1
|
Islam SS, Jose T, Seikh AH, Karim MR, Alnaser IA, Bose S. Shear-aligned graphene oxide nanosheets incorporated PVDF composite membranes for selective dye rejection with high water flux. RSC Adv 2024; 14:27852-27861. [PMID: 39224648 PMCID: PMC11367625 DOI: 10.1039/d4ra04147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Membrane technology is crucial in addressing water pollution challenges, particularly in removing dyes from wastewater. This study presents a novel approach to fabricating shear-aligned graphene oxide (GO) nanosheets incorporated polyvinylidene fluoride (PVDF) membranes for achieving exceptional dye rejection efficiency while maintaining high water flux. The membranes were prepared by dispersing graphene oxide within a PVDF matrix and subsequent subjection to shear alignment techniques. Shear and flow-induced alignment were explored to achieve precise and controlled alignment of graphene oxide flakes within the PVDF matrix. The resulting membranes exhibited enhanced structural integrity and optimized molecular packing of PVDF and GO, enabling them to selectively reject dyes while allowing efficient water permeation. The fabricated membranes were extensively characterized using appropriate testing methods. The results demonstrated that the shear-aligned GO sheets infused PVDF composite membranes exhibited outstanding dye rejection (96-99%) performance, surpassing conventional membranes while maintaining high water flux. This innovative membrane fabrication approach holds significant promise for advanced water treatment applications, offering a sustainable solution for selective dye removal and efficient water purification.
Collapse
Affiliation(s)
- Sk Safikul Islam
- Department of Materials Engineering, Indian Institute of Science Bangalore-560012 Karnataka India
| | - Theres Jose
- Department of Materials Engineering, Indian Institute of Science Bangalore-560012 Karnataka India
| | - Asiful Hossain Seikh
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University P.O. Box 800 Al-Riyadh 11421 Saudi Arabia
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University P.O. Box 800 Al-Riyadh 11421 Saudi Arabia
| | - Ibrahim A Alnaser
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University P.O. Box 800 Al-Riyadh 11421 Saudi Arabia
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore-560012 Karnataka India
| |
Collapse
|
2
|
Ghobadi Moghadam A, Hemmati A. Improved water purification by PVDF ultrafiltration membrane modified with GO-PVA-NaAlg hydrogel. Sci Rep 2023; 13:8076. [PMID: 37202452 DOI: 10.1038/s41598-023-35027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
This work presents a modified polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with graphene oxide-polyvinyl alcohol-sodium alginate (GO-PVA-NaAlg) hydrogel (HG) and polyvinylpyrrolidone (PVP) prepared by the immersion precipitation induced phase inversion approach. Characteristics of the membranes with different HG and PVP concentrations were analyzed by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), contact angle measurement (CA), and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images showed an asymmetric structure of the fabricated membranes, and possessing a thin dense layer over the top and a layer finger-like. With increasing HG content, membrane surface roughness increases so that highest surface roughness for the membrane containing 1wt% HG is with a Ra value of 281.4 nm. Also, the contact angle of the membrane reaches from 82.5° in bare PVDF membrane to 65.1° in the membrane containing 1wt% HG. The influences of adding HG and PVP to the casting solution on pure water flux (PWF), hydrophilicity, anti-fouling ability, and dye rejection efficiency were evaluated. The highest water flux reached 103.2 L/m2 h at 3 bar for the modified PVDF membranes containing 0.3 wt% HG and 1.0wt% PVP. This membrane exhibited a rejection efficiency of higher than 92%, 95%, and 98% for Methyl Orange (MO), Conge Red (CR), and Bovine Serum Albumin (BSA), respectively. All nanocomposite membranes possessed a flux recovery ratio (FRR) higher than bare PVDF membranes, and the best anti-fouling performance of 90.1% was relevant to the membrane containing 0.3 wt% HG. The improved filtration performance of the HG-modified membranes was due to the enhanced hydrophilicity, porosity, mean pore size, and surface roughness after introducing HG.
