1
|
Liu L, Yang D, Bai Y, Li X, Tan F, Ma J, Wang Y. Construction of biodegradable superhydrophilic/underwater superoleophobic materials with CNF (cellulose nanofiber) fence-like attached on the surface for efficient oil/water emulsion separation. Int J Biol Macromol 2024; 269:132175. [PMID: 38729497 DOI: 10.1016/j.ijbiomac.2024.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.
Collapse
Affiliation(s)
- Lei Liu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Bai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Kwon YB, Cho S, Min DH, Kim YK. Bio-inspired interfacial chemistry for the fabrication of a robust and functional graphene oxide composite film. RSC Adv 2024; 14:7676-7683. [PMID: 38444977 PMCID: PMC10913078 DOI: 10.1039/d3ra08932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
A strong and functional artificial nacre film is developed by using polyethyleneimine-functionalized GO (PEI-GO) and pyrogallol (PG) inspired by insect exoskeleton sclerotization. PEI-GO is macroscopically assembled into the laminated films and then reacted with PG under the optimized condition for their efficient cross-linking through Schiff-base reactions. The internal structure and physicochemical properties of PG-treated PEI-GO (PG@PEI-GO) films are systematically explored with various analytical tools. The optimized PG@PEI-GO films exhibit excellent tensile strength, modulus, and toughness of 216.0 ± 12.9 MPa, 17.0 ± 1.1 GPa, and 2192 ± 538.5 kJ m-3 which are 2.7, 2.8, and 2.3-fold higher than those of GO films, respectively. Furthermore, silver nanoparticles (AgNPs) are densely immobilized on the PG@PEI-GO films harnessing their abundant amine groups, and the AgNPs immobilized PG@PEI-GO films exhibit a high catalytic activity in the conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with maintaining structural integrity. Based on the results, we demonstrate that the rational design of interfaces, inspired by natural materials, is an efficient approach to achieving strong and functional GO laminated composite films.
Collapse
Affiliation(s)
- Yoo-Bin Kwon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Seongwon Cho
- Department of Chemistry, Dongguk University 30 Pildong-ro, Jung-gu Seoul 04620 Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University 30 Pildong-ro, Jung-gu Seoul 04620 Republic of Korea
| |
Collapse
|
3
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Tong Y, Miao C, Ding W, Hammond Quarcoo F, Xiao X, Ji H, Li W, Ju X. Rapid Construction of Caffeic Acid/ p-Phenylenediamine Antifouling Hydrophilic Coating on a PVDF Membrane for Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13197-13211. [PMID: 37676039 DOI: 10.1021/acs.langmuir.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The current methods of constructing modification strategies for hydrophilic membranes are time-consuming, complex in operation, and poor in universality, which limit their application on membranes. In this work, inspired by the adhesion properties and versatility of caffeic acid (CA) and p-phenylenediamine (PPDA), a simple, rapid, and universal method was designed for the separation of oil-in-water emulsion by preparing a stable hydrophilic coating separation membrane. The preparation time of the membrane was shortened to 40 min. The developed PVDF-PCA/PPDA membrane showed superhydrophilic and underwater superoleophobic properties. When applied to petroleum ether-in-water emulsion, isooctane-in-water emulsion, and dodecane-in-water emulsion separation, the oil rejection was more than 99.0%. In the circulating separation of 10 g/L soybean oil-in-water emulsion, the oil rejection was more than 99.3%, and the highest flux was 1036 L·m-2·h-1. The prepared PVDF-PCA/PPDA membrane performed well in the separation test of oily wastewater. The proposed strategy is simple and rapid; it may become a universal method for preparing membranes with super strong antifouling properties against viscous oil and accelerate the research progress of membrane separation of oil-in-water emulsions.
