1
|
Yuan Y, Ye X, Jia Y, Wu Y, Zhang Y. CuFeS 2/GAC particle combined with electrochemical activation of persulfates for efficient degradation of carbamazepine. CHEMOSPHERE 2024; 364:143138. [PMID: 39168379 DOI: 10.1016/j.chemosphere.2024.143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Electrochemically activated persulfate is a potential advanced oxidation process due to its advantages of environmental friendliness, high efficiency, and convenient operation. An Fe-Cu-S granular activated carbon (CuFeS2/GAC, abbreviated as FCSG) particles electrode was developed and applied to degrade carbamazepine (CBZ) combined with electrochemical activation of persulfate (E-PDS-FCSG) in this work. Compared to two-dimensional electrochemical process (E-PDS), the three-dimensional (3D) E-PDS-FCSG process exhibited higher removal efficiency of CBZ and lower energy consumption. The removal efficiency of CBZ and power consumption increased by 96% and reduced by 67%, respectively. Over 98% of CBZ removal rate was reached within 25 min. Apart from the same free radicals in two-dimensional electrochemical process, both Fe2+ and Cu+ on the surface of three-dimensional particle electrodes can directly activate PDS to produce SO4•-, and the existence of S2- strengthens the circulation of Fe3+/Fe2+ and Cu2+/Cu+. Furthermore, FCSG particle electrode can not only directly enhance the activation of PDS, but also accelerate the electron transfer, and then effectively promoting reactive species generation. LC-MS analysis showed that the main degradation pathways of CBZ involved decarbonylation, deamination, dealkylation, ring opening and mineralization. Moreover, after five cycle experiments, over 80% of CBZ removal rate could be achieved, demonstrating that the E-PDS-FCSG system had excellent electrocatalytic performance and good stability. These findings indicate that FCSG is a promising material and could be used as a particle electrode for removing organic pollutants from water.
Collapse
Affiliation(s)
- YuRui Yuan
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Xincheng Ye
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
2
|
Piao M, Du H, Teng H. An overview of the recent advances and future prospects of three-dimensional particle electrode systems for treating wastewater. RSC Adv 2024; 14:27712-27732. [PMID: 39224647 PMCID: PMC11367087 DOI: 10.1039/d4ra04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional (3D) electrochemical technology is considered a very effective industrial wastewater treatment method for its high treatment efficiency, high current efficiency, low energy consumption, and, especially, ability to completely mineralize nonbiodegradable organic contaminants. Particle electrodes, which are the fundamental components of 3D electrochemical technology, have multiple functions in the electrochemical reaction process. Various types of particle electrodes have been created and applied for wastewater treatment. Herein, we present a thorough analysis of the research and development of particle electrodes used for electrocatalyzing pollutants. Initially, reactor designs, factors affecting the removal efficiency of pollutants and degradation mechanisms are introduced. In particular, a detailed investigation is conducted into the selection of particle electrode materials and the roles they play in the 3D electrochemical treatment of wastewater. Subsequently, the degradation efficiency and energy consumption associated with 3D electrochemical technology for different pollutants are investigated. Finally, the directions and outlook for further studies on particle electrodes are discussed. We believe that this review will offer a useful perspective on the development and application of particle electrodes for wastewater purification.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
- College of Engineering, Jilin Normal University Siping China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| |
Collapse
|
3
|
Zhang X, Zhang K, Shi Y, Xiang H, Yang W, Zhao F. Surface engineering of multifunctional nanostructured adsorbents for enhanced wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170951. [PMID: 38367722 DOI: 10.1016/j.scitotenv.2024.170951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Kavian N, Asadollahfardi G, Hasanbeigi A, Delnavaz M, Samadi A. Degradation of phenol in wastewater through an integrated dielectric barrier discharge and Fenton/photo-Fenton process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115937. [PMID: 38211511 DOI: 10.1016/j.ecoenv.2024.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
In this study, a non-thermal dielectric barrier discharge-Fenton/photo-Fenton process was investigated to remove phenol from synthetic wastewater. The changes and optimal values of influencing parameters, including treatment time, iron concentration, phenol initial concentration, and pH, were investigated based on the central composite design (CCD) method. The presence of 0.4 mmol/L of iron in the phenol solution with a concentration of 100 mg/L increased the removal efficiency and pseudo-first-order kinetic constant compared to dielectric barrier discharge cold plasma (DBDP) alone from 0.0824 min-1 and 56.8% to 0.2078 min-1 and 86.83%, respectively. The phenol removal efficiency was reduced to 52.9%, 45.6% and 31.8% by adding tert-butyl alcohol (TBA) with concentrations of 50, 100, and 200 mg/l, respectively. After 12 min of DBDP irradiation, the pH of the sample decreased from 5.95 to 3.42, and the temperature of the sample increased from 19.3 to 37.2 degrees Celsius. The chemical oxygen demand (COD) of the sample containing 100 mg/L phenol under plasma-Fenton/photo-Fenton irradiation decreased from 241 mg/L to 161 mg/L. Phenol removal efficiency after 10 min of treatment in the presence of 0.4 mmol/L of iron with the reactor volume of 50 mL was 87%, but the efficiency decreased to 76%, 47%, and 9% by increasing the volume to 100, 200, and 400 mL, respectively. Reducing the power led to a decrease in the removal efficiency from 56.8% for 100 W power to 10.8% for 40 W. The energy efficiency for 50% removal by DBDP and plasma-Fenton/photo-Fenton systems was 5.86×10-3 kWh/mg and 1.27×10-3 kWh/mg, respectively.
