liu S, Li M, Wang X, Yin Y, Zhang Z, Wang T, Miao H. Heterogeneous activation of peroxymonosulfate by magnetic hybrid CuFe 2O 4@N-rGO for excellent sulfamethoxazole degradation: Interaction of CuFe 2O 4 with N-rGO and synergistic catalytic mechanism. CHEMOSPHERE 2023; 313:137392. [PMID: 36457263 DOI: 10.1016/j.chemosphere.2022.137392] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In order to address the low catalytic performance of magnetic CuFe2O4 caused by the agglomeration, low conductivity and potential metal ion leaching risk, N-doped reduced graphene oxide (N-rGO) with high charge density and rich active sites was employed as support to synthesize CuFe2O4@N-rGO (CuFe@NG), which was used for peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX). Results showed that the CuFe@NG/PMS system exhibited excellent degradation rate and mineralization efficiency on SMX in 60 min, which exceeded 93.15% and 31.96%, respectively. Besides, its degradation rate constants was 1.68 times higher than that of the CuFe2O4/PMS system. The enhanced performance could be mainly ascribed to the efficient synergistic activation of PMS by two components: I. the successful dispersion of CuFe2O4 on N-rGO and the interaction between them exposed more Fe3+-O2- and Cu2+-O2- active sites via decreasing size and aggregation of CuFe2O4 particles; II. the supported N-rGO supplied extra CO, C-OH and C-NC active groups, resulting in a large number of π electrons; III. the pyrrole N formed by further doping of N could activate the π electrons and reduce the energy barrier of electron transfer. The abundant active groups and sites and excellent electron transfer ability co-accelerate the production of active species. Specifically, surface-bound radical (•OH, SO4•-) and singlet oxygen 1O2 played a dominant role according to ESR and quenching tests. Furthermore, M-O-C binding site between two components enhanced catalyst stability and reduced metal leaching, leading to its availability on reusability in the 5 cyclic experiments. Lastly, CuFe@NG/PMS system also possessed a strong application ability in actual aquatic environment for SMX treatment.
Collapse
Affiliation(s)
- Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, PR China.
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Manman Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaorui Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
8
|
Improved degradation of tetracycline by Cu-doped MIL-101(Fe) in a coupled photocatalytic and persulfate oxidation system: Efficiency, mechanism, and degradation pathway. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Bikash Baruah J. Coordination polymers in adsorptive remediation of environmental contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Hierarchical covalent organic frameworks-modified diatomite for efficient separation of bisphenol A from water in a convenient column mode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
13
|
Jing L, Yang W, Wang T, Wang J, Kong X, Lv S, Li X, Quan R, Zhu H. Porous boron nitride micro-nanotubes efficiently anchor CoFe2O4 as a magnetic recyclable catalyst for peroxymonosulfate activation and oxytetracycline rapid degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wan Y, Zhang W, Han X, Zhou L, Zhen H, Wu C, Yu Q, Xiu G. B,N-decorated carbocatalyst based on Fe-MOF/BN as an efficient peroxymonosulfate activator for bisphenol A degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:127832. [PMID: 35150994 DOI: 10.1016/j.jhazmat.2021.127832] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
A novel B,N-decorated carbocatalyst (Fe@BPC-XBN) for peroxymonosulfate (PMS) activation was prepared by a simple pyrolysis method using the iron-based metal organic frameworks (Fe-MOF), boric acid and boron nitride (BN) as precursors. Fe@BPC-20BN removed 93.3% of bisphenol A (BPA) in 90 min compared to 64.9%, 82.1% and 83.5% with Fe@PC, Fe@BPC and Fe@PC-20BN, respectively, with 0.15 g/L catalyst and 1 mM PMS at initial pH of 7. The solo B-doping with boron acid on the Fe-MOF derived porous carbon enhanced its catalytic capacity; moreover, B, N co-doping with BN and boron acid as precursors further promoted the catalytic performance. The addition of BN not only provided more B, N catalytic centers but also improved the stability of the carbocatalyst. In addition, hydroxyl radicals, sulfate radicals, superoxide radicals, and singlet oxygen species were involved in the degradation of BPA. Fe species, -BCO2/-BC2O, pyridinic N, and pyrrolic N groups on the carbon matrix played the important roles in the BPA degradation. The outstanding catalytic performance of Fe@BPC-20BN could be attributed to the synergistic effects between iron nanoparticles and the B/N codoped carbon matrix. This study gives new insights into the design and preparation of high-efficient B,N-decorated carbocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Yantao Wan