Collapse
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Changing Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fiona Hammond Quarcoo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongjun Ji
- NJTU Membrane Application Institute Company Limited, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohui Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Wang Z, Cao J, Zhang F, Zhang X, Tan X. Combining phthalimide innate of a positive-charge nanofiltration membrane for high selectivity and rejection for bivalent cations. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2944-2955. [PMID: 37318934 PMCID: wst_2023_178 DOI: 10.2166/wst.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A positively charged nanofiltration (NF) membrane is known to have exceptional separation performance for bivalent cations in aqueous solutions. In this study, a new NF activity layer was created using interfacial polymerization (IP) on a polysulfone (PSF) ultrafiltration substrate membrane. The aqueous phase combines the two monomers of polyethyleneimine (PEI) and phthalimide, while successfully producing a highly efficient and accurate NF membrane. The conditions of the NF membrane were studied and further optimized. The aqueous phase crosslinking process enhances the polymer interaction, resulting in an excellent pure water flux of 7.09 L·m-2·h-1·bar-1 under a pressure of 0.4 MPa. Additionally, the NF membrane shows excellent selectivity toward inorganic salts, with a rejection order of MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl. Under optimal conditions, the membrane was able to reject up to 94.33% of 1,000 mg/L of MgCl2 solution at an ambient temperature. Further to assess the antifouling properties of the membrane with bovine serum albumin (BSA), the flux recovery ratio (FRR) was calculated to be 81.64% after 6 h of filtration. This paper presents an efficient and straightforward approach to customize a positively charged NF membrane. We achieve this by introducing phthalimide, which enhances the membrane's stability and rejection performance.
Collapse
Affiliation(s)
- Zhe Wang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Jiawei Cao
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Fan Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xinai Tan
- Dayu Environmental Protection Co., Ltd, Tianjin 301739, China
| |
Collapse
|
6
|
Duan B, Mo H, Tan B, Xu M, Lu X, Liu N, Wang B. In situ coating of energetic crystals: A compact core-shell structure with highly reduced sensitivity. FIREPHYSCHEM 2023. [DOI: 10.1016/j.fpc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
|
7
|
Hydrophilic modification of
PVDF
membranes for oily water separation with enhanced anti‐fouling performance. J Appl Polym Sci 2023. [DOI: 10.1002/app.53738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
One-step rapid co-deposition of oxidant induced mussel-polyphenol coating on PVDF substrate for separating oily water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Zhou J, Xia L, Fang Q, Wang L, Qi C, Zhang G, Tan Z, Ren B, Yuan B. Bridge-graphene connecting polymer composite with a distinctive segregated structure for simultaneously improving electromagnetic interference shielding and flame-retardant properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Hammond Quarcoo F, Shi L, Tong Y, Zhang Y, Miao C, Li W. Rapid Approach to Synthesizing a Tannic Acid (TA)-3-Aminopropyltrietoxysilane (APTES) Coating for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13898-13909. [PMID: 36322411 DOI: 10.1021/acs.langmuir.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant polyphenol-inspired surface modification of membranes is helpful for oil-water separation. However, the preparation of this coating is time-consuming. Herein, we introduce a rapid synthesis of the TA-APTES coating by the addition of sodium periodate (SP). The surface chemical composition and morphology of the resultant TA-APTES hybrid coatings were characterized using SEM, ATR-FTIR, and XPS. The hydrophilicity and membrane performance were investigated by the water contact angle, pure water permeability, and oil rejection for an isooctane-in-water emulsion. The experimental findings revealed that the optimal microfiltration (MF) membrane (MF-TA-APTES-SP-0.05) displayed exceptional hydrophilicity and water permeability (9558 L m-2 h-1 bar-1). The membrane realized highly efficient separation with a permeability (4117 L m-2 h-1 bar-1) and rejection of oils (>99%). Furthermore, it possessed outstanding chemical stability and maintained underwater superoleophobicity even after exposure to harsh conditions. This simple and rapid strategy of developing hydrophilic coatings as a modifier for the poly(vinylidene fluoride) membranes has potential applications in oil-water separation and wastewater treatment.
