1
|
Hasan MM, Noyon MAR, Akash AI, Uddin ME, Islam R, Maafa I, Yousef A. Fabrication of PVA-PVC composite membrane for enhanced TDS removal from tannery effluent: sustainable water treatment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:976-992. [PMID: 39715930 DOI: 10.1007/s11356-024-35811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
The environmental burden of tannery wastewater, characterized by high levels of total dissolved solids (TDS) and other contaminants, presents a significant challenge for sustainable water management. This study addresses this issue by developing a novel polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) composite membrane optimized for efficient TDS removal from tannery effluent. The membrane was fabricated using a solution casting technique, with glutaraldehyde employed as a crosslinking agent to enhance mechanical properties and stability. Characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential analysis, and contact angle measurements, were used to evaluate the membrane's surface chemistry, morphology, and hydrophilicity, which are crucial for pollutant separation. Performance testing demonstrated that the membrane achieved a TDS removal efficiency of 91.73% at an optimal pH of 8 and a transmembrane pressure of 3.5 bar, with a permeability of 194 Lm-2 h-1 bar-1. Additionally, substantial reductions in turbidity (94.51%), chemical oxygen demand (COD, 91.91%), biological oxygen demand (BOD, 89.70%), salinity (80.57%), and total suspended solids (TSS, 96.45%) were observed. The membrane exhibited impressive mechanical properties, with a tensile strength of 44 ± 0.43 MPa, 150 ± 0.67% elongation at break, Young's modulus of 750 ± 0.47 MPa, and flexibility of 23 ± 0.53%, indicating its flexibility and durability. Its partial biodegradability and potential for scalable production contribute to its environmental sustainability. This work establishes the PVA-PVC composite membrane as a promising and cost-effective solution for industrial wastewater treatment, offering a sustainable approach to mitigating water pollution in the leather industry.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Ashikur Rahaman Noyon
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Azmain Iktider Akash
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Rashedul Islam
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ibrahim Maafa
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, 11451, Jazan, Saudi Arabia
| | - Ayman Yousef
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, 11451, Jazan, Saudi Arabia
- Department of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo, 11718, Egypt
| |
Collapse
|
2
|
Prihandana GS, Mahardika M, Arifvianto B, Baskoro AS, Whulanza Y, Sriani T, Yusof F. Performance Investigation of PSF-nAC Composite Ultrafiltration Membrane for Protein Separation. Polymers (Basel) 2024; 16:2654. [PMID: 39339117 PMCID: PMC11435571 DOI: 10.3390/polym16182654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, composite polysulfone (PSF) ultrafiltration membranes were fabricated using nAC powder at concentrations ranging from 0 to 8 wt.%. These membranes underwent comprehensive investigation, including assessments of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, and protein separation. The addition of activated carbon improved several desirable properties. Specifically, the hydrophilicity of the PSF membranes was enhanced, with the contact angle reduced from 69° to 58° for 8 wt.% of nAC composite membranes compared to the pristine PSF membrane. Furthermore, the water flux test revealed that 6 wt.% activated carbon-based membranes exhibited the highest flux, with a nearly 3 times improvement at 2 bar. Importantly, this enhancement did not compromise the protein rejection. Additionally, the introduction of nAC had a significant effect on the membrane's pore size by improving lysozyme rejection up to 40%. Overall, these findings will guide the selection of the optimal concentration of nAC for PSF ultrafiltration membranes.
Collapse
Affiliation(s)
- Gunawan Setia Prihandana
- Department of Industrial Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| | - Muslim Mahardika
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Budi Arifvianto
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Ario Sunar Baskoro
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia; (A.S.B.); (Y.W.)
| | - Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia; (A.S.B.); (Y.W.)
| | - Tutik Sriani
- Department of Research and Development, P.T Global Meditek Utama-IITOYA, Sardonoharjo, Ngaglik, Sleman, Yogyakarta 55581, Indonesia;
| | - Farazila Yusof
- Centre of Advanced Manufacturing & Material Processing (AMMP Centre), Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Foundation Studies in Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Alam MNE, Deowan SA, Efty SS, Chowdhury F, Haque Milon A, Nurnabi M. Fabrication and performance evaluation of polyethersulfone membranes with varying compositions of polyvinylpyrrolidone and polyethylene glycol for textile wastewater treatment using MBR. Heliyon 2024; 10:e36215. [PMID: 39247311 PMCID: PMC11380171 DOI: 10.1016/j.heliyon.2024.e36215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Various industries polluting the water bodies by discharging untreated wastewater directly into the environment and conventional wastewater treatments are often insufficient for effectively treating the pollutants. However, membrane bioreactors (MBRs) offer a promising solution for wastewater treatment where membrane serving as the heart of the system. In this study, polyethersulfone (PES) was used as the membrane material and hydrophilicity of the membranes were tuned up by mixing with hydrophilic additives such as polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) and the membranes have shown promising results in treating wastewater, particularly in terms of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and color removal. For example, PES-PEG membrane demonstrated COD, BOD, and color removal of 96 %, 94 %, and 92 %, respectively while those were 95 %, 94 %, and 92 %, respectively for PES-based commercial membrane. Although the performances of fabricated membranes were comparable to that of commercial membrane in COD, BOD, and color removal efficiencies, there is room for improvement in permeate yields. Notably, the average permeate efficiency for MBR modules produced with PES-3PEG and PES-5PVP membranes was recorded as 47 % (18 L/m2h) and 13 % (5 L/m2h) respectively of the commercial membrane (38 L/m2h). Despite the variance in permeate yields, the fabricated membranes also showcased significant efficacy in removing microorganisms, a crucial aspect of wastewater treatment. Their performance in this regard proved highly comparable to that of the commercial membrane, emphasizing the potential of these fabricated membranes in enhancing the wastewater treatment.