Collapse
Affiliation(s)
- Armin Ghobadi Moghadam
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
3
|
Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water - A review. CHEMOSPHERE 2023; 322:138152. [PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | |
Collapse
|
4
|
Vatanpour V, Naziri Mehrabani SA, Safarpour M, Ganjali MR, Habibzadeh S, Koyuncu I. Fabrication of the PES Membrane Embedded with Plasma-Modified Zeolite at Different O 2 Pressures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9892-9905. [PMID: 36776106 DOI: 10.1021/acsami.2c22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this research, the non-thermal glow discharge plasma process was implemented to modify the surface of natural clinoptilolite zeolite before incorporation into the polyethersulfone (PES) membrane. The influence of plasma gas pressure variation on the fouling resistance and separation performance of the prepared membranes was studied. Fourier transform infrared, field emission scanning electron microscopy, and X-ray diffraction analyses of the unmodified and modified clinoptilolites revealed the Si-OH-Al bond's development during plasma treatment and the change in surface characteristics. In terms of performance, increasing the plasma gas pressure during clinoptilolite treatment resulted in the twofold enhancement of water flux from 91.2 L/m2 h of bare PES to 188 L/m2 h of the membrane containing plasma-treated clinoptilolite at 1.0 Torr pressure. Meanwhile, the antifouling behavior of membranes was improved by introducing more hydrophilic functional groups derived from the plasma treatment process. Additionally, the enhanced dye separation of membranes was indicated by the separation of 99 and 94% of reactive green 19 and reactive red 195, respectively.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Mahdie Safarpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Sherugar P, Rao S, Kigga M, George SD, Arthi M, Déon S, Padaki M. Insights into the mechanically resilient, well-balanced polymeric membranes by incorporating Rhizophora mucronata derived activated carbon for sustainable wastewater decontamination. CHEMOSPHERE 2022; 306:135528. [PMID: 35798149 DOI: 10.1016/j.chemosphere.2022.135528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrophilic activated carbon has been prepared and used to synthesize innovative activated carbon/polysulfone mixed matrix membranes (MMMs). These membranes were investigated in terms of membrane morphology, hydrophilicity, antifouling ability, and metal ions rejection. The activated carbon (AC) was prepared from a simple chemical activation method using Rhizophora mucronata propagules, which are rich in aerenchyma cells and possess a high surface area. The hydrophilicity of the MMMs is enhanced by the incorporation of activated carbon, which is confirmed by the measurement of equilibrium water contact angle, water uptake and pure water flux. The optimized concentration of 0.625 wt% activated carbon (A2) incorporated mixed matrix membrane exhibits better rejection efficiencies of 98 ± 0.5%, 99 ± 0.5%, 92 ± 2%, and 44 ± 1% for Pb+2, Cd+2, Hg+2, and F- with the permeate flux of 28.27, 31.88, 33.21, 43.82 L/m2/h, respectively. The fabricated mixed matrix membranes demonstrated an excellent flux recovery ratio and reversible fouling, when filtrating a mixed feed solution containing 200 ppm BSA, 10 ppm Pb+2 and 10 ppm Cd+2. The optimized A2 membrane showed excellent long-term stability up to 120 h without compromising in permeate flux and rejection efficiency. Finally, a numerical investigation using a usual transport model has shown that dielectric exclusion was the most probable mechanism that can physically explain experimental trends.
Collapse
Affiliation(s)
- Prajwal Sherugar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Srilatha Rao
- Nitte Minaxi Institute of Technology, Bangalore, 562112, India
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Sajan D George
- Centre for Applied Nanoscience, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Manivannan Arthi
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Sébastien Déon
- Institut UTINAM (UMR CNRS 6213), Université de Bourgogne-Franche-Comté, 16 Route de Gray, 25030, Besançon, Cedex, France.