Collapse
Affiliation(s)
- Fiona Hammond Quarcoo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Yaping Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Changqing Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
11
|
Liang Q, Jiang B, Yang N, Zhang L, Sun Y, Zhang L. Superhydrophilic Modification of Polyvinylidene Fluoride Membrane via a Highly Compatible Covalent Organic Framework-COOH/Dopamine-Integrated Hierarchical Assembly Strategy for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45880-45892. [PMID: 36165501 DOI: 10.1021/acsami.2c13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of membranes with additives such as functionalized nanomaterials can be recognized as an effective method to enhance membrane performance. However, to obtain an efficient nanoparticle-decorated membrane, the compatibility of nanomaterials remains a challenge. Hydrophilic carboxylated covalent organic frameworks (COF-COOH) might be expected to avoid the drawbacks of aggregation and easy shedding of inorganic materials caused by the poor interfacial compatibility. Herein, a highly compatible dip-coating strategy was proposed for the superhydrophilic modification of polyvinylidene fluoride membrane via COF-COOH integrated with dopamine. COF-COOH together with polydopamine nanoparticles were uniformly and stably attached to the membrane due to the high interfacial compatibility, constructing a coating with rough hierarchical nanostructures and abundant carboxyl groups. The synergistic effects of multiscale structures and chemical groups endow the membrane with superhydrophilicity and underwater superoleophobicity, the water contact angle decreased from 123 to 15°, and the underwater oil contact angle increased from 132 to 162°. Accordingly, the modified membrane exhibits an ultrahigh oil rejection ratio (>98%), a high flux (the maximum reaches 1843.48 L m-2 h-1 bar-1), attractive antifouling ability, and impregnable stability. This work would provide a momentous reference for the application of COF-COOH in practical oily wastewater treatment.
Collapse
Affiliation(s)
- Qi Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Longfei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
12
|
Cheng L, Zhou Z, Li L, Xiao P, Ma Y, Liu F, Li J. PVDF/MOFs mixed matrix ultrafiltration membrane for efficient water treatment. Front Chem 2022; 10:985750. [PMID: 36034649 PMCID: PMC9411721 DOI: 10.3389/fchem.2022.985750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Polyvinylidene fluoride (PVDF), with excellent mechanical strength, thermal stability and chemical corrosion resistance, has become an excellent material for separation membranes fabrication. However, the high hydrophobicity of PVDF membrane surface normally leads a decreased water permeability and serious membrane pollution, which ultimately result in low operational efficiency, short lifespan of membrane, high operation cost and other problems. Metal-organic frameworks (MOFs), have been widely applied for membrane modification due to its large specific surface area, large porosity and adjustable pore size. Currently, numerous MOFs have been synthesized and used to adjust the membrane separation properties. In this study, MIL-53(Al) were blended with PVDF casting solution to prepare ultrafiltration (UF) membrane through a phase separation technique. The optimal separation performance was achieved by varying the concentration of MIL-53(Al). The surface properties and microstructures of the as-prepared membranes with different MIL-53(Al) loading revealed that the incorporation of MIL-53(Al) enhanced the membrane hydrophilicity and increased the porosity and average pore size of the membrane. The optimal membrane decorated with 5 wt% MIL-53(Al) possessed a pure water permeability up to 43.60 L m-2 h-1 bar-1, while maintaining higher rejections towards BSA (82.09%). Meanwhile, the prepared MIL-53(Al)/LiCl@PVDF membranes exhibited an excellent antifouling performance.
Collapse
Affiliation(s)
- Lilantian Cheng
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zixun Zhou
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Lei Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Yun Ma
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang J, Duan H, Wang M, Shentu Q, Xu C, Yang Y, Lv W, Yao Y. Construction of durable superhydrophilic activated carbon fibers based material for highly-efficient oil/water separation and aqueous contaminants degradation. ENVIRONMENTAL RESEARCH 2022; 207:112212. [PMID: 34662578 DOI: 10.1016/j.envres.2021.112212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Developing filtering materials with high permeation flux and contaminant removal rate is of great importance for oily wastewater remediation. Herein, a robust three-dimensional (3D) activated carbon fibers (ACFs) based composite with uniformly grown layered double hydroxide (LDH) on the surface was successfully constructed through a feasible hydrothermal strategy. The LDH with a high surface energy and vertically aligned structure could provide superhydrophilicity to ACFs. Systematic investigation confirmed that the 3D material could overcome the size mismatch between the ACFs macropores and tiny emulsified droplets through the combination of size-sieving filtration on the surface and oil droplet coalescence in the fiber network. This process efficiently separated the intractable surfactant-stabilized oil-in-water emulsions with high permeation flux (up to 4.16 × 106 L m-2 h-1 bar-1). Notably, the LDH also had well-dispersed catalytic active sites, which could initiate advanced oxidation processes (AOPs) to efficiently eliminate various types of water-soluble organic pollutants (e.g., pharmaceuticals, phenolic compounds and organic dyes). The resulting modified ACFs exhibited exceptional removal rates for both oil and organic pollutants in the complex sewage during the continuous filtration process. These versatile abilities integrated with the facile preparation method reported herein provide outstanding prospects for the large-scale treatment of oily wastewater.