Collapse
Affiliation(s)
- Md Nur-E Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Savar, Dhaka, 1350, Bangladesh
| | - Shamim Ahmed Deowan
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shakil Shahriar Efty
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, (BCSIR), Dhaka, 1205, Bangladesh
| | - Ahsanul Haque Milon
- Institute of Leather Engineering and Technology, University of Dhaka, Dhaka, 1209, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
Rando G, Sfameni S, Milone M, Mezzi A, Brucale M, Notti A, Plutino MR. Smart pillar[5]arene-based PDMAEMA/PES beads for selective dye pollutants removal: design, synthesis, chemical-physical characterization, and adsorption kinetic studies. CHEMSUSCHEM 2024; 17:e202301502. [PMID: 38154027 DOI: 10.1002/cssc.202301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO). In particular, the P5-QPDMAEMA based beads, prepared at acidic pH, featured the best MO removal rate (i. e., 91.3 % after 150 minutes starting from a 20 mg ⋅ L-1 solution) and a high selectivity towards the removal of the selected anionic dye. Based on the adsorption kinetics and isotherm calculations, the pseudo-first order and Freundlich models were shown to be the most suitable to describe the MO adsorption behavior, achieving a maximum adsorption capacity of 21.54 mg ⋅ g-1. Furthermore, zwitterionic beads are obtained by a post-functionalization of the PDMAEMA and the P5-QPDMAEMA based beads, to test their removal capability towards both anionic and cationic dyes, as shown.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Milone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via Salaria Km 29.3, 00015, Monterotondo stazione, Rome, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via P. Gobetti 101, 40129, Bologna, Italy
| | - Anna Notti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
5
|
Anggraeni VS, Lee HC, Goh PS, Sutrisna PD, Chan EWC, Wong CW. Biodegradable ultrafiltration membrane enhanced with anti-biofouling agent from Anacardium occidentale extract. BIOFOULING 2024; 40:348-365. [PMID: 38836472 DOI: 10.1080/08927014.2024.2357309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.
Collapse
Affiliation(s)
- Vania Septa Anggraeni
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Hoong Chern Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Pei Sean Goh
- Advanced Membranes Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering, University of Surabaya (UBAYA), Surabaya, Indonesia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mittal M, Tripathi S, Shin DK. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers (Basel) 2024; 16:294. [PMID: 38276702 PMCID: PMC10818902 DOI: 10.3390/polym16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Essential for human development, water is increasingly polluted by diverse anthropogenic activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective remediation. Recent research focuses on sustainable adsorption, with nano-modifications enhancing adsorbent efficacy against persistent waterborne pollutants. This review delves into recent advancements (2020-2023) in sustainable biopolymeric nanocomposites, spotlighting the applications of biopolymers like chitosan in wastewater remediation, particularly as adsorbents and filtration membranes along with their mechanism. The advantages and drawbacks of various biopolymers have also been discussed along with their modification in synthesizing biopolymeric nanocomposites by combining the benefits of biodegradable polymers and nanomaterials for enhanced physiochemical and mechanical properties for their application in wastewater treatment. The important functions of biopolymeric nanocomposites by adsorbing, removing, and selectively targeting contaminants, contributing to the purification and sustainable management of water resources, have also been elaborated on. Furthermore, it outlines the reusability and current challenges for the further exploration of biopolymers in this burgeoning field for environmental applications.
Collapse
Affiliation(s)
- Mona Mittal
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Smriti Tripathi
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Dong Kil Shin
- School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Vatanpour V, Mahdiei S, Arefi-Oskoui S, Khataee A, Orooji Y. Ti 2NT x quasi-MXene modified polyamide thin film composite reverse osmosis membrane with effective desalination and antifouling performance. CHEMOSPHERE 2023; 344:140309. [PMID: 37797897 DOI: 10.1016/j.chemosphere.2023.140309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
In this study, considering the serious problem of lack of fresh water worldwide and the effectiveness of reverse osmosis (RO) membranes in water purification, we prepared improved RO membranes with two-dimensional quasi-MXene nanosheets. In this study, the MAX phase with the chemical formula of Ti2AlN was prepared through the reactive sintering route. Prosperous preparation of the MAX phase with the hexagonal crystalline structure was approved by an X-ray diffraction pattern. Compacted sheets morphology was recognized for the prepared MAX phase from transmittance electron microscopy and scanning electron microscopy micrographs. Then, Ti2NTx quasi-MXene nanosheets were prepared by selective ultrasonic-assisted exfoliation of the MAX phase. Polyamide (PA) thin-layer composite RO membranes with different weight percentages of Ti2NTx quasi-MXene were fabricated by the interfacial polymerization (IP) method. The addition of ultrasonic-assisted prepared quasi-MXene creates numerous and coherent nanochannels on the surface of the membrane. The optimum membrane with 0.01 wt% of quasi-MXene showed the highest pure water flux of 31.9 L m-2. h-1 with an improved salt rejection of 98.2%. Therefore, these nanosheets showed that they can partially solve the trade-off between water permeability and salt rejection, which is a serious challenge in RO membranes. Also, the membranes containing quasi-MXene showed good resistance against fouling by humic acid. This research can be a scalable development in making high-performance membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Sara Mahdiei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran; Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Gu C, Liu Z, Zhong X, Gao Y, Zhao J, Shi F. GO-enhanced Gel Polymer Electrolyte for Aqueous Zinc-Ion Batteries. Chem Asian J 2023:e202300818. [PMID: 37870377 DOI: 10.1002/asia.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) assembled with gel polymer electrolyte (GPE) have gained great popularity due to their low cost and safety. Nevertheless, the extensive utilization of GPE based AZIBs is hindered by various challenges, such as inadequate conductivity, limited mechanical strength, and unstable electrochemical properties. Herein, through the multiple cross-linking reaction of sodium alginate (SA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) and graphene oxide (GO), a hydrated GPE with high conductivity and excellent mechanical property was prepared. GO formed strong hydrogen-bonding interaction with polymers to build a three-dimensional network structure for ion migration and improved the mechanical property of GPE. The prepared GPE showed high ionic conductivity of 2.89×10-3 S cm-1 and excellent tensile strength of 900 kPa. In addition, the assembled Zn-Li hybrid battery provided a discharge specific capacity retention rate of 67.6 % and a Coulombic efficiency (CE) of approximate 100 % after 1000 cycles at 1 C.
