1
|
Qiao Y, Xu S, Wu Y, Zhang L, Xie L. Dehydration of Organic Solvents from Ternary Mixtures Containing Toluene/Methanol/Water by Pervaporation. MEMBRANES 2024; 14:139. [PMID: 38921506 PMCID: PMC11205444 DOI: 10.3390/membranes14060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.
Collapse
Affiliation(s)
| | - Shichang Xu
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| | | | | | - Lixin Xie
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.Q.); (Y.W.); (L.Z.)
| |
Collapse
|
2
|
Yang T, Liang Y, Liu G, Wang Z, Tong Y, Li W. Glycine-Modified Co-MOF Pervaporation Membrane to Enhance Water Transporting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12035-12044. [PMID: 38814169 DOI: 10.1021/acs.langmuir.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cobalt-based metal-organic frameworks (Co-MOFs) with a two-dimensional layered morphology have received increasing attention for pervaporation due to their stability and hydrophilic properties. Using amino glycine (Gly) as a cross-linking agent, the Co-MOF ultrathin two-dimensional membrane doped with organic filler sodium alginate (SA) with the "brick-mixed-sand" structure was proposed. Polyacrylonitrile (PAN) was selected as the support layer of the hybrid membrane. The introduction of Gly efficiently solved the nanomaterial stacking problem and controllably adjusted the interlayer spacing between the nanosheets, which demonstrated good performance for ethanol dehydration. The results of this experimental research showed that the total flux of alcohol/water (9:1) separation by Gly-Co-MOF-SA/PAN hybrid membranes reached 1902 g m-2 h-1, which was 67% higher than that of the pure SA membranes. The "brick-mixed-sand" lamellar dense morphology of Gly-Co-MOF not only enhances membrane hydrophilicity but also provides effective channels for the rapid transport of water, which is expected to be used for the dehydration of organic solvents.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guijuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziye Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- NJTU Membrane Application Institute Co., Ltd, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Liu B, Zhang S, Li M, Wang Y, Mei D. Metal-Organic Framework/Polyvinyl Alcohol Composite Films for Multiple Applications Prepared by Different Methods. MEMBRANES 2023; 13:755. [PMID: 37755178 PMCID: PMC10537366 DOI: 10.3390/membranes13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.
Collapse
Affiliation(s)
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| | | | | | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| |
Collapse
|
5
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
6
|
Rafi J, Rajan A, Neppolian B. Enhanced electrocatalytic performance of Aluminium Metal-organic framework towards the detection of broad-spectrum chloramphenicol antibiotic. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Fang M, Drobek M, Cot D, Montoro C, Semsarilar M. A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles. MEMBRANES 2023; 13:65. [PMID: 36676872 PMCID: PMC9864354 DOI: 10.3390/membranes13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Metal Organic Frameworks (MOFs) present high surface areas, various pore topology as well as good stabilities. The functionalities and porosity can be tuned by using different linkers with various functional groups and a wide range of linker lengths. These properties make them good candidates in membrane separation applications. In this work, we propose a simple UiO-66 MOF-based membrane fabrication method following two steps. First, the α-alumina tubular membrane support was dip-coated with MOF-polymer hybrid nanoparticles (NPs). These NPs were prepared via one-pot synthesis by adding poly (methacrylic acid)-b-poly (methyl methacrylate) (PMAA-b-PMMA) NPs to the classical acetic acid-modulated UiO-66 or UiO-66-NH2 synthesis formulation. Second, secondary membrane growth was applied to give rise to a continuous and homogeneous crystalline MOF membrane layer. The gas permeances (He, N2, CO2 and SF6) tests confirmed high membrane permeability with no macro-defects. The as-prepared membranes that were used for dye separation (Rhodamine B) showed relatively good separation capacity.