Collapse
Affiliation(s)
- Niusha Kavian
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| | - Gholamreza Asadollahfardi
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran.
| | - Ali Hasanbeigi
- Faculty of Physics, Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Delnavaz
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| | - Amirmohsen Samadi
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
5
|
Li X, Yu J, Li X, Song G, Ouyang Z, Wang R, Zhang Z, Xiao C, Chi R. Synergistic leaching process for ion-exchange ammonium from weathered crust elution deposited rare earth tailings with potassium magnesium compound eluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121513-121528. [PMID: 37955730 DOI: 10.1007/s11356-023-30879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
The ion-exchangeable ammonium (IE-A) that accounts for 60-90% of the total residual ammonium in rare earth tailings has great potential to pollute the surrounding environment, and much research has been done to seek an effective elution method. However, the current study mainly focused on the single salt solution, which made it hard to reach the desired elution efficiency. In this study, the efficient binary compound eluent was prepared, and the response surface experiments and dynamic elution were performed to optimize the elution condition and evaluate the practical application prospect. Batch experimental results showed that the best IE-A elution efficiency could be achieved at the K:Mg molar ratio of 8:2, the liquid-solid ratio of 26:1, and the concentration of 0.1 mol/L at the natural solution pH. Dynamic experimental results indicated that a higher concentration, flow rate, and elution temperature could all accelerate the elution process, and the highest elution efficiency could reach 99%. The fitting results by shrinking core models show that the apparent activation energy of IE-A was 4.24 kJ/mol in the temperature range of 288-328 K, and the reaction order was 0.16. XPS and FTIR revealed that IE-A was effectively eluted by a potassium and magnesium compound leaching agent via an ion-exchange reaction. Overall, the developed compound solution with potassium and magnesium is a candidate for an elution agent that could be used to remove residual ammonium in a closed field of rare earth ores.
Collapse
Affiliation(s)
- Xiaoju Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China.
| | - Xiaodi Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Guoping Song
- Bureau of Ecology and Environment of Xiaogan City, Yingcheng Branch, Wuhan, 430074, China
| | - Ze Ouyang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Rong Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Zhenyue Zhang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, No. 693 Xiongchu Avenue, Hongshan District, Wuhan, 430074, Hubei, People's Republic of China
| |
Collapse
|
6
|
Guo F, Lou Y, Yan Q, Xiong J, Luo J, Shen C, Vayenas DV. Insight into the Fe-Ni/biochar composite supported three-dimensional electro-Fenton removal of electronic industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116466. [PMID: 36327605 DOI: 10.1016/j.jenvman.2022.116466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
For the efficient removal of the bio-refractory organic pollutants in the electronic industry wastewater, the Ni-Fe (oxides) modified three-dimension (3D) particle electrode was applied in electro-Fenton system (3D/EF), where iron ions were released from anode and deposited onto algal biochar (ABC) to prepare composite catalyst during reaction process. Firstly, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were applied to confirm successful fabrication of the 3D particle electrode materials. Secondly, COD removal efficiency could reach about 80%, which was about 20% higher than that in 2D/EF system, under the optimized conditions as 2.0 g/L of Ni-ABC particle electrodes, initial pH of 3, 100 mL/min of aeration intensity and 20 mA/cm2 of applied current density. Thirdly, characterized using three-dimensional fluorescence spectroscopy and GC-MS analysis, it seemed that most of the macromolecular substances could be degraded, whereas mono-2-ethylhexyl phthalate (MEHP) was identified as the most abundant and representative compound. Finally, possible degradation pathway of MEHP in 3D/EF system was proposed including dealkylation, cleavage of C-O bond, and demethylation. Therefore, this study provides a new strategy in designing EF system employing bimetal doped biochar composite for an efficient elimination of organic pollutants within electronic industry wastewater.
Collapse
Affiliation(s)
- Fang Guo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yaoyin Lou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China.