Collapse
Affiliation(s)
- Jinhui Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Huiyu Duan
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Mengxue Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Qikai Shentu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chaoming Xu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yuchen Yang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
14
|
Tong Y, Chen J, Ding W, Shi L, Li W. Fabrication of a Superhydrophilic and Underwater Superoleophobic Membrane via One-Step Strategy for High-Efficiency Semicoking Wastewater Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinbo Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Leng X, Wang M, Hou Y. Fabrication of a high-performance polyurethane pervaporation membrane via surface grafting of silane coupling agent. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Kharouf N, Sauro S, Hardan L, Fawzi A, Suhanda IE, Zghal J, Addiego F, Affolter-Zbaraszczuk C, Arntz Y, Ball V, Meyer F, Haikel Y, Mancino D. Impacts of Resveratrol and Pyrogallol on Physicochemical, Mechanical and Biological Properties of Epoxy-Resin Sealers. Bioengineering (Basel) 2022; 9:bioengineering9030085. [PMID: 35324774 PMCID: PMC8945518 DOI: 10.3390/bioengineering9030085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/04/2023] Open
Abstract
This study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated. The results were statistically analyzed using ANOVA and multiple comparison tests (α = 0.05). The incorporation of the tested polyphenols into the epoxy resin enhanced its mechanical properties. PY demonstrated much better antioxidant and antibacterial activities than RS, which were associated with a higher release of PY. In contrast, PY showed a higher cytotoxicity than OB and OB doped with RS. OB containing PY presented a rougher surface and higher water absorption than OB doped with RS. Both tested polyphenols caused no notable changes to the overall porosity of OB. Resveratrol and pyrogallol may not only influence the morphology and mechanical properties of epoxy-resin sealers, but could also enhance antioxidant activity and antibacterial effects against Enterococcus faecalis. Most epoxy-resin sealers currently available in the market can be considered as “passive” materials. Thus, doping their composition with specific polyphenols may be a suitable strategy to confer some antibacterial properties, antioxidant potential, along with improvement of some mechanical properties.
Collapse
Affiliation(s)
- Naji Kharouf
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
- Correspondence: ; Tel.: +33-(0)66-752-2841
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain;
- Department of Therapeutic Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Louis Hardan
- Department of Restorative Dentistry, Saint-Joseph University, Beirut 11072180, Lebanon;
| | - Amr Fawzi
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia;
| | - Ilona Eveline Suhanda
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
| | - Jihed Zghal
- ICube Laboratory, UMR 7357 CNRS, Mechanics Department, University of Strasbourg, 67000 Strasbourg, France;
- Laboratoire Energetique Mecanique Electromagnetisme, University of Paris Ouest, 50 rue de Sèvres, 92410 Ville d’Avray, France
| | - Frédéric Addiego
- Luxembourg Institute of Science and Technology (LIST), Department Materials Research and Technology (MRT), ZAE Robert Steichen, 5 rue Bommel, L-4940 Hautcharage, Luxembourg;
| | - Christine Affolter-Zbaraszczuk
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
| | - Youri Arntz
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
| | - Vincent Ball
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
| | - Florent Meyer
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Université de Strasbourg, 67000 Strasbourg, France; (I.E.S.); (Y.A.); (V.B.); (F.M.); (Y.H.); (D.M.)