Collapse
Affiliation(s)
- Mingyuan Fang
- Institut Européen des Membranes, IEM UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Martin Drobek
- Institut Européen des Membranes, IEM UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Didier Cot
- Institut Européen des Membranes, IEM UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Carmen Montoro
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
8
|
Fabrication of polydimethylsiloxane mixed matrix membranes for recovery of ethylene glycol butyl ether from water by pervaporation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Xu X, Van Eygen G, Molina-Fernández C, Nikolaeva D, Depasse Y, Chergaoui S, Hartanto Y, Van der Bruggen B, Coutinho JA, Buekenhoudt A, Luis P. Evaluation of task-specific ionic liquids applied in pervaporation membranes: Experimental and COSMO-RS studies. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Lu X, Huang J, Pinelo M, Chen G, Wan Y, Luo J. Modelling and optimization of pervaporation membrane modules: A critical review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
CAU-101-H as efficient water sorbent for solar steam generation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Xu X, Hartanto Y, Zheng J, Luis P. Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. MEMBRANES 2022; 12:1205. [PMID: 36557112 PMCID: PMC9785445 DOI: 10.3390/membranes12121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), a sub-group of porous crystalline materials, have been receiving increasing attention for gas separation and pervaporation because of their high thermal and chemical stability, narrow window sizes, as well as tuneable structural, physical, and chemical properties. In this review, we comprehensively discuss developments in the formation of continuous MOF membranes for gas separation and pervaporation. Additionally, the application performance of continuous MOF membranes in gas separation and pervaporation are analysed. Lastly, some perspectives for the future application of continuous MOF membranes for gas separation and pervaporation are given.
Collapse
Affiliation(s)
- Xiao Xu
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing 401331, China
| | - Patricia Luis
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Mali M, Walekar L, Mhamane D, Mali G, Pawar S, Patil V, Parbat H, Gokavi G. Fabrication of ternary polyvinyl alcohol/tetraethyl orthosilicate/silicotungstic acid hybrid membranes for pervaporation dehydration of alcohol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kuzminova A, Dmitrenko M, Zolotarev A, Myznikov D, Selyutin A, Su R, Penkova A. Pervaporation Polyvinyl Alcohol Membranes Modified with Zr-Based Metal Organic Frameworks for Isopropanol Dehydration. MEMBRANES 2022; 12:908. [PMID: 36295667 PMCID: PMC9611522 DOI: 10.3390/membranes12100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are perceptive modifiers for the creation of mixed matrix membranes to improve the pervaporation performance of polymeric membranes. In this study, novel membranes based on polyvinyl alcohol (PVA) modified with Zr-MOFs (MIL-140A, MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) particles were developed for enhanced pervaporation dehydration of isopropanol. Two membrane types (substrateless-freestanding; and formed on polyacrylonitrile support-composite) were prepared. The additional cross-linking of membranes with glutaraldehyde was carried out to circumvent membrane stability in pervaporation dehydration of diluted solutions. The synthesized Zr-MOFs were characterized by scanning electron microscopy, X-ray powder diffraction analysis, and specific surface area measurement. The structure and physicochemical properties of the developed membranes were investigated by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, thermogravimetric analysis, swelling experiments, and contact angle measurements. The PVA and PVA/Zr-MOFs membranes were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the composite cross-linked PVA membrane with 10 wt% MIL-140A had optimal pervaporation performance in the isopropanol dehydration (12-100 wt% water) at 22 °C: 0.15-1.33 kg/(m2h) permeation flux, 99.9 wt% water in the permeate, and is promising for the use in the industrial dehydration of alcohols.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Danila Myznikov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
16
|
Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