| | - Jianglei Xiong
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Jiahao Luo
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Chikang Shen
- China Electronics System Engineering No. 2 Construction Co., Ltd, Wuxi, 214001, China
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece
| |
Collapse
|
7
|
Zheng R, Lin Q, Meng L, Zhang C, Zhao L, Fu M, Ren J. Flexible phosphorus-doped activated carbon fiber paper in-situ loading of CuO for degradation of phenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Meng X, Li K, Zhao Z, Li Y, Yang Q, Jiang B. A pH self-regulated three-dimensional electro-Fenton system with a bifunctional Fe-Cu-C particle electrode: High degradation performance, wide working pH and good anti-scaling ability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Electrochemical degradation of doxycycline in a three-dimensional vermiculite/peroxymonosulfate electrode system: Mechanism, kinetics, and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bu J, Deng Z, Liu H, Li T, Yang Y, Zhong S. Bimetallic modified halloysite particle electrode enhanced electrocatalytic oxidation for the degradation of sulfanilamide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114975. [PMID: 35390610 DOI: 10.1016/j.jenvman.2022.114975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The treatment of antibiotics wastewater by electrocatalytic oxidation has attracted much attention. In the paper, a novel halloysite bimetallic (HLS-Cu-Mn) particle electrode material was prepared and a bench-scale electrocatalytic reaction tank was designed. A three-dimensional electrocatalytic oxidation reactor composed of HLS-Cu-Mn and a bench-scale electrocatalytic reaction tank was used to degrade Sulfanilamide (SA) wastewater. Characterization of the synthesized material was conducted with Scanning electron microscopy (SEM), X-ray polycrystalline powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). The electron spin resonance spectroscopy test results confirmed that HLS-Cu-Mn produced a large number of •OH. The electrochemical workstation confirmed that HLS-Cu-Mn had strong electrocatalytic activity and repolarization ability. Under the optimum preparation conditions and degradation process parameters, the removal efficiency of SA and TOC was 99.84% and 88.95% respectively. The method also has good degradation efficiency for aniline, phenol, herbicides, antibiotics, and dyeing wastewater. It was found that 4 main intermediates appeared in the degradation process by Ultra-high performance liquid chromatography/triple tandem quadrupole mass spectrometry (LC-MS). In sum, it was believed that this work provides a new vision and idea for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
11
|
Hu X, Min X, Li X, Si M, Liu L, Zheng J, Yang W, Zhao F. Co-Co 3O 4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: Effects of nano-confinement and cobalt speciation. J Colloid Interface Sci 2022; 616:389-400. [PMID: 35228044 DOI: 10.1016/j.jcis.2022.02.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023]
Abstract
Capacitive deionization (CDI) has gained increasing attention as an environmentally friendly and energy-efficient technology for brackish water desalination. However, traditional CDI electrodes still suffer from low salt adsorption capacity and unsatisfactory reusability, which inhibit its application for long-term operations. Herein, we present a facile and effective approach to prepare Co and Co3O4 nanoparticles co-incorporating nitrogen-doped (N-doped) carbon nanotubes (Co-Co3O4/N-CNTs) via a pyrolysis route. The Co-Co3O4 nanoparticles were homogeneously in-situ encapsulated in the inner channels of the conductive CNTs to form a novel and efficient CDI electrode for the first time. The encapsulation of Co-Co3O4 nanoparticles in CNTs not only inhibits the Co leaching but also significantly enhances the desalination capacity. The morphology, structure, and capacitive desalination properties of the Co-Co3O4/N-CNTs were thoroughly characterized to illuminate the nano-confinement effects and the key roles of the interaction between cobalt species in the CDI performance. The co-existing metallic cobalt and cobalt oxides act as the roles of effective active sites in the CDI performance. As a consequence, the optimum Co-Co3O4/N-CNTs electrode displays an outstanding desalination capacity of 66.91 mg NaCl g-1 at 1.4 V. This work provides insights for understanding the nano-confinement effects and the key roles of the interaction between cobalt species on the CDI performance.
Collapse
Affiliation(s)
- Xiaoxian Hu
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Xiaobo Min
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Xinyu Li
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Mengying Si
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Lu Liu
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Junhao Zheng
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Weichun Yang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
| | - Feiping Zhao
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
12
|
Abstract
Ni-ethylenediaminetetraacetic acid (Ni-EDTA) poses serious threats to the ecological environment and human health, due to its acute toxicity and low biodegradability. The decomplexation efficiency of Ni-EDTA through the conventional Fenton process has been constrained to pH; thus, other appropriate approaches are required to destroy the stable chelate structure at a neutral pH. In this study, the effect of operating parameters such as the pH, Fe2+ concentration, particle electrode dosage, current density, and coexisting ions was studied. The results revealed that the 3D-EF system owned advantages for the removal of Ni-EDTA in the broadening of the pH application window. The Ni-EDTA removal efficiency in the 3D-EF system reached 84.89% after 120 min at a pH of 7. In addition, the presence of coexisting ions slightly affected the decomplexation efficiency of Ni-EDTA.
Collapse
|
13
|
Gao Q, Sun K, Cui Y, Wang S, Liu C, Liu B. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Liu W, Kang Q, Wang L, Wen L, Li Z. Facile synthesis of Z-scheme g-C3N4@MIL-100 (Fe) and the efficient photocatalytic degradation on doxycycline and disinfection by-products by coupling with persulfate: Mechanism and pathway. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
In-situ synthesis of highly dispersed Cu-CuxO nanoparticles on porous carbon for the enhanced persulfate activation for phenol degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119260] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cao N, Zhao X, Gao M, Li Z, Ding X, Li C, Liu K, Du X, Li W, Feng J, Ren Y, Wei T. Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|