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India.
| |
Collapse
|
6
|
Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: experimentally and theoretically approaches. Sci Rep 2022; 12:18031. [PMID: 36302936 PMCID: PMC9613707 DOI: 10.1038/s41598-022-22421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The introduction of activated carbon/natural zeolite (AC/NZ) as an efficient and reliable nanoadsorbent for enhancing methylene blue (MB) dye adsorption. By calcining sugarcane waste at various temperatures between 500 and 900 °C, activated carbons (ACs) are formed. Both XRD and SEM were used for the characterization of the prepared adsorbents. Adsorption measurements for the removal of MB dye were made on the impact of pH, beginning MB concentration, and contact time. The maximum AC500/NZ adsorption capacity for MB dye at 25 °C, pH 7, and an AC500/NZ mass of 50 mg was found to be approximately 51 mg/g at an initial concentration of 30 ppm. The pseudo-second-order kinetics model and the Temkin isotherm model describe the adsorption process. The Temkin model shows that the adsorption energy is 1.0 kcal/mol, indicating that the MB-to-AC500/NZ adsorption process occurs physically. Our Monte Carlo (MC) simulation studies supported our findings and showed that the Van der Waals dispersion force was responsible for the MB molecule's physical adsorption. The AC500/NZ adsorbent is thought to be a strong contender for water remediation.
Collapse
|
7
|
Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Etemadi H, Kazemi R, Ghasemian N, Shokri E. Effect of Transmembrane Pressure on Antifouling Properties of PVC/Clinoptilolite Ultrafiltration Nanocomposite Membranes. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Habib Etemadi
- University of Bonab Department of Polymer Science and Engineering 5551761167 Bonab Iran
| | - Rozita Kazemi
- University of Bonab Department of Polymer Science and Engineering 5551761167 Bonab Iran
| | - Naser Ghasemian
- University of Bonab Department of Chemical Engineering 5551761167 Bonab Iran
| | - Elham Shokri
- University of Bonab Department of Chemical Engineering 5551761167 Bonab Iran
| |
Collapse
|
9
|
Gholami S, Llacuna JL, Vatanpour V, Dehqan A, Paziresh S, Cortina JL. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment. CHEMOSPHERE 2022; 294:133699. [PMID: 35090853 DOI: 10.1016/j.chemosphere.2022.133699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Here, novel hydroxyl and carboxyl functionalized multiwalled carbon nanotubes (AHF-MWCNT and ACF-MWCNT) were successfully synthesized and introduced for modification and antifouling improvement of the PVDF membrane. The blending effect of AHF-MWCNT and ACF-MWCNT on the morphology and surface properties of the PVDF membrane was explored by SEM, AFM, water contact angle, and zeta potential analysis. The results indicated that the membrane surface has become more hydrophilic, smoother as well more negative. In addition, the overall porosity and mean pore radius are increased by MWCNTs embedding. The filtration performance, antifouling and dye separation of the nanocomposite membranes were improved by adding any amounts of AHF-MWCNT and ACF-MWCNT in the PVDF membrane matrix. The carboxylic modification presented better performance than the hydroxyl functionalization. The 0.1 wt% ACF-MWCNT blended membrane presented an optimum performance with 46 L m-2 h-1 bar-1 permeability, 93% FRR, and 97.3% dye rejection. Consequently, embedding functionalized MWCNT in the PVDF membrane matrix was led to improvement of membrane characteristics and enhancement of pure water flux, antifouling feature, and dye separation. So, the functionalized MWCNT could be a promising additive for the PVDF membrane modification.