Collapse
Affiliation(s)
- Caiting Gu
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| | - Zhiyuan Liu
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| | - Xin Zhong
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| | - Yuan Gao
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| | - Jingwen Zhao
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| | - Fengwei Shi
- School of Chemical Engineering, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, No.2055 Yan'an Avenue, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Sen Gupta R, Samantaray PK, Bose S. Going beyond Cellulose and Chitosan: Synthetic Biodegradable Membranes for Drinking Water, Wastewater, and Oil-Water Remediation. ACS OMEGA 2023; 8:24695-24717. [PMID: 37483250 PMCID: PMC10357531 DOI: 10.1021/acsomega.3c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Membrane technology is an efficient way to purify water, but it generates non-biodegradable biohazardous waste. This waste ends up in landfills, incinerators, or microplastics, threatening the environment. To address this, research is being conducted to develop compostable alternatives that are sustainable and ecofriendly. Bioplastics, which are expected to capture 40% of the market share by 2030, represent one such alternative. This review examines the feasibility of using synthetic biodegradable materials beyond cellulose and chitosan for water treatment, considering cost, carbon footprint, and stability in mechanical, thermal, and chemical environments. Although biodegradable membranes have the potential to close the recycling loop, challenges such as brittleness and water stability limit their use in membrane applications. The review suggests approaches to tackle these issues and highlights recent advances in the field of biodegradable membranes for water purification. The end-of-life perspective of these materials is also discussed, as their recyclability and compostability are critical factors in reducing the environmental impact of membrane technology. This review underscores the need to develop sustainable alternatives to conventional membrane materials and suggests that biodegradable membranes have great potential to address this challenge.
Collapse
Affiliation(s)
- Ria Sen Gupta
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka560012, India
| | - Paresh Kumar Samantaray
- International
Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, U.K.
| | - Suryasarathi Bose
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka560012, India
| |
Collapse
|
10
|
Ghobadi Moghadam A, Hemmati A. Improved water purification by PVDF ultrafiltration membrane modified with GO-PVA-NaAlg hydrogel. Sci Rep 2023; 13:8076. [PMID: 37202452 DOI: 10.1038/s41598-023-35027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
This work presents a modified polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with graphene oxide-polyvinyl alcohol-sodium alginate (GO-PVA-NaAlg) hydrogel (HG) and polyvinylpyrrolidone (PVP) prepared by the immersion precipitation induced phase inversion approach. Characteristics of the membranes with different HG and PVP concentrations were analyzed by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), contact angle measurement (CA), and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images showed an asymmetric structure of the fabricated membranes, and possessing a thin dense layer over the top and a layer finger-like. With increasing HG content, membrane surface roughness increases so that highest surface roughness for the membrane containing 1wt% HG is with a Ra value of 281.4 nm. Also, the contact angle of the membrane reaches from 82.5° in bare PVDF membrane to 65.1° in the membrane containing 1wt% HG. The influences of adding HG and PVP to the casting solution on pure water flux (PWF), hydrophilicity, anti-fouling ability, and dye rejection efficiency were evaluated. The highest water flux reached 103.2 L/m2 h at 3 bar for the modified PVDF membranes containing 0.3 wt% HG and 1.0wt% PVP. This membrane exhibited a rejection efficiency of higher than 92%, 95%, and 98% for Methyl Orange (MO), Conge Red (CR), and Bovine Serum Albumin (BSA), respectively. All nanocomposite membranes possessed a flux recovery ratio (FRR) higher than bare PVDF membranes, and the best anti-fouling performance of 90.1% was relevant to the membrane containing 0.3 wt% HG. The improved filtration performance of the HG-modified membranes was due to the enhanced hydrophilicity, porosity, mean pore size, and surface roughness after introducing HG.
Collapse
Affiliation(s)
- Armin Ghobadi Moghadam
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
11
|
Mohamat R, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, Malek MF, Ahmad MK, Yulkifli Y, Ramakrishna S. Incorporation of graphene oxide/titanium dioxide with different polymer materials and its effects on methylene blue dye rejection and antifouling ability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27207-7. [PMID: 37170051 DOI: 10.1007/s11356-023-27207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Exposure of synthetic dye, such as methylene blue (MB), in water bodies led to a serious threat to living things because they are toxic and non-degradable. Amongst the introduced dye removal methods, membrane separation process can be considered a powerful technique for treating dye contamination. However, this method commonly suffered from drawbacks, such as short membrane lifetime, low permeability and selectivity. To overcome these issues, graphene oxide (GO) and titanium dioxide (TiO2) were used as additives to fabricate polyethersulfone (PES)- and polyvinylidene fluoride (PVDF)-based hybrid membranes via non-solvent-induced phase separation method. Prior to membrane fabrication, GO was synthesised via electrochemical exfoliation method assisted by customised triple-tail surfactant. The potential of PES- and PVDF-based hybrid membranes for wastewater treatment has been discussed widely. However, direct comparison between these two polymeric membranes is not critically discussed for MB dye separation application yet. Therefore, this study is aimed at evaluating the performance of different types of polymers (e.g. PES and PVDF) in terms of membrane morphology, properties, dye rejection and antifouling ability. Results showed that the incorporation of GO and TiO2 alters the morphology of the fabricated membranes and affects dye rejection further, as well as their antifouling performance. In contrast with pristine membrane, PES-GO/TiO2 and PVDF-GO/TiO2 possessed high hydrophilicity, as indicated by their low contact angle (67.38° and 62.12°, respectively). Based on this study, PVDF-GO/TiO2 showed higher porosity value (94.88%), permeability (87.32 L/m2hMPa) and MB rejection rate (92.63%), as well as flux recovery ratio value of > 100% as compared with others. Overall, the incorporation of GO and TiO2 with PVDF polymer are proven to be effective hybrid materials of membrane fabrication for dye rejection application in the near future. The polymer material's intrinsic properties can affect the attributes of the fabricated membrane.