High-performance ZIF-8/biopolymer chitosan mixed-matrix pervaporation membrane for methanol/dimethyl carbonate separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Golubev GS, Volkov VV, Borisov IL, Volkov AV. High free volume polymers for pervaporation. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Graphene oxide modified CuBTC incorporated PVDF membranes for saltwater desalination via pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
A Methyl-Modified Silica Layer Supported on Porous Ceramic Membranes for the Enhanced Separation of Methyl Tert-Butyl Ether from Aqueous Solution. MEMBRANES 2022; 12:membranes12050452. [PMID: 35629778 PMCID: PMC9144733 DOI: 10.3390/membranes12050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
As a kind of volatile organic compound (VOC), methyl tert-butyl ether (MTBE) is hazardous to human health and destructive to the environment if not handled properly. MTBE should be removed before the release of wastewater. The present work supported the methyl-modified silica layer (MSL) on porous α-Al2O3 ceramic membranes with methyltrimethoxysilane (MTMS) as a precursor and pre-synthesized mesoporous silica microspheres as dopants by the sol-gel reaction and dip-coating method. MTMS is an environmentally friendly agent compared to fluorinated alkylsilane. The MSL-supported Al2O3 ceramic membranes were used for MTBE/water separation by pervaporation. The NMR spectra revealed that MTMS evolves gradually from an oligomer to a highly cross-linked methyl-modified silica species. Methyl-modified silica species and pre-synthesized mesoporous silica microspheres combine into hydrophobic mesoporous MSL. MSL makes the α-Al2O3 ceramic membranes transfer from amphiphilic to hydrophobic and oleophilic. The MSL-supported α-Al2O3 ceramic membranes (MSL-10) exhibit an MTBE/water separation factor of 27.1 and a total flux of 0.448 kg m−2 h−1, which are considerably higher than those of previously reported membranes that are modified by other alkylsilanes via the post-grafting method. The mesopores within the MSL provide a pathway for the transport of MTBE molecules across the membranes. The presence of methyl groups on the external and inner surface is responsible for the favorable separation performance and the outstanding long-term stability of the MSL-supported porous α-Al2O3 ceramic membranes.
Collapse
|
21
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
22
|
Su X, Zheng T, Zhu Y, Tao X, Yu K, Zhao Z, Wu Z, Lu J, Gao C, Zhao D. Enhanced n‐butanol permselectivevapor permeation by incorporating ZIF‐8 into a polydimethylsiloxane composite membrane: Effect of filler loading contents. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dian Zhao
- Zhejiang Normal University Department of Chemistry No. 688 Yingbin Road 321004 Jinhua CHINA
| |
Collapse
|
23
|
A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. MEMBRANES 2022; 12:membranes12030312. [PMID: 35323787 PMCID: PMC8956067 DOI: 10.3390/membranes12030312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.
Collapse
|
24
|
Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Grzybek P, Turczyn R, Dudek G. Mixed Manganese Dioxide on Magnetite Core MnO 2@Fe 3O 4 as a Filler in a High-Performance Magnetic Alginate Membrane. MATERIALS 2021; 14:ma14247667. [PMID: 34947261 PMCID: PMC8707341 DOI: 10.3390/ma14247667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022]
Abstract
The process of ethanol dehydration via pervaporation was performed using alginate membranes filled with manganese dioxide and a mixed filler consisting of manganese dioxide on magnetite core MnO2@Fe3O4 particles. The crystallization of manganese dioxide on magnetite nanoparticle surface resulted in a better dispersibility of this mixed filler in polymer matrix, with the preservation of the magnetic properties of magnetite. The prepared membranes were characterized by contact angle, degree of swelling and SEM microscopy measurements and correlated with their effectiveness in the pervaporative dehydration of ethanol. The results show a strong relation between filler properties and separation efficiency. The membranes filled with the mixed filler outperformed the membranes containing only neat oxide, exhibiting both higher flux and separation factor. The performance changed depending on filler content; thus, the presence of optimum filler loading was observed for the studied membranes. The best results were obtained for the alginate membrane filled with 7 wt.% of mixed filler MnO2@Fe3O4 particles. For this membrane, the separation factor and flux equalled to 483 and 1.22 kg·m−2·h−1, respectively.
Collapse
|
26
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|