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaolin Han
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huajun Zhen
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengzi Wu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Yu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
15
|
Liang S, Ziyu Z, Fulong W, Maojuan B, Xiaoyan D, Lingyun W. Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal. ENVIRONMENTAL RESEARCH 2022; 205:112529. [PMID: 34883081 DOI: 10.1016/j.envres.2021.112529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
In the present work, mesoporous silica spheres-doping CuO (CuO/MSS) was prepared via a facile hydrothermal method. It acted as a peroxydisulfate (PDS) activator for the removal of bisphenol A (BPA). X-Ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) showed that CuO was successfully synthesized and silica spheres were doped in CuO. Nitrogen sorption isotherm showed that CuO/MSS, which had a high specific surface area and a narrow pore size distribution, exhibited a mesoporous structure. The effect of initial pH, PDS dosage, catalyst amount, and activation temperature was assessed. A removal efficiency of over 80% was observed after five consecutive cycles, suggesting the superior stability of the catalyst. X-ray photoelectron spectroscopy (XPS), radical quenching experiments, and electrochemical evaluation showed that BPA removal was dominated by the electron transfer among PDS, BPA, and the surface of CuO/MSS (non-radical pathway), while SO4·- and OH· radicals had a minor contribution (radical pathway). In addition, the degradation pathways of BPA were proposed according to the intermediates. Overall, this study indicates that CuO/MSS is a promising effective PDS activator to address the drawbacks of the classical Fenton process.
Collapse
Affiliation(s)
- Sun Liang
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China
| | - Zhang Ziyu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China
| | - Wang Fulong
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China
| | - Bai Maojuan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China.
| | - Deng Xiaoyan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China
| | - Wang Lingyun
- Key Laboratory of Clean Chemical Processing Engineering of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, PR China.
| |
Collapse
|
16
|
Zhen J, Nie S, Sun J, Pan S, Wang J, Sun J, Lv W, Yao Y. Fe 3O 4 nanoparticles encapsulated in boron nitride support via N-doped carbon layer as a peroxymonosulfate activator for pollutant degradation: Important role of metal boosted C-N sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114859. [PMID: 35276558 DOI: 10.1016/j.jenvman.2022.114859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Developing highly efficient and stable catalysts for peroxymonosulfate (PMS) based advanced oxidation processes (AOPs) are crucial in the field of environmental remediation. In this work, a facile encapsulated-precursor pyrolysis strategy was reported to prepare a competent PMS-activation catalyst, in which uniformly distributed Fe3O4 nanoparticles were firmly anchored on porous boron nitride (BN) nanosheets by N-doped carbon shell (NC layer). Taking advantage of strong metal-support interaction, the as-synthesized catalyst (BFA-500) could efficiently activate PMS to achieve 100% removal of 4-chlorophenol (4-CP) in 6 min, and the corresponding turnover frequency (TOF) value was 1-2 orders of magnitude higher than that of the benchmark homogeneous (Fe2+) and nanoparticle (Fe0 and Fe3O4) catalysts. Moreover, the well protected encapsulated structure of BFA-500 ensured the remarkable stability that could effectively resist the interference of complex water environment, including initial pH value, various inorganic ions and actual water, and its catalytic activity remained almost unchanged in 5 use-regeneration cycles. More importantly, the generation of O2•- and 1O2 radicals for the 4-CP removal in BFA-500/PMS system was ascribed to Fe3O4 boosted C-N sites containing pyridinic N, where electrons transferred from the embedded Fe3O4 nanoparticles to C-N sites to secure the PMS dissociation into reactive radicals. Overall, this work provided a promising way to design desired PMS-activation catalyst toward wastewater purification.