Collapse
Affiliation(s)
- Rosmanisah Mohamat
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia.
| | - Azmi Mohamed
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Muqoyyanah Muqoyyanah
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Firdaus Malek
- NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology, Institute of Science (IOS), Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Yulkifli Yulkifli
- Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Padang, Indonesia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #07-08, Singapore, 117575, Singapore
| |
Collapse
|
12
|
Amiri S, Vatanpour V, He T. Antifouling thin-film nanocomposite NF membrane with polyvinyl alcohol-sodium alginate-graphene oxide nanocomposite hydrogel coated layer for As(III) removal. CHEMOSPHERE 2023; 322:138159. [PMID: 36812992 DOI: 10.1016/j.chemosphere.2023.138159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Removal of As(III) from the polluted waters is a challenge. It should be oxidized to As(V) for increasing its rejection by RO membranes. However, in this research, As (III) is directly removed by a high permeable and antifouling membrane prepared through the surface coating and in-situ crosslinking procedure of polyvinyl alcohol (PVA) and sodium alginate (SA) as coating materials containing graphene oxide as a hydrophilic additive on a polysulfone support with glutaraldehyde (GA) chemical crosslinking agent. The properties of the prepared membranes were evaluated through contact angle, zeta potential, ATR-FTIR, SEM, and AFM. The addition of GO in the polymeric networks of SA and PVA hydrogel coating layers led to a better hydrophilicity and a smoother surface and a higher negative surface charge resulted in improvment of permeability and rejection of membranes. Among the prepared hydrogel-coated modified membranes, SA-GO/PSf indicated the highest pure water permeability (15.8 L m-2 h-1 bar-1) and BSA permeability (9.57 L m-2 h-1 bar-1), respectively. The best desalination performance (NaCl, MgSO4, and Na2SO4 rejections of 60.0%, 74.5%, and 92.0%, respectively) and As(III) removal (88.4%) along with satisfactory stability and reusability in cyclic continuous filtration was reported for PVA-SA-GO membrane. In addition, the PVA-SA-GO membrane indicated improved fouling resistance toward BSA foulant with the lowest flux decline of 7%.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
13
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
14
|
Chang H, Zhao H, Qu F, Yan Z, Liu N, Lu M, Liang Y, Lai B, Liang H. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Wu S, Shi W, Li K, Cai J, Xu C, Gao L, Lu J, Ding F. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 2023; 239:124264. [PMID: 37003384 DOI: 10.1016/j.ijbiomac.2023.124264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption separation membranes.
Collapse
|
16
|
Cao J, Li J, Majdi HS, Le BN, Amine Khadimallah M, Elhosiny Ali H, Assilzadeh H. Assessment of graphene-based polymers for sustainable wastewater treatment: Development of a soft computing approach. CHEMOSPHERE 2023; 313:137189. [PMID: 36379432 DOI: 10.1016/j.chemosphere.2022.137189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Since graphene possesses distinct electrical and material properties that could improve material performance, there is currently a growing demand for graphene-based electronics and applications. Numerous potential applications for graphene include lightweight and high-strength polymeric composite materials. Due to its structural qualities, which include low thickness and compact 2D dimensions, it has also been recognized as a promising nanomaterial for water-barrier applications. For barrier polymer applications, it is usually applied using two main strategies. The first is the application of graphene, graphene oxide (GO), and reduced graphene oxide (rGO) to polymeric substrates through transfer or coating. In the second method, fully exfoliated GO or rGO is integrated into the material. This study provides an overview of the most recent findings from research on the use of graphene in the context of water-barrier applications. The advantages and current limits of graphene-based composites are compared with those of other nanomaterials utilized for barrier purposes in order to emphasize difficult challenges for future study and prospective applications.
Collapse
Affiliation(s)
- Jun Cao
- Chongqing Creation Vocational College, Yongchuan 402160, Chongqing, China
| | - Jialing Li
- College of Engineering Management, Nueva Ecija University of Science and Technology, Cabanatuan, Philippines.
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Physics Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Hamid Assilzadeh
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
17
|
Cheng Y, Xia C, Garalleh HA, Garaleh M, Lan Chi NT, Brindhadevi K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. CHEMOSPHERE 2023; 315:137706. [PMID: 36592836 DOI: 10.1016/j.chemosphere.2022.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Current health and environmental concerns about the abundance and drawbacks of municipal wastewater as well as industrial effluent have prompted the development of novel and innovative treatment processes. A global shortage of clean water poses significant challenges to the survival of all life forms. For the removal of both biodegradable and non-biodegradable harmful wastes/pollutants from water, sophisticated wastewater treatment technologies are required. Polymer membrane technology is critical to overcoming this major challenge. Polymer matrix-based nanocomposite membranes are among the most popular in polymer membrane technology in terms of convenience. These membranes and their major components are environmentally friendly, energy efficient, cost effective, operationally versatile, and feasible. This review provides an overview of the drawbacks as well as promising developments in polymer membrane and nanocomposite membranes for environmental remediation, with a focus on wastewater treatment. Additionally, the advantages of nanocomposite membranes such as stability, antimicrobial properties, and adsorption processes have been discussed. The goal of this review was to summarize the remediation of harmful pollutants from water and wastewater/effluent using polymer matrix-based nanocomposite membrane technology, and to highlight its shortcomings and future prospects.