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR_S 1121 Biomaterials and Bioengineering, 67085 Strasbourg, France;
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
18
|
Ding W, Tong Y, Shi L, Li W. Superhydrophilic PVDF Membrane Modified by Norepinephrine/Acrylic Acid via Self-Assembly for Efficient Separation of an Oil-in-Water Emulsion. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
19
|
Xu Q, Ji X, Tian J, Jin X, Wu L. Inner Surface Hydrophilic Modification of PVDF Membrane with Tea Polyphenols/Silica Composite Coating. Polymers (Basel) 2021; 13:polym13234186. [PMID: 34883689 PMCID: PMC8659430 DOI: 10.3390/polym13234186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of Polyvinylidene fluoride (PVDF) membranes is constrained in wastewater treatment because of their hydrophobic nature. Therefore, a large number of researchers have been working on the hydrophilic modification of their surfaces. In this work, a superhydrophilic tea polyphenols/silica composite coating was developed by a one-step process. The composite coating can achieve not only superhydrophilic modification of the surface, but also the inner surface of the porous PVDF membrane, which endows the modified membrane with excellent water permeability. The modified membrane possesses ultrahigh water flux (15,353 L·m−2·h−1). Besides this, the modified membrane can realize a highly efficient separation of oil/water emulsions (above 96%).
Collapse
Affiliation(s)
- Qiang Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaoli Ji
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Jiaying Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaogang Jin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Correspondence: (X.J.); (L.W.)
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Xiangxing Road 6, Zhongshan 528400, China
- Correspondence: (X.J.); (L.W.)
| |
Collapse
|
20
|
Zhu J, Shen G, Jiang W, Shen X. The preparation and properties study of novel hydrophobic/superhdrophobic coatings based on fluorine modified perhydropolysilazane. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1974871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jianxin Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
- Zhangjiagang Institute of Nanjing Tech University, Suzhou, China
| | - Guoping Shen
- Zhangjiagang Institute of Nanjing Tech University, Suzhou, China
- Shantou Technician College, Shantou, China
| | - Weizhong Jiang
- Guangzhou Sysmyk New Material Technology Co., Ltd, Guangzhou, China
| | - Xuan Shen
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
- Zhangjiagang Institute of Nanjing Tech University, Suzhou, China
| |
Collapse
|
21
|
Maruthapandi M, Saravanan A, Manoj S, Luong JHT, Gedanken A. Facile ultrasonic preparation of a polypyrrole membrane as an absorbent for efficient oil-water separation and as an antimicrobial agent. ULTRASONICS SONOCHEMISTRY 2021; 78:105746. [PMID: 34507263 PMCID: PMC8429107 DOI: 10.1016/j.ultsonch.2021.105746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil-water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil from contaminated waters, comprising different microorganisms and living species. The novelty of this manuscript is described in a new system, the fabrication of PPY membranes with two important properties: biocidal and oil/water separation.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shanmugasundaram Manoj
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
22
|
The Art of Framework Construction: Core-Shell Structured Micro-Energetic Materials. Molecules 2021; 26:molecules26185650. [PMID: 34577119 PMCID: PMC8468727 DOI: 10.3390/molecules26185650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Weak interfacial interactions remain a bottleneck for composite materials due to their weakened performance and restricted applications. The development of core–shell engineering shed light on the preparation of compact and intact composites with improved interfacial interactions. This review addresses how core–shell engineering has been applied to energetic materials, with emphasis upon how micro-energetic materials, the most widely used particles in the military field, can be generated in a rational way. The preparation methods of core–shell structured explosives (CSEs) developed in the past few decades are summarized herein. Case studies on polymer-, explosive- and novel materials-based CSEs are presented in terms of their compositions and physical properties (e.g., thermal stability, mechanical properties and sensitivity). The mechanisms behind the dramatic and divergent properties of CSEs are also clarified. A glimpse of the future in this area is given to show the potential for CSEs and some suggestions regarding the future research directions are proposed.
Collapse
|