Collapse
Affiliation(s)
- Jianzheng Zhen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shisong Nie
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jiahao Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shiyuan Pan
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinhui Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jian Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
17
|
Li S, Wu Y, Zheng H, Zheng Y, Jing T, Tian J, Ma J, Na J. High microwave responsivity Co-Bi 25FeO 40 in synergistic activation of peroxydisulfate for high efficiency pollutants degradation and disinfection: Mechanism of enhanced electron transfer. CHEMOSPHERE 2022; 288:132558. [PMID: 34662639 DOI: 10.1016/j.chemosphere.2021.132558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Cobalt doped Bi25FeO40 was used as a heterogeneous catalyst in microwave (MW) co-activation of peroxydisulfate (PDS) system for organic contaminant purification and disinfection simultaneously. Due to low charge-transfer resistance and fast electron migration, Co-Bi25FeO40 showed superior catalytic efficiencies for activation PDS to degrade over 92.0% of bisphenol A (BPA) with the initial concentrations ranging from 40 mg/L to 120 mg/L in 5.0 min. The non-radical oxidation pathway via electron transfer regime on the surface of Co-Bi25FeO40 was the dominant reactive species in the reaction system. Benefit from the energy transfer and cross-coupling reactions of microwave, the Co-Bi25FeO40/MW/PDS system can generate abundant reactive sites to facilitate the formation of more surface-bonding complexes. Microwave energy can be absorbed by Co-Bi25FeO40 catalysts to promote activation of PDS and production of nanobubbles. The generated nanobubbles increase the temperature of the local solution to promote the reaction. The Co-Bi25FeO40/MW/PDS system also exhibited excellent bactericidal capability for Escherichia coli (E.coli). The catalysts, oxidants and microwaves acted on E. coli to form physical, and oxidative pressure simultaneously, causing cell damaged and made bacterial death. This work provides prospects toward high-efficiency integration of contaminant purification and pathogenic microorganisms inactivation.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jingzhi Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Na
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
18
|
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118076. [PMID: 34534824 DOI: 10.1016/j.envpol.2021.118076] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.
Collapse
Affiliation(s)
- Shu Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Jiaqi Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Yue Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Junzhou Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Lintianyang Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Lan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
19
|
Fang Y, Yang Y, Yang Z, Li H, Roesky HW. Advances in design of metal-organic frameworks activating persulfate for water decontamination. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Solar-assisted electrooxidation process for enhanced degradation of bisphenol A: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Liu J, Li Q, Mao F, Wang K, Wu H. 2D MOFs-based Materials for the Application of Water Pollutants Removing: Fundamentals and Prospects. Chem Asian J 2021; 16:3585-3598. [PMID: 34569726 DOI: 10.1002/asia.202100881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Water quality can have serious impacts on human health. One crucial issue of water pollution seriously affects our safety due to the continually emerging of discovered anthropogenic pollutants. The water treatment technologies are persistent improvement to adapt such new contaminants, which accelerates the evolution of materials science to explore solving the problems. Metal-organic Frameworks (MOFs) as the significant porous and multi-dimensional networks has been concerned for toxic pollutant elimination, especially probed the applications of outstanding layered 2D skeletons MOFs-based materials. The emphases of this review highlight the 2D MOFs-based materials used in water remediation and treatment strategies including adsorption and catalysis methods. Further, the prospects and challenges of 2D MOFs-based materials for water treatments applications would be surveyed meticulously for the future research and development.
Collapse
Affiliation(s)
- Jiadi Liu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Qingqing Li
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Feifei Mao
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
22
|
Zheng X, Gou Y, Peng H, Mao Y, Wen J. Nonthermal plasma sulfurized CuInS2/S-doped MgO nanosheets for efficient solar-light photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Zheng X, Zhu Q, Peng H, Quan Y, Wen J. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Nasrollahzadeh M, Akbari R, Sakhaei S, Nezafat Z, Banazadeh S, Orooji Y, Hegde G. Polymer supported copper complexes/nanoparticles for treatment of environmental contaminants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Fabrication of Cu-hemin metal-organic-frameworks nanoflower supported on three-dimensional reduced graphene oxide for the amperometric detection of H 2O 2. Mikrochim Acta 2021; 188:160. [PMID: 33834299 DOI: 10.1007/s00604-021-04795-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
A novel electrochemical sensor based on Cu-hemin metal-organic-frameworks nanoflower/three-dimensional reduced graphene oxide (Cu-hemin MOFs/3D-RGO) was constructed to detect H2O2 released from living cells. The nanocomposite was synthesized via a facile co-precipitation method using hemin as the ligand, then decorated with 3D-RGO. The prepared Cu-hemin MOFs showed a 3D hollow spherical flower-like structure with a large specific surface area and mesoporous properties, which could load more biomolecules and greatly enhance the stability by protecting the activity of hemin. In addition, the introduction of 3D-RGO effectively enhanced the conductivity of Cu-hemin MOFs. Thus, the proposed sensor (Cu-hemin MOFs/3D-RGO/GCE) showed excellent electrochemical performances towards H2O2 with a wide linear range (10-24,400 μM), high sensitivity (207.34 μA mM-1 cm-2), low LOD (0.14 μM), and rapid response time (less than 3 s). Most importantly, we prepared a Cu-hemin MOFs/3D-RGO/ITO electrode with cells growing on it. Compared with detecting H2O2 in cell suspension by GCE-based electrode, adhesion of cells on ITO could shorten the diffusion distance of H2O2 from solution to the surface of the electrode and achieve in situ and a real-time monitor of H2O2 released by living cells. This self-supported sensing electrode showed great potential applications in monitoring the pathological and physiological dynamics of cancer cells.
Collapse
|
26
|
Yin R, Jing B, He S, Hu J, Lu G, Ao Z, Wang C, Zhu M. Near-infrared light to heat conversion in peroxydisulfate activation with MoS 2: A new photo-activation process for water treatment. WATER RESEARCH 2021; 190:116720. [PMID: 33310437 DOI: 10.1016/j.watres.2020.116720] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The advantage of light-to-heat conversion can be employed as an optical alternative for environmental remediation. As a proof of concept, for the first time we introduce the light-to-heat conversion application in peroxydisulfate (PDS) activation by molybdenum disulphide (MoS2) under near infrared (NIR) light irradiation. Theoretical kinetics analysis suggests that the reaction rates of PDS activation is increased up to 9.2 times when increasing from room temperature to 50 °C. MoS2 has the capability to quickly convert NIR light to heat energy (~45°C), thereby being able to activate PDS to generate hydroxyl and sulfate radicals. The observed reaction rate of carbamazepine degradation by NIR/MoS2/PDS process is 6.5 times of that in MoS2/PDS and even 2.6 times higher than the sum of those in NIR/MoS2, MoS2/PDS and NIR/PDS processes. Combining with theoretical calculation and oxidation species analysis, a new photo-activation PDS mechanism is proposed, in which MoS2 absorbs the energy of light to generate heat energy for overcoming the energy barrier of PDS activation. By loading MoS2 on carbon cloths, a flexible photothermal membrane is designed for practical application of sunlight-to-heat conversion to activate PDS with high efficiency, stability, and recycling. The present results demonstrate the potential of applying light-to-heat conversion in Fenton-like processes in pollution control, which opens new avenues towards utilization of inexhaustible solar energy and novel approaches for environmental remediation.
Collapse
Affiliation(s)
- Renli Yin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Binghua Jing
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaoxiong He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jiayue Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Gang Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
27
|
Ihsanullah I. Boron nitride-based materials for water purification: Progress and outlook. CHEMOSPHERE 2021; 263:127970. [PMID: 32835978 DOI: 10.1016/j.chemosphere.2020.127970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Analogous to the carbon family, boron nitride (BN)-based materials have gained considerable attention in recent times for applications in various fields. Owing to their extraordinary characteristics, i.e., high surface area, low density, superior thermal stability, mechanical strength, and conductivity, excellent corrosion, and oxidation resistance, the BN nanomaterials have been explored in water remediation. This article critically evaluates the latest development in applications of BN-based materials in water purification with focus on adsorption, synthesis of novel membranes and photocatalytic degradation of pollutants. The adsorption of various noxious pollutants, i.e., dyes, organic compounds, antibiotics, and heavy metals from aqueous medium BN-based materials are described in detail by illustrating the adsorption mechanism and regeneration potential. The major hurdles and opportunities related to the synthesis and water purification applications of BN-based materials are underscored. Finally, a roadmap is suggested for future research to assure the effective applications of BN-based materials in water purification. This review is beneficial in understanding the current status of these unique materials in water purification and accelerating the research focusing their future water remediation applications.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
28
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
29
|
Guo Q, Jing L, Lan Y, He M, Xu Y, Xu H, Li H. Construction 3D rod-like Bi3.64Mo0.36O6.55/CuBi2O4 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Cu2+/Cu+ redox cycle. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
You L, Xu K, Ding G, Shi X, Li J, Wang S, Wang J. Facile synthesis of Fe3O4@COF covalent organic frameworks for the adsorption of bisphenols from aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114456] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
31
|
Chang X, Xu X, Gao Z, Tao Y, Yin Y, He G, Chen H. Activation of persulfate by heterogeneous catalyst ZnCo2O4–RGO for efficient degradation of bisphenol A. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A nanocomposite, reduced graphene oxide (RGO) modified ZnCo2O4 (ZnCo2O4–RGO) was synthesized via one-step solvothermal method for activating persulfate (PS) to degrade bisphenol A (BPA). The morphology and structure of the nanocomposite were identified by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. RGO provides nucleation sites for ZnCo2O4 to grow and inhibits the agglomeration of the nanoparticles. The influence of different reaction conditions on the oxidation of BPA catalyzed by ZnCo2O4–RGO was investigated, including the content of RGO, the dosage of catalyst, the concentration of humic acid (HA), anions in the environment, the reaction temperature, and pH. BPA can be totally degraded within 20 min under optimized reaction conditions. The presence of HA, Cl−, and NO3− only has a slight effect on the oxidation of BPA, whereas the presence of either H2PO4− or HCO3− can greatly inhibit the reaction. ZnCo2O4–RGO shows good cycling stability and practical application potential. A reaction mechanism of the degradation of BPA was also explored.
Collapse
Affiliation(s)
- Xin Chang
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Xiangyang Xu
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Zhifeng Gao
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yingrui Tao
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yixuan Yin
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
32
|
Abstract
Wet air oxidation (WAO) is an attractive technique for sewage sludge treatment. The
WAO process and the factors influencing the process are examined in detail, together with the advantages
and disadvantages. Catalytic wet air oxidation (CWAO) is emphasized because it can lower
operational conditions, and the commonly-used and new homogeneous and heterogeneous catalysts
are introduced. Homogeneous catalysts tend to be more appropriate for the CWAO treatment
of sewage sludge, and Cu-based homogeneous catalysts such as CuSO4 are the most popular for industrial
applications. Heterogeneous catalysts include non-noble metal catalysts, noble metal catalysts,
metal-organic frameworks (MOFs) catalysts, and non-metal catalysts. Non-noble metal catalysts
typically contain hetero-elements as in Mo-based, Ce-based, Cu-based, Fe-based catalysts,
multi-metal supported catalysts, and polyoxometalates catalysts. In general, Mo-based catalysts
and Ce-based catalysts have higher activities than other metal-based catalysts. The commonly-used
noble metal elements are based on Ru, Pt, Pd, Rh, and Ir. The MOF catalysts tend to have high catalytic
activity, and the non-metallic carbon catalysts may be used in environments that would otherwise
be toxic to traditional metal catalysts. To conclude, a summary of the challenges and
prospects of WAO technology in sewage sludge treatment is given.
Collapse
Affiliation(s)
- De-bin Li
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Zi-sheng Jiang
- Power China ECO-Environmental Group Co., LTD., Shenzhen 518102, China
| |
Collapse
|
33
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
34
|
Li X, Liao F, Ye L, Yeh L. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: Catalytic performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122938. [PMID: 32512451 DOI: 10.1016/j.jhazmat.2020.122938] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/18/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, based on the extensive discussion of the phase transformation process of metal-organic frameworks (MOFs)--MIL-88A(Fe) under thermal treatment, the catalytic performance of MIL-88A-derived iron/carbon (FexC) composites on persulfate (PS) activation for phenol degradation was investigated. FexC-600 (γ-Fe2O3/C) exhibited a superior catalytic activity on PS activation for phenol degradation due to higher carbon content, more sp2-hybridized structure, carbonyl group and defective sites in composites, in which 98.23% of phenol (20 mg/L) was degraded after 60 min with 0.3 g/L catalyst and 0.3 g/L PS at ambient pH (6.1). The phenol degradation experiments and mechanism studies revealed that there was a catalytic synergism between iron oxides and carbon component in FexC 400-600 composites. Moreover, sulfate radicals (SO4-), hydroxyl radical (•OH), singlet oxygen (1O2) and interfacial electron transfer process all involved in the degradation of phenol by FexC 400-600 composites, but the 1O2-mediated non-radical oxidation was the dominant pathway rather than reactive radicals. Finally, the possible mechanism of PS activation on FexC 400-600 composites was proposed. This work discusses the synergistic catalytic mechanism of FexC composites on PS activation, and favors to provide a better understanding of the metal species and carbon component interaction in iron/carbon-based materials.
Collapse
Affiliation(s)
- Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China.
| | - Fengzhen Liao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Lanmei Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Lizhi Yeh
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
35
|
Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Guo H, Su S, Liu Y, Ren X, Guo W. Enhanced catalytic activity of MIL-101(Fe) with coordinatively unsaturated sites for activating persulfate to degrade organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17194-17204. [PMID: 32152863 DOI: 10.1007/s11356-020-08316-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In this work, four novel defective MIL-101(Fe) catalysts with coordinatively unsaturated sites were successfully prepared via a facile synthesis strategy by employing benzoic acid, acetic acid, oxalic acid, or citric acid as a modulator. The modified catalysts were demonstrated the existence of defects in the parent framework by a series of characterizations. As compared to the initial MIL-101(Fe), the electronic structure of defective MIL-101(Fe) catalyst was effectively adjusted; meanwhile, the coordinatively unsaturated Fe sites were efficiently generated and the pore sizes were enlarged. Besides, the defective MIL-101(Fe) catalysts exhibited excellent catalytic performance for rhodamine B degradation by persulfate activation. To be specific, the degradation rates of rhodamine B increased from 58.70 to 94.05%, 86.11%, 78.70%, and 82.62%, respectively. The defective MIL-101(Fe) with coordinatively unsaturated sites showed good reusability and stability, and the probable catalytic mechanism was also investigated.
Collapse
Affiliation(s)
- Huaisu Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Shengnan Su
- Zhonglu Environmental and Engineering Assessment Center of Shandong Province, Jinan, 250022, China
| | - Yang Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
37
|
Yin R, Chen Y, He S, Li W, Zeng L, Guo W, Zhu M. In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121996. [PMID: 31954313 DOI: 10.1016/j.jhazmat.2019.121996] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Structural Fe(III) is widely found in various coordination complexes and inorganic compounds. In this work, a typical Fe-based metal organic framework (MOF) (viz. MIL-100(Fe)) was chosen as an example in the activation of peroxydisulfate (PDS) for the removal of antibiotic pollutants. Interestingly, an auto-acceleration effect was observed in the process of MIL-100(Fe) activating PDS aided by visible light irradiation. Compared to the processes with MIL-100(Fe)-activated PDS alone and the photo-activated PDS alone, the degradation efficiency of sulfamethoxazole (SMX) obtained in the visible light assisted PDS activation by MIL-100(Fe) process was enhanced by 2.1 and 5.6 times, respectively. Therein, the photogenerated electrons from MIL-100(Fe) carried out an in situ reduction of the surface structural Fe(III) to form Fe(II), which in turn significantly improved the PDS activation efficiency in the generation of ·OH and O2-· radicals for the removal of SMX. The degradation pathways of SMX were deduced based on the experimental results and theoretical calculations. Acute toxicity estimation indicated the formation of less toxic products after the treatment of SMX. Additionally, degradation of five antibiotics in the real wastewater were investigated to further confirm the advantages of such in situ photoreduced structural Fe(III) in MOFs to activate the PDS process.
Collapse
Affiliation(s)
- Renli Yin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yanxi Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shaoxiong He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
38
|
Hemin-intercalated layer-by-layer electropolymerized co-deposition of bisphenol A on carbon nanotubes for dual electrocatalysis towards ascorbate oxidation and oxygen reduction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Synthesis of MIL-101(Fe)/SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Shao W, He C, Zhou M, Yang C, Gao Y, Li S, Ma L, Qiu L, Cheng C, Zhao C. Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. JOURNAL OF MATERIALS CHEMISTRY A 2020. [DOI: 10.1039/c9ta12099h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fabricated core–shell-structured MOF-derived 2D nanocatalysts with Co/Co-Nx co-doping N-CNTs enhance Fenton-like activities for the water remediation of benzene-derived contaminants.
Collapse
|
41
|
Efficient Degradation of Norfloxacin and Simultaneous Electricity Generation in a Persulfate-Photocatalytic Fuel Cell System. Catalysts 2019. [DOI: 10.3390/catal9100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalytic fuel cell (PFC) has been verified to be a promising technique to treat organic matter and recover energy synchronously. Sulfate radicals (SO4·−), as a strong oxidant, have obvious advantages in the degradation of refractory pollutants compared with hydroxyl radicals (·OH), which is the dominant radical in PFC. This study reports a coupling method of PFC and persulfate (PS) activation to promote the degradation of antibiotic norfloxacin (NOR) and simultaneous electricity generation. The added PS as an electron acceptor could be activated by photoelectric effects to produce SO4·− at the electrodes-electrolyte interface. In the solution, PS as supporting electrolyte could accelerate the electron transfer and also be activated by ultraviolet (UV) light irradiation, which could extend the radical oxidation reaction to the whole solution and improve the PFC performance. The performance comparison among different systems indicated the excellent synergistic effect of PFC and PS activation for improving NOR degradation and electricity generation. The effects of influencing factors including initial pH, PS concentration, and initial NOR concentration on the degradation of NOR were investigated extensively to find out the optimal conditions. Moreover, according to the results of radical capture experiments, the significantly contribution of both SO4·− and ·OH to the degradation of NOR was demonstrated and a tentative function mechanism for the NOR degradation in the proposed system was provided. Finally, total organic carbon and real wastewater treatment confirmed the high mineralization and practical applicability of the proposed PFC/PS system.
Collapse
|