Collapse
Affiliation(s)
- Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
18
|
Shi D, Li C, Yin Y, Lu W, Li G, Li X. Application of Poly(ether sulfone)-Based Membranes in Clean Energy Technology. Chem Asian J 2023; 18:e202201038. [PMID: 36369774 DOI: 10.1002/asia.202201038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Poly(ether sulfone) (PES) is a kind of polymer materials with excellent electrical insulation and acid/alkali stability. PES can be operated at high temperature continuously for a long time and still maintain excellent property stability in the environments with rapidly changed temperature, namely, great thermostability. Moreover, PES has low molding shrinkage, good dimensional stability and excellent film-forming characteristics. Compared with inorganic membranes, PES-based membranes have lower cost, which have received more attention and wide recognition in the field of clean energy technologies in recent years, such as flow batteries, fuel cells, water treatment, and gas separation. Therefore, this review summarizes the research status and prospect of the utilization of PES-based membranes in clean energy fields, in order to further promote their development and application.
Collapse
Affiliation(s)
- Dingqing Shi
- Metal-air New Energy Batteries key Laboratory of Liaoning province, Dalian Jiaotong University, Dalian, 116028, P. R. China.,Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Chunyang Li
- Metal-air New Energy Batteries key Laboratory of Liaoning province, Dalian Jiaotong University, Dalian, 116028, P. R. China
| | - Yanbin Yin
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Wenjing Lu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Guojun Li
- Metal-air New Energy Batteries key Laboratory of Liaoning province, Dalian Jiaotong University, Dalian, 116028, P. R. China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
19
|
Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDFF, Ricardo NMPS, Kaplan DL, Ribeiro MENP. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res B Appl Biomater 2023; 111:220-233. [PMID: 35959858 DOI: 10.1002/jbm.b.35146] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Collapse
Affiliation(s)
- Matheus Morais Saraiva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Beatriz Nogueira Lima
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - George de Almeida Silva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Andre Tavares de Freitas Figueredo Dias
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
20
|
Rando G, Sfameni S, Plutino MR. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2022; 9:gels9010009. [PMID: 36661777 PMCID: PMC9857570 DOI: 10.3390/gels9010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization. Pesticides, cosmetics, personal care products, pharmaceuticals, organic dyes, and other man-made chemicals indispensable for modern society are among the emerging pollutants of difficult remediation by traditional methods of wastewater treatment. However, the majority of the currently used waste management and remediation techniques require significant amounts of energy and chemicals, which can themselves be sources of secondary pollution. Therefore, this review reported newly advanced, efficient, and sustainable techniques and approaches for water purification. In particular, new advancements in sustainable membrane-based filtration technologies are discussed, together with their modification through a rational safe-by-design to modulate their hydrophilicity, porosity, surface characteristics, and adsorption performances. Thus, their preparation by the use of biopolymer-based gels is described, as well as their blending with functional cross-linkers or nanofillers or by advanced and innovative approaches, such as electrospinning.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
21
|
Amiri S, Asghari A, Harifi-Mood AR, Rajabi M, He T, Vatanpour V. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. CHEMOSPHERE 2022; 308:136323. [PMID: 36084832 DOI: 10.1016/j.chemosphere.2022.136323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Polyvinyl alcohol (PVA) and sodium alginate (SA) hydrogel-coated nanofiltration (NF) membranes with high-flux and permselectivity were prepared. The coating of PVA and SA hydrogel selective layer on a porous polysulfone (PSf)/non-woven fabric ultrafiltration substrate membrane was conducted through different three procedures including pre-crosslinking, in-situ crosslinking, and immersing crosslinking and the use of glutaraldehyde as a crosslinking agent. The properties and performances of all types of the prepared membranes were evaluated through ATR-FTIR spectroscopy, AFM, SEM, zeta potential, contact angle, and cross-flow permeation tests. The immersing technique resulted in the formation of TFC membranes with higher hydrophilicity, smoother surface layer, higher negative charge, higher permeation flux, higher salt rejection and better anti-fouling performance. Also, the higher negative surface charge of the immersing coated TFC membranes due to dissociation of hydrophilic functional groups of the PVA and SA hydrogel selective layer resulted in higher As(III) rejection. SA coated NF membrane through immersing method exhibited a higher pure water permeability of 11.2 L m-2 h-1 bar-1, NaCl, MgSO4, and Na2SO4 rejection of 38.2%, 55.1%, and 70.4%, respectively with As(III) rejection of 60.6%. All types of the PVA and SA hydrogel-coated PSf membranes possessed improved fouling resistance to BSA aqueous solution, superior anti-fouling performance was obtained with SA hydrogel coating through immersing method. Such optimum membranes indicated high stability in the long-term experiments. This study showed that the coating of the SA hydrogel layer on a PSf support through immersing method could be a promising candidate for fabricating high-flux NF membranes.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Ali Reza Harifi-Mood
- Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| |
Collapse
|
22
|
Aqaei H, Irani-nezhad MH, Khataee A, Vatanpour V. Modified emulsion polyvinyl chloride membranes for enhanced antifouling and dye separation properties by introducing tungsten disulfide (WS2) nanosheets. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Enhanced negative charge of polyamide thin-film nanocomposite reverse osmosis membrane modified with MIL-101(Cr)-Pyz-SO3H. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
25
|
Daneshnazar M, Jaleh B, Eslamipanah M, Varma RS. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Rivas-Sanchez A, Cruz-Cruz A, Gallareta-Olivares G, González-González RB, Parra-Saldívar R, Iqbal HMN. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants. CHEMOSPHERE 2022; 303:135054. [PMID: 35613636 DOI: 10.1016/j.chemosphere.2022.135054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are among the most biosynthesized nanocomposites with excellent tunability and multifunctionality features, that other materials fail to demonstrate. Naturally occurring materials, such as alginate (Alg), can be combined and modified by linking the active moieties of various carbon-based materials of interest, such as graphene oxide (GO), carbon nanotubes (CNTs), and mesoporous silica nanocomposite (MSN), among others. Thus, several types of robust nanocomposites have been fabricated and deployed for environmental remediation of emerging pollutants, such as pharmaceutical compounds, toxic dyes, and other environmentally hazardous contaminants of emerging concern. Considering the above critiques and added features of carbon-based nanocomposites, herein, an effort has been made to spotlight the synergies of GO, CNTs, and MSN with Alg and their role in mitigating emerging pollutants. From the information presented in this work, it can be concluded that Alg is a material that has excellent potential. However, its use still requires further tests in different areas and other materials to carry out a holistic investigation that exploits its versatility for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Rivas-Sanchez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Angelica Cruz-Cruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
27
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Golubev G, Sokolov S, Rokhmanka T, Makaev S, Borisov I, Khashirova S, Volkov A. High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater. Polymers (Basel) 2022; 14:polym14142944. [PMID: 35890720 PMCID: PMC9321245 DOI: 10.3390/polym14142944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m2∙h) in pervaporation separation of binary solutions.
Collapse
Affiliation(s)
- Georgy Golubev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 2-02)
| | - Stepan Sokolov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Tatyana Rokhmanka
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Sergey Makaev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Ilya Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Svetlana Khashirova
- Department of Organic Chemistry and Macromolecular Compounds, Kabardino-Balkar State University named after H.M. Berbekov, 173 Chernyshevsky St., 360004 Nalchik, Kabardino-Balkarian Republic, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| |
Collapse
|
29
|
Khalili M, Razmjou A, Shafiei R, Shahavi MH, Li MC, Orooji Y. High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO 2 decorated nanocomposite films. Food Chem Toxicol 2022; 168:113291. [PMID: 35870732 DOI: 10.1016/j.fct.2022.113291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023]
Abstract
Although polymeric membrane has superior properties, its applications in biomedical and food industrial fields are minimal. Biofouling is a significant concern in the membrane, created from particular interactions between the membrane and untreated water content. This research showed that a careful superhydrophilic modification of polyethersulfone membrane could address those drawbacks that have hindered their utility. Hence, a combination of chemical and physical modification showed far-reaching effects on surface behavior, affecting manifold aspects of its bacterial attachment, protein adsorption resistance, and hydrophilicity. The contact angle measurement results decreased from 30° to 0° in 26 s, and surface free energy increased by 33%, demonstrating the shifting surface wettability behavior toward the Superhydrophilicity. Besides, increasing the average surface roughness on the nanoscale and forming 70-110 nm jagged structures results in a marked reduction in protein adsorption, bacterial adhesion, and biofouling formation, confirmed by the results of Flow cytometry analysis and microtiter plate assay. An improved understanding of antifouling and antibacterial properties will greatly assist in food industries since it can be applied to enhance the durability of food and chemical materials. This is important as it gives us a simple way of improving packing reliability, reducing costs and amounts of undesirable waste products.
Collapse
Affiliation(s)
- Mahsa Khalili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University (ECU), Perth, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Rasoul Shafiei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran
| | - Mei-Chun Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China.
| |
Collapse
|
30
|
Khorram M, Chianeh FN, Shamsodin M. Preparation and characterization of a novel polyethersulfone nanofiltration membrane modified with Bi2O3 nanoparticles for enhanced separation performance and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Application of Nanofiltration and Reverse Osmosis Membranes for Tannery Wastewater Reuse. WATER 2022. [DOI: 10.3390/w14132035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tanneries produce large amounts of wastewater with high concentrations of suspended solids, organic matter, and salts. Treatment and reuse of these effluents are of great importance to preserve water resources and save costs. Although suspended solids and high percentages of organic matter can be eliminated by physico-chemical and biological processes, refractory chemical oxygen demand (COD) and salts will remain in the wastewater after these processes. In particular, chloride and sulphate ion concentrations may hinder the treated wastewater from being reused or even discharged according to legal standards. In this work, two nanofiltration membranes and two reverse osmosis membranes are tested to assess these technologies as regeneration processes for biologically treated tannery wastewater. Permeate flux and rejection of organic matter and ions were measured at different operating conditions (transmembrane pressure and cross-flow velocities) at both total recycle and concentration modes. Results showed that the difference between permeate fluxes of nanofiltration (NF) membranes and reverse osmosis (RO) membranes was very high. Thus, at 20 bar and 1.77 m·s−1, the permeate flux of the two tested NF membranes in the total recycle mode experiments were 106 and 67 L·m−2·h−1, while the obtained permeate fluxes for the RO membranes were 25 and 18 L·m−2·h−1. Concerning rejections, RO membranes rejected almost 100% of the salts, whereas NF membranes reduced their rejection when faced with increasing concentration factors (salt rejection between 50–60% at the highest concentration factor). In addition, the fouling of RO membranes was lower than that of NF membranes, recovering more than 90% of initial permeability by only water rinsing. In contrast, chemical cleaning was necessary to increase the permeability recovery of the NF membranes above 90%. The considerably lower rejections and the higher membrane fouling of the NF membranes lead us to conclude that reverse osmosis could be the most feasible technique for water reuse in the tannery industry, though the permeate fluxes are lower than those achieved with NF membranes.
Collapse
|
32
|
Mahdavi H, Zeinalipour N, Heidari AA. Fabrication of
PVDF
mixed matrix nanofiltration membranes incorporated with
TiO
2
nanoparticles and an amphiphilic
PVDF‐g‐PMMA
copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
33
|
Hu D, Li Y, Yan Z, Li S, ManXu, Wang C. Anti-fouling nanofiltration membranes based on macromolecule crosslinked polyvinyl alcohol. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Vatanpour V, Karatas O, Amiri S, Rajabi HR, Koyuncu I, Khataee A. Different metal-doped ZnS quantum dots photocatalysts for enhancing the permeability and antifouling performances of polysulfone membranes with and without UV irradiation. CHEMOSPHERE 2022; 294:133705. [PMID: 35065176 DOI: 10.1016/j.chemosphere.2022.133705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, the effect of three different transition metal ion dopants (Mn2+, Fe2+, and Co2+) on the characteristics of zinc sulfide (ZnS) quantum dots (QDs) was investigated and the obtained QDs photocatalysts were applied for the modification of polysulfone (PSf) mixed matrix membranes to reduce membrane fouling. The synthesized QDs and fabricated membranes were fully identified with SEM, TEM, AFM, FTIR analyses, and also underwent porosity and contact angle tests. Flux recovery ratios (FRR) significantly increased from 69.8% (bare) to 85.0% (1% Fe-doped ZnS QDs) after modification of membranes with metal-doped QDs. The contact angles of the prepared membranes decreased with doping of dissimilar metals, therefore hydrophilicity increased, and reversible/non-reversible blockages were improved. Besides, the use of UV irradiation during the washing of the membranes increased the FRR of the photocatalytic activated membranes to 91.2%. Compared to the bare PSf membrane in dye solution filtration, 1% Fe-doped ZnS QDs membrane yielded twice as much flux and 15% higher FRR results. Therefore, the results proved that metal-doped QDs can be used in the modification of PSf membranes with high efficiency.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Bursa Technical University, 16310, Bursa, Turkey
| | - Saba Amiri
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | | | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
35
|
Divya S, Oh TH. Polymer Nanocomposite Membrane for Wastewater Treatment: A Critical Review. Polymers (Basel) 2022; 14:polym14091732. [PMID: 35566901 PMCID: PMC9100919 DOI: 10.3390/polym14091732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such membranes have limited applications. Nanocomposite membranes, which are formed by adding nanofillers to polymeric membrane matrices, can enhance the filtration process. Considerable attention has been given to nanofillers, which include carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined the current status of membrane technologies for water filtration, polymeric nanocomposite membranes, and their applications. Additionally, we highlight the challenges faced in water treatment in developing countries.
Collapse
|
36
|
Goodarzi R, Ghanbari H, Sarpoolaky H. An Eco‐Friendly Polyvinyl Alcohol/Graphene Oxide‐Based Hydrogel as a Methylene Blue Adsorbent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reyhaneh Goodarzi
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hajar Ghanbari
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hossein Sarpoolaky
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| |
Collapse
|
37
|
Vatanpour V, Jouyandeh M, Akhi H, Mousavi Khadem SS, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Esmaeili A, Rabiee N, Habibzadeh S, Koyuncu I, Nouranian S, Formela K, Saeb MR. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. CHEMOSPHERE 2022; 290:133363. [PMID: 34929269 DOI: 10.1016/j.chemosphere.2021.133363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly dispersed in the PSF-based membranes, where a fall in the water contact angle was observed from 65.4° to 49.7° by addition of 2 wt% nanoparticles. The fouling resistance parameters of the PEI-SiO2/PSF membranes were declined with an increase in the nanoparticle concentration, suggesting the superior hydrophilic nature of the PEI-SiO2 nanoparticles. The permeability of the nanocomposite membranes was increased from 38.5 to 70 L m-2 h-1 bar-1 by incorporation of 2 wt% PEI-SiO2. Finally, improvements were observed in the flux recovery ratio (95.8%), Reactive Green 19 dye rejection (99.6%) and tensile strengths of the PEI-SiO2/PSF membranes over the neat PSF and SiO2/PSF membranes, which were used as controls. The results of this study demonstrate the promising application of PEI-SiO2 nanoparticles in improving the separation and antifouling performances of the PSF membranes for water purification.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Hossein Akhi
- Department of Applied Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14117-13137, Iran.
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Sciences, 14117-13137, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic - Qatar, P.O. Box 24449, Doha, Qatar
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15916-34311, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
38
|
Gao C, Chen H, Liu S, Chen J, Xing Y, Ji S, Chen J, Zou P, Cai J. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method. CHEMOSPHERE 2022; 288:132537. [PMID: 34637865 DOI: 10.1016/j.chemosphere.2021.132537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the hydrophobicity of traditional polyethersulfone (PES) membranes, this study combined the reverse thermally induced phase separation (RTIPS) method with the constructed bimetallic polyphenol networks (BMPNs) to prepare hydrophilic anti-fouling membranes. As for BMPNs, tannic acid (TA) was served as an intermediate to construct both the inner and surface hydrophilic layers of the PES membranes. On the one hand, etching Zeolitic imidazolate framework-8 (EZIF-8) with synergistic etching and surface functionalization via TA not only retained the high pore structure of MOFs, but also had good hydrophilicity. On the other hand, the MPN hydrophilic layer was formed on the membrane surface by the combination of TA from the surface of EZIF-8 and iron ions in the coagulation bath. Therefore, BMPNs structure penetrated the interior and surface of PES membrane, which greatly improved the hydrophilic properties. In addition, the membrane with porous surfaces and spongy cross sections by RTIPS method improved the permeability and mechanical properties of the membrane by several times compared with the membrane via NIPS method. The obtained membranes in this experiment showed excellent permeability, just like pure water flux reached 1662.16 L/m2 h, while BSA rejection rate remained at 92.78%. Compared with pure membrane, it showed a better flux recovery rate (FRR = 83.33%) after cleaning, and the reduction of irreversible (Rir = 16.67%) fouling indexes indicated that the adsorption of protein was inhibited. These results suggested that the hydrophilic anti-fouling PES membranes prepared by this method possessed great application potential in membrane separation technology.
Collapse
Affiliation(s)
- Chunmei Gao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongyu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shenghui Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jinchao Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunqing Xing
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Shifeng Ji
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Environment Monitoring and Assessment Center, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajian Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Zou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiaonan Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
39
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
40
|
Yan X, Cheng S, Ma C, Li J, Wang G, Yang C. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126939. [PMID: 34449342 DOI: 10.1016/j.jhazmat.2021.126939] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Sodium tetraborate pentahydrate (STB) was intercalated into graphene oxide (GO) nanosheets to form a nanocomposite (STB@GO). Subsequently, it was self-assembled on a substrate membrane to prepare STB@GO nanofiltration membrane. The properties of the STB@GO powder samples and the nanofiltration membrane were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), contact angle (CA), and zeta potential. When the STB concentration was 1.0 g/L in the cross-linking reaction, the membrane was described as the STB2@GO membrane and exhibited a large interlayer space (d-spacing = 1.347 nm), high hydrophilicity (CA = 22.2°), and high negative potential (zeta = -18.0 mV). Meanwhile, the pure water flux of the membrane was significantly increased by 56.60% than that of the GO membrane. In addition, the STB2@GO membrane exhibited a favorable capability for dye rejection,98.52% for Evans blue (EB), 99.26% for Victoria blue B (VB), 91.94% for Alizarin yellow (AY), and 93.21% for Neutral red (NR). Furthermore, the STB2@GO membrane performed better in dye separation under various types and concentrations of dye, pH values, and ions in solution. Thus, this study provides a promising method for preparing laminated GO nanofiltration membranes for dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin 300457, China.
| | - Junyu Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
41
|
Ahmadi B, Seyed Dorrji MS, Kianfar M, Rasoulifard MH, Ahmadi A. A novel multilayer thin-film membrane with high durability: preparation, characterization, performance investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01170k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main aim of this research is the improvement of the performance in desalination of polyamide (PA) thin film composite nanofiltration membranes by modification of nanofibrous polyvinylidene fluoride as a support layer.
Collapse
Affiliation(s)
- B. Ahmadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. S. Seyed Dorrji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. Kianfar
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - M. H. Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - A. Ahmadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
- Department of Design & Engineering, Absamin Water Treatment Company, Karaj, Iran
| |
Collapse
|
42
|
A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review discusses, in brief, the various synthetic methods of two widely-used nanofillers; phyllosilicate and graphene. Both are 2D fillers introduced into hydrogel matrices to achieve mechanical robustness and water uptake behavior. Both the fillers are inserted by physical and chemical gelation methods where most of the chemical gelation, i.e., covalent approaches, results in better physical properties compared to their physical gels. Physical gels occur due to supramolecular assembly, van der Waals interactions, electrostatic interactions, hydrophobic associations, and H-bonding. For chemical gelation, in situ radical triggered gelation mostly occurs.
Collapse
|
43
|
Akhi H, Vatanpour V, Zakeri F, Khataee A. Modification of EPVC membranes by incorporating tungsten trioxide (WO3) nanosheets to improve antifouling and dye separation properties. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
ALSamman MT, Sánchez J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Yu J, Wang Y, He Y, Gao Y, Hou R, Ma J, Zhang L, Guo X, Chen L. Calcium ion-sodium alginate double cross-linked graphene oxide nanofiltration membrane with enhanced stability for efficient separation of dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Lei J, Guo Z. PES asymmetric membrane for oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Januário EFD, Vidovix TB, Beluci NDCL, Paixão RM, Silva LHBRD, Homem NC, Bergamasco R, Vieira AMS. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147957. [PMID: 34052486 DOI: 10.1016/j.scitotenv.2021.147957] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
Graphene oxide (GO) is one of the most well-known graphene derivatives which, due to its outstanding chemical, electrical and optical properties as well as its high oxygen content, has been recently applied in several fields such as in the construction of sensors, as antimicrobial agent for biomedical applications, as well as nanofiller material for membranes applied in wastewater treatment. In this last-mentioned field, the synthesis and functionalization of membranes with GO has proven to improve the performance of membranes applied in the treatment of wastewater containing dyes, regarding antifouling behavior, selectivity and flux. In this review, an overview of water pollution caused by effluents containing synthetic dyes, the advantages and limitations of GO-based membranes and the latest research advances on the use of GO-based membranes for dyes removal, including its impact on membrane performance, are discussed in detail. The future panorama of the applicability of GO-based membranes for the treatment of water contaminated by dyes is also provided.
Collapse
Affiliation(s)
| | - Taynara Basso Vidovix
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | | - Rebecca Manesco Paixão
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | | - Natália Cândido Homem
- University of Minho, Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, 4800-058 Guimarães, Portugal.
| | - Rosangela Bergamasco
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | |
Collapse
|
48
|
Johari NA, Yusof N, Lau WJ, Abdullah N, Salleh WNW, Jaafar J, Aziz F, Ismail AF. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Choudhury RR, Gohil JM, Dutta K. Poly(vinyl alcohol)‐based membranes for fuel cell and water treatment applications: A review on recent advancements. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rikarani R. Choudhury
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
| | - Jaydevsinh M. Gohil
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| | - Kingshuk Dutta
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| |
Collapse
|
50
|
Alkhouzaam A, Qiblawey H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. CHEMOSPHERE 2021; 274:129853. [PMID: 33581397 DOI: 10.1016/j.chemosphere.2021.129853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) and GO-based materials have gained a significant interest in the membrane synthesis and functionalization sector in the recent years. Inspired by their unique and tuneable properties, several GO-based nanomaterials have been investigated and utilized as effective nanofillers for various membranes in the water treatment, purification and desalination sectors. This paper comprehensively reviews the recent advances of GO utilization in pressure, concentration and thermal-driven membrane processes. A brief overview on GO particles, properties, synthesis and functionalization methods was provided. The conventional and the state-of-art fabrication methods of GO-based membranes were summarized and discussed, and consequently the GO-based membranes were classified into different categories. The applications, types, and the performance in terms of flux and rejection were summarized and reviewed. The advantages of GO-based membranes in terms of antifouling properties, bactericidal effects, mechanical strength and stability have been reviewed, too. The review gives insights on the future perspectives of GO functional materials and their potential use in the various membrane processes discussed herein.
Collapse
Affiliation(s)
- Abedalkader Alkhouzaam
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar.
| |
Collapse
|