Collapse
Affiliation(s)
- Sina Gholami
- University of Barcelona, Faculty of Chemistry, Department of Chemical Engineering and Analytical Chemistry, Martí i Franquès Street 1, 6th Floor, 08028, Barcelona, Spain; OdirLab Co, Carrer de Loreto, 44, 08029, Barcelona, Spain.
| | - Joan Llorens Llacuna
- University of Barcelona, Faculty of Chemistry, Department of Chemical Engineering and Analytical Chemistry, Martí i Franquès Street 1, 6th Floor, 08028, Barcelona, Spain
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department and Barcelona Research Center for Multiscale Science and Engineering, UPC-BarcelonaTECH, C/Eduard Maristany, 10-14 Campus Diagonal-Besòs, 08930, Barcelona, Spain
| |
Collapse
|
10
|
Ma Y, Chen X, Wang S, Dong H, Zhai X, Shi X, Wang J, Ma R, Zhang W. Significantly enhanced antifouling and separation capabilities of PVDF membrane by synergy of semi-interpenetrating polymer and TiO2 gel nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
|
12
|
Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152228. [PMID: 34890675 DOI: 10.1016/j.scitotenv.2021.152228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | | | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117-13137, Iran
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Science, Tehran 14117-13137, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amin Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, MS 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
13
|
Khoerunnisa F, Nurhayati M, Annisa NAA, Fatimah S, Nashrah N, Hendrawan H, Ko YG, Ng EP, Opaprakasit P. Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes. MEMBRANES 2022; 12:268. [PMID: 35323744 PMCID: PMC8952018 DOI: 10.3390/membranes12030268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Abstract
The effects of benzalkonium chloride (BKC) contents on the structure, properties, and ultrafiltration performance of chitosan-based nanocomposite membranes containing poly(ethylene glycol) and multi-walled carbon nanotube (chitosan/BKC/PEG/CNT) were examined. The membranes were prepared by a mixing solution method and phase inversion before being characterized with microscopic techniques, tensile tests, thermogravimetric analysis, water contact angle, and porosity measurements. The performance of the nanocomposite membranes in regard to permeability (flux) and permselectivity (rejection) was examined. The results show that the incorporation of BKC produced nanocomposite membranes with smaller pore structures and improved physico-chemical properties, such as an increase in porosity and surface roughness (Ra = 45.15 to 145.35 nm and Rq = 53.69 to 167.44 nm), an enhancement in the elongation at break from 45 to 109%, and an enhancement in the mechanical strength from 31.2 to 45.8 MPa. In contrast, a decrease in the membrane hydrophilicity (water contact angle increased from 56.3 to 82.8°) and a decrease in the average substructure pore size from 32.64 to 10.08 nm were observed. The membrane rejection performances toward Bovine Serum Albumin (BSA) increased with the BKC composition in both dead-end and cross-flow filtration processes. The chitosan/BKC/PEG/CNT nanocomposite membranes have great potential in wastewater treatments for minimizing biofouling without reducing the water purification performance.
Collapse
Affiliation(s)
- Fitri Khoerunnisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Mita Nurhayati
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Noor Azmi Aulia Annisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Siti Fatimah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Nisa Nashrah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Hendrawan Hendrawan
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Young-Gun Ko
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia;
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang 12121, Thailand
| |
Collapse
|
14
|
Nascimben Santos E, Fazekas Á, Hodúr C, László Z, Beszédes S, Scheres Firak D, Gyulavári T, Hernádi K, Arthanareeswaran G, Veréb G. Statistical Analysis of Synthesis Parameters to Fabricate PVDF/PVP/TiO 2 Membranes via Phase-Inversion with Enhanced Filtration Performance and Photocatalytic Properties. Polymers (Basel) 2021; 14:polym14010113. [PMID: 35012135 PMCID: PMC8747740 DOI: 10.3390/polym14010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10-5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.
Collapse
Affiliation(s)
- Erika Nascimben Santos
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Ákos Fazekas
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Sándor Beszédes
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Daniele Scheres Firak
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Szeged, Dóm Square 7, HU-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
| | - Klára Hernádi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, HU-3515 Miskolc, Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India;
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Correspondence:
| |
Collapse
|
15
|
Johari NA, Yusof N, Lau WJ, Abdullah N, Salleh WNW, Jaafar J, Aziz F, Ismail AF. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Mixed matrix membranes for rubidium-dependent recognition and separation: A synergistic recombination design based on electrostatic